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Quantum dynamics of strongly correlated systems is a challenging problem. Although the low
energy fractional excitations of one dimensional integrable models are often well-understood, ex-
ploring quantum dynamics in these systems remains challenging in the gapless regime, especially
at intermediate and high energies. Based on the algebraic Bethe ansatz formalism, we study spin
dynamics in a representative one dimensional strongly correlated model, i.e., the antiferromagnetic
spin- 1

2
XXZ chain with the Ising anisotropy, via the form-factor formulae. Various excitations at

different energy scales are identified crucial to the dynamic spin structure factors under the guid-
ance of sum rules. At small magnetic polarizations, gapless excitations dominate the low energy spin
dynamics arising from the magnetic-field-induced incommensurability. In contrast, spin dynamics
at intermediate and high energies is characterized by the two- and three-string states, which are
multi-particle excitations based on the commensurate Néel ordered background. Our work is helpful
for experimental studies on spin dynamics in both condensed matter and cold atom systems beyond
the low energy effective Luttinger liquid theory. Based on an intuitive physical picture, we speculate
that the dynamic feature at high energies due to the multi-particle anti-bound state excitations can
be generalized to non-integrable spin systems.

PACS numbers:

I. INTRODUCTION.

The real-time dynamics reveals rich information of
the quantum nature of strongly correlated many-body
states1–14. On the other hand, one-dimensional inte-
grable models due to their exact solvability provide re-
liable reference points for studying quantum and ther-
modynamic correlations15–27, and certain characteristic
features exhibited in these integrable models are rele-
vant to even non-integrable systems. The spin- 12 anti-
ferromagnetic (AFM) Heisenberg XXZ chain, a repre-
sentative of integrable models, is an ideal system for a
non-perturbative study on quantum spin dynamics28–37.
Nevertheless, it remains a very challenging problem due
to the interplay between quantum fluctuations and the
dynamic evolution. On the experimental side, a great
deal of high precision measurements have been per-
formed on quasi one-dimensional (1D) materials by us-
ing neutron scattering and electron spin resonance (ESR)
spectroscopy12,38–47. These systems are faithfully de-
scribed by the 1D spin- 12 AFM Heisenberg model.

There has appeared significant progress in calculating
the dynamic spin structure factors (DSSF)28–36. At zero
field, contributions to the DSSFs from the two- and four-
spinon excitations can be calculated analytically by using
the quantum affine symmetry49–53, however, this method
ceases to apply at nonzero fields. In the algebraic Bethe
ansatz formalism18,54, the matrix elements of local spin
operators between two different Bethe eigenstates are ex-
pressed in terms of the determinant formulae in finite
systems55–58. Accompanied with a judicious identifica-
tion of the dominant excitations to spin dynamics, this
method can be used to efficiently calculate the DSSFs
for considerably large systems. Excellent agreements be-

tween theories and experiments have been established for
the SU(2) invariant spin- 12 AFM Heisenberg chain, con-
firming the important role of spinon excitations in the
dynamic properties46.

In this article, we study quantum spin dynamics in
an AFM spin- 12 XXZ chain with the Ising anisotropy at
zero temperature in a longitudinal magnetic field. The
spin chain under consideration is gapped at zero field,
and increasing field tunes the system into the gapless
regime17, in which the full spin dynamics remains to be
explored. Working within the algebraic Bethe ansatz for-
malism, we identify various spin excitations separated at
different energy scales. The S−+(q, ω)-channel is domi-
nated by the psinon pair excitations resembling the zero
field des Cloizeaux-Pearson (DCP) modes59, whose mo-
mentum range shrinks as increasing polarization. The
coherent low energy excitations of the S+−(q, ω)-channel
resemble the Larmor mode at q → 0, and become inco-
herent at q → π. The 2- and 3-string states play im-
portant roles at intermediate and high energies, reflect-
ing the background Néel configuration. The low energy
excitations in the longitudinal Szz(q, ω) channel exhibit
the sound-like spectra at q → 0 while the spectra in the
high energy sector reflect the excitonic excitations on the
gapped Néel background. These high-frequency features
of spin dynamics cannot be captured by the low energy
effective Luttinger liquid theory. Based on a simple phys-
ical picture, we argue that the revealed dynamic features
are also relevant to non-integrable cases.

The rest part of this article is organized as follows. In
Sect. II, the model Hamiltonian is presented. In Sect.
III, the method of algebraic Bethe ansatz and the cal-
culation method are introduced. In Sect. IV, the trans-
verse DSSFs are calculated. In Sect. V, the longitudinal
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DSSFs are calculated. Discussions and conclusions are
made in Sect. VI. Various details of calculations are
presented in Appendices A - F.

II. THE MODEL HAMILTONIAN

The Hamiltonian of the 1D spin- 12 AFM chain with the
periodic boundary condition in the longitudinal magnetic
field h is defined as

H0 = J

N
∑

n=1

{

SxnS
x
n+1 + SynS

y
n+1 +∆

(

SznS
z
n+1 −

1

4

)}

,

H = H0 − h

N
∑

n=1

Szn, (1)

where N is the total site number. The spin operators
on the n-th site are Sαn = 1

2σ
α with α = x, y, z. We

consider the axial region with the anisotropic parameter
∆ = cosh η > 1.
The ground state at zero field is known to exhibit the

long-range Neel ordering, and, hence, is spin gapped. If
the external field h is small, then there is no magnetiza-
tion. The magnetization m = 〈G|SzT |G〉/N starts to de-
velop when h is above a critical value hc(∆), and then the
system enters the gapless regime, where |G〉 represents

the ground state and SzT =
∑N

i=1 S
z
i is the z-component

of total spin. h and m are conjugate variables through
the relation h = ∂e0/∂m with e0 = 〈G|H0|G〉/N . For
calculations presented below, we adopt a typical value
of ∆ = 2 (which applies to the SrCo2V2O8 material48)
and N = 200 unless explicitly mentioned, and the corre-
sponding critical field is hc/J = 0.3917.
We will calculate the zero temperature DSSFs, which

are expressed in the Lehman representation as

Saā(q, ω) = 2π
∑

µ

|〈µ|Sāq |G〉|2δ(ω − Eµ + EG), (2)

where a = ± and z; ā = −a for a = ±, and a = ā for
a = z; S±

i = 1√
2
(Sx± iSy) and the Fourier component of

spin is defined as

Saq =
1√
N

∑

j

eiqjSaj ; (3)

|µ〉 is the complete set of eigenstates; EG and Eµ are
eigenenergies of the ground and excited states, respec-
tively.

III. THE BETHE ANSATZ METHOD

In this section, we briefly describe the Bethe ansatz
method that we employ to calculate the DSSF. The fully
polarized state with all spins up is taken as the reference
state, based on which the flipped spins are viewed as

particles. A state with M flipped spins is denoted an
M -particle state and the polarization m = 1/2−M/N .
Each particle wavevector kj is related to a rapidity λj
through the relation

eikj = sin(λj + i
η

2
)/ sin(λj − i

η

2
). (4)

The set of rapidities {λj}1≤j≤M are determined by the in-
teger or half-integer-valued Bethe quantum numbers Ij as
presented in Appendix A. The “psinon”-pair states nψψ
and “psinon-antipsinon” pair states nψψ∗ (n = 1, 2) with
n the pair number play important roles in both trans-
verse and longitudinal DSSFs. These eigenstates possess
real rapidities32,62 and their Bethe quantum numbers are
presented in Appendix A.
If some λj ’s are complex15, the corresponding states

are termed as string states20 in which some particles form
bounded excitations as discussed in Appendix B. The
string ansatz is an approximation assuming the string
pattern of the complex rapidity distribution. A length-l
(l ≥ 1) string is denoted as χ(l), which represents a set
of complex rapidities

λ
(l)
j = λ(l) + i

η

2
(l + 1− 2j), (5)

for 1 ≤ j ≤ l. Their common real part λ(n), the
string center, is determined from the Bethe-Gaudin-
Takahashi (BGT) equations with the reduced Bethe
quantum numbers20 shown in Appendix B.
Below we only consider the solutions with one length-l

string denoted as 1χ(l)R where R = mψψ∗ or mψψ. The
errors of complex rapidities are used to judge the validity
of the string ansatz, which can be analytically checked63.
For the calculated range of 2m from 0.1 to 0.9, our results
exhibit a high numeric accuracy. A bar of 10−6 is set and
only string states within this bar are kept in calculating
DSSFs. The detailed discussions on the error estimation
and how to systematically improve the string ansatz in
an exact manner are included in Appendix D.
The determinant formulae for the form factors

〈µ|S±
j |G〉 can be obtained from the rapidities as pre-

sented in Ref. [58] and as summarized in Appendix C.
Due to the exponentially large number of excited states,
only a subset of them with dominating contributions to
the DSSFs are selected. The validity of the selection
is checked by comparing the results with the exact sum
rules, and these sum rules are derived in Appendix E.

IV. THE TRANSVERSE DYNAMIC SPIN

STRUCTURE FACTOR

In this section, we discuss the dominant contribu-
tions of excited states to the transverse DSSFs includ-
ing nψψ∗, nψψ (n = 1, 2), 1χ(2)R and 1χ(3)R where
R = 1ψψ∗, and 1ψψ. We also check the saturation of
these excitations by comparing with the exact sum rules.
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FIG. 1: The momentum-resolved FFM ratios with 2m equal
to (a) 0.2, (b) 0.5, and (c) 0.8, respectively. The pink, blue, red
and black curves represent cumulative results by including the
psinon states nψψ (n = 1, 2) in S−+, the psinon-antipsinon
states nψψ∗ (n = 1, 2), the 2-string states and 3-string states
in S+−, respectively. In (a), the pink and blue curves overlap
significantly and so do the red and black curves in (c).

A. The momentum-resolved sum rule of the

transverse DSSF

The transverse first frequency moment (FFM) sum rule
is

W⊥(q) =

∫ ∞

0

dω

2π
ω
[

S+−(q, ω) + S−+(q, ω)
]

= α⊥ + β⊥ cos q, (6)

where α⊥ = −e0 − ∆∂e0/∂∆ + mh and β⊥ = (2 −
∆2)∂e0/∂∆ + ∆e0. To evaluate the saturation levels,
we define the ratio of the momentum-resolved FFMs as

ν
(1)
⊥ (q) = W̃⊥(q)/W⊥(q), (7)

where W̃⊥(q) is calculated from the partial summations
over the selected excitations.
The calculated momentum-resolved transverse FFM

ratios ν
(1)
⊥ (q) in the Brillouin zone are displayed in Fig. 1

for three representative magnetizations of 2m = 0.2, 0.5,
and 0.8. The magnetic polarization breaks time-reversal
symmetry, and thus S+− contributes more prominently
than S−+ to sum rules. We start with plotting S−+

contributions, which take into account the “psinon”-pair
states nψψ (n = 1, 2) with n the pair number. These
eigenstates possess real rapidities32,62 and their Bethe
quantum numbers are presented in Appendix A.
The S+− channel is more involved: Dominant excita-

tions include the “psinon-antipsinon” pair states denoted
as nψψ∗ and string states. Combined with S−+, different
contributions are plotted and their relative weights are
displayed explicitly. The nψψ∗ excitations are with real
rapidities and their Bethe quantum numbers are given in
Appendix A. These states with n = 1 and 2 contribute
significantly to S+−(q, ω) at high polarizations, particu-
larly at long wave lengths. But their weights become less
important as decreasing polarization. This observation is
supported by considering the limit of 2m→ 0 at SzT = 1,
then |µ〉’s in Eq. 2 belong to the subspace of SzT = 0,
whose dimension is N !/(N2 !)

2. In this sector, there only

exist two states with all real rapidities representing even
and odd superpositions of two symmetry breaking Néel
states. The dominant weights near the critical line hc(∆)
should arise from string states.
The calculation for S+−(q, ω) is significantly im-

proved by including the string state contributions shown
in Fig. 1. The two-string excitations 1χ(2)R (R =
1ψψ∗, 1ψψ) greatly improves the saturation level of the
FFM ratios for both intermediate and high polarizations
at all momenta. In particular, the 1χ(2)1ψψ∗ contribu-
tions are more dominant than 1χ(2)1ψψ, typically one
order higher. However, at small polarizations, the two-
string contributions decrease quickly in particular at long
wavelengths, indicating the necessity of including states
with even longer strings. Including the 3-string excita-
tions 1χ(3)1ψψ∗ further improves the saturation level of

ν
(1)
⊥ (q) at small polarizations, while their contributions

are minor above the half-polarization. The 1χ(3)1ψψ ex-
citations are neglected since their contributions are about
two orders smaller. After combining all the excitations
above, a high saturation level (> 80%) is reached for all
momenta at the intermediate (e.g. 2m = 0.5) and high
polarizations (e.g. 2m = 0.8). At small polarizations
(e.g. 2m = 0.2), ν(1)(q) is still well saturated for most
momenta. Nevertheless, the saturation level decreases
when m → 0 at q = 0, and the trend is more prominent
for even smaller polarization. There may exist unknown
modes with significant weights around zero momentum.

B. String states and spin dynamics

The appearance of string states can be inferred based
on an intuitive physical picture. Fig. 2 a) shows a pic-
torial plot of a representative spin configuration in the
Néel ordered ground state at zero field. The system be-
comes incommensurate at h > hc as shown in Fig. 2
b), but there is still a reminiscence of the Néel ordering
when the magnetization is small. The excited states con-
tributing to S−+ have one less particle than the ground
state. As shown in Fig. 2 c), removing a particle leads
to a configuration which still consists of unbound parti-
cles. Hence the dominant excitations in S−+ are Bethe
eigenstates with real rapidities.
On the other hand, the states in S+− have one more

particle than the ground state and the situation is more
complicated with three possibilities. If the particle is
added into the region where the Néel ordering is absent,
all particles in the resulted excited state remain to be
unbounded as shown in Fig. 2 d). The second possibility
is to bind the new particle with another existing particle,
which gives a 2-string state displayed in Fig. 2 e). Fig. 2
f) plots the third possibility of a 3-string state: The addi-
tional particle can be inserted into the middle position of
two particles and they form a three-body bounded entity.
Based on the above configuration of a diluted Néel order-
ing state, adding a particle cannot create four particles
in a row, hence string states of higher orders occur with
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FIG. 2: Schematic plot of a representative spin configuration
in the real space within: a) the Néel ordered ground state at
zero field; b) the incommensurate ground state at a nonzero
field h > hc; c) a state with real particle wavevectors con-
tributing to S−+; d) a state with real particle wavevectors
contributing to S+−; e) a 2-string state contributing to S+−;
f) a 3-string state contributing to S+−. The blue hollow cir-
cle represents a spin up which is viewed as vacuum, and the
yellow solid circle represents a spin down which is viewed as
a particle. A particle is removed from (added to) the incom-
mensurate ground state configuration in S−+ (S+−), which
is represented by an arrow pointing out of (into) the corre-
sponding position in b).

much rarer chances, mainly as high order fluctuation ef-
fects. Therefore, the S+− DSSF should be dominated by
the above three types of excited states. We also expect
that the roles played by string states will diminish as
increasing the magnetic polarization, but are enhanced
by increasing the anisotropy. These intuitive considera-
tions are supported by the Bethe ansatz calculations to
be discussed below.

C. The spectral weights

The intensity plots of the transverse DSSFs are pre-
sented in the q-ω plane in Fig. 3 at representative values
of 2m. The spectra of S−+(q, ω) exhibit the reminis-
cence of the DCP modes at zero field59 shown in Fig. 3
(a1), (b1), and (c1), but are significant only in the mo-
mentum interval of 2mπ < q < 2π − 2mπ. This can
be understood intuitively in terms of the 1D Hubbard
chain at half-filling. Although a weak coupling picture is
employed below, charge gap already opens at infinitesi-
mal U > 0 and there is no phase transition. The gap-
less excitations are insensitive to the high energy charge
sector, hence, we expect the analysis below should also
apply to the case of AFM spin chains. At magnetization
m, the Fermi points for two spin components split ex-
hibiting the Fermi wavevectors kf↑,↓ = π(12 ± m). The
minimum momentum for flipping a spin down to up is
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FIG. 3: The intensity plots for the transverse DSFs S−+(q, ω)
from (a1) to (c1) and S+−(q, ω) from (a2) to (c2) in the q-
ω plane all with the same intensity scale. 2m equals 0.2 in
(a1,2), 0.5 in (b1,2), and 0.8 in (c1,2). The δ-function in Eq. 2
is broadened via a Lorenzian function 1

π
γ/[(ω−Eµ+EG)

2+γ2]
with γ = 1/400.
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FIG. 4: Spectrum intensity evolution of S⊥(q, ω) =
S+−(q, ω)+S−+(q, ω) v.s. ~ω/J at (a) q = π

2
, and (b) q = 3π

4
.

In (a) and (b), lines from bottom to up correspond to 2m
varying from 0.1 to 0.9 with the step of 0.1. Contributions
from psinon excitations in the S−+ channel are plotted in
pink. Psinon-antipsinon, 2-string and 3-string states in the
S+− channel are plotted in blue, red and black colors, respec-
tively. The broadening parameter γ = 1/50.

the difference between kf↑,↓ , i.e., ∆kf = 2mπ or equiva-
lently (1 −m)2π, and the energy cost is zero. At small
polarizations, S−+(q, ω) is very coherent near q = ∆kf ,
while as q approaches π, it becomes a continuum. The
lower boundary of the continuum touches zero at q = π
corresponding to flipping a spin-down at one Fermi point
and adding it to the spin-up Fermi point on the opposite
direction. The momentum interval for S−+ shrinks as
increasing polarization and vanishes at the full polariza-
tion.
The spectra of S+−(q, ω) are presented in Fig. 3 (a2),

(b2), and (c2). At small polarizations, the spectra resem-
ble the DCP modes and further split into three sectors.
Recall the ground state evolution as increasing polariza-
tion: At ∆ > 1, the ground state exhibits the Néel or-
dering at m = 0, or, the commensurate charge-density-
wave (CDW) of particles. With hole-doping, the ground
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state quantum-mechanically melts and becomes incom-
mensurate. The low energy excitations are thus gapless,
however, the intermediate and high energy excitations
still sense the gapped Néel state. Applying S−(q) on
|G〉 corresponds to adding back one particle. A promi-
nent spectra feature at low energy is the coherent Lar-
mor precession mode. At q = 0 and the isotropic case,
the Larmor precession mode describes the rigid body ro-
tation with the eigenfrequency ω = h unrenormalized by
interaction. With anisotropy and away from q = 0, it is
renormalized by interaction but remains sharp. The an-
tiferromagnetic coupling causes the downturn of the dis-
persion touching zero at q = ±2πm, and then disappears.
The spectra around q = π is incoherent as a reminiscence
of the two-spinon continuum in the zero-field DCP mode.
The intermediate and high energy spectra arise from the
2- and 3-string states describing 2- and 3-particle bound
states, respectively. The energy separations among these
three sectors are the reminiscence of the spin gap of the
Néel state. As increasing polarization, the Larmor mode
evolves to the magnon mode. The states containing a
pair of bounded magnons contribute to the upper dy-
namical branch, which are high energy modes since the
coupling is anti-ferromagnetic.

We explicitly display the transverse DSF intensities
v.s. ~ω/J from small to large polarizations at two rep-
resentative wavevectors q = π

2 and 3
4π shown in Fig. 4.

The peaks reflect the large-weight region of the spectra
in Fig. 3. The low frequency peaks are typically from
the 2-particle excitations of the 1ψψ and 1ψψ∗ states. In
contrast, the intermediate and high frequency peaks are
based on multi-particle string state excitations. For ex-
ample, the 2-string states 1χ(2)1ψψ are 4-particle excita-
tions composed of a 2-particle bound state and a psinon-
psinon pair excitations. Therefore, the string-state-based
peaks are typically more smeared than the low frequency
peaks.

The evolutions of the spectral peaks at momenta 0, π2
and π as tuning the magnetic field are displayed in Fig.
5. We identify the lines of peaks

χ
(3)
π/2, χ

(2)
π/2, R

−+
π/2, χ

(2)
π , R+−

0 , R+−,a
π/2 , R+−,b

π/2 , (8)

where the subscripts denote the corresponding momenta,
and a, b label the two branches of peaks in R+−

π/2. The po-

sitions of the hollow circles are determined as follows: We
locate the spectral peak frequency position of each chan-
nel at the corresponding momenta. Further, the Bethe
states with the largest spectral weight and the associated
quantum numbers can be identified, and the correspond-
ing eigen-energies are plotted by solid lines in Fig. 5
which indeed pass through the hollow circles.

Here we briefly summarize these states, with de-
tails included in Appendix F. For the 3-string states

1χ
(3)
π/21ψψ

∗, which consist a 3-string, one psinon, and one

anti-spinon, the Bethe eigenstate at the peak position of
S+−(q, ω) is characterized with the partition of momenta

h/J
0 1 2 3

h̄
ω
/
J

0
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4

6

8

R
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FIG. 5: The evolution of peaks in DSSFs of S+− and S−+ at
different momenta versus magnetic field h with lines of peaks

marked by χ
(3)
π/2, χ

(2)
π/2, R

−+
π/2, χ

(2)
π , R+−

0 , R+−,a
π/2 , and R+−,b

π/2 .

The pink, blue, red and black colors correspond to real states
in S−+, real states in S+−, two-string states in S+− and
three-string states in S+−, respectively. The hollow circles
represent the peak positions extracted from DSSF spectral
figures similar to Fig. 4. The solid lines are determined by
solving the energies of the Bethe eigenstates with the largest
weight values around the spectral peaks.

as

kχ(3) = π(1−m), kψ = 0, kψ∗ = π(
1

2
+m), (9)

where k denotes the momentum, m is the magnetization
per site, and the subscripts in k represents the type of

the excitation. For the 2-string states 1χ
(2)
π/21ψψ

∗, the
momentum partition is

kχ(2) = π(1 +m), kψ = π, kψ∗ = π(
3

2
−m). (10)

Similarly, that of χ
(2)
π is

kχ(2) = π(1 − 2m), kψ = kψ∗ = π(
1

2
+m). (11)

The spectral peaks from states of real momenta are lo-
cated at boundaries of the two-particle continuum, which
is an analogue of the X-ray edge singularity64,65. For the
following excitations, their momentum partitions are

R−+
π/2 : kψ1 = π(

1

2
+m), kψ2 = π(1−m),

R+−
0 : kψ = π(

1

2
+m), kψ∗ = π(

1

2
−m),

R+−,a
π/2 : kψ = π(

1

2
+m), kψ∗ = π(1−m),

R+−,b
π/2 : kψ = π(

3

2
−m), kψ∗ = πm. (12)

In all of above cases, to obtain the momentum transfer
q in Eq. (2), an additional π shift must be added since
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FIG. 6: The momentum-resolved FFM ratios at 2m = 0.1.
The pink, blue, red and black curves represent cumulative
results by including the psinon states nψψ (n = 1, 2) in S−+,
the psinon-antipsinon states nψψ∗ (n = 1, 2), the 2-string
states and 3-string states in S+−, respectively, as before. The
anisotropy ∆ = 2, and system size N = 200.
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FIG. 7: The ∆-dependence of the ratios of momentum inte-
grated intensity (a) ν−+, and (b) ν+−. The parameter values
are N = 200 and 2m = 0.05. In (a), the contributions from
1ψψ and 2ψψ states are included. In (b), the blue, red, and
black curves display the results by cumulatively including the
psinon-antipsinon, 2-string and 3-string contributions in S+−,
respectively.

S+− and S−+ change the ground state magnetization by
1. It is interesting to note that several lines in Fig. 5
exhibit nearly linear relation. The identification of the
above Bethe eigenstates is useful for an analytic analysis
of the spectral peaks in the thermodynamic limit, which
will be left for a more careful future study.

D. More discussions on transverse DSFs

To further investigate the behavior of the transverse
DSFs near the critical piont, we present the FFM ratio
at 2m = 0.1 in Fig. 6. A high saturation level (> 80%) is

reached for most momenta, however, near q = 0, ν
(1)
⊥ (q)

drops to about 50%. This indicates that there may ex-
ist unknown modes with significant weights around zero
momentum.
We also investigate the relation of the transverse

DSSFs with the anisotropy parameter ∆ as shown in Fig.

7. We use the momentum-integrated sum rule61

Raā =
1

N

∑

q

∫ ∞

0

dω

2π
Sa,ā(q, ω) =

1

4
+
m

2
ca, (13)

where ca = ±1, 0 for a = ± and z, respectively. The
saturation ratio for the integrated intensity is defined as
νaā = R̃aā/Raā with a = ± and z, where R̃aā is from the
partial summations over the selected excitations.
The small polarization regime is considered for the ex-

ample of 2m = 0.05, and the anisotropy parameter ∆
takes values of 2, 4, 6, 8, 10, and 16. For S−+, the con-
tributions to ν−+ from the 1ψψ and 2ψψ states drop
to about 80% as increasing ∆, and the absent weights
may arise from string states. For S+−, the dominance of
three-string states continuously enhances as increasing
∆ towards the Ising limit. While the three-string states
become increasingly dominant as approaching the criti-
cal line, it is known that there are no strings of length
longer than two in the zero magnetic field case69,70. A
more careful investigation to the regime of very small
magnetization will be deferred to a future work.

V. THE LONGITUDINAL DYNAMIC SPIN

STRUCTURE FACTOR

In this section, we continue to present the longitudi-
nal DSSF, i.e., Szz(q, ω) of Eq. (1), and also check the
saturation level by using sum rules.

A. The momentum–resolved ratios of the

longitudinal DSSF

The momentum resolved longitudinal first frequency
moment (FFM) sum rule is known as

W‖(q) =

∫ ∞

0

dω

2π
ωSzz(q, ω) = (1− cos q)α‖

60, (14)

where α‖ = −e0 + ∆∂e0/∂∆. We define the ratio

of ν
(1)
‖ (q) = W̃‖(q)/W‖(q) in the longitudinal channel,

where again W̃‖(q) is calculated from the partial summa-
tions over the selected excitations.
The momentum-resolved ratios ν

(1)
zz (q) at representa-

tive polarizations and the intensities of Szz(q, ω) are plot-
ted in Fig. 8 after taking into account excitations of
1ψψ∗, 2ψψ∗, and 1χ(2)1ψψ states. Satisfactory satura-
tion levels are obtained.

B. The spectral weights

The calculated spectra weights are plotted in Fig. 8 d,
e, and f for 2m = 0.2, 0.5 and 0.8, respectively. This
quantity is equivalent to the dynamic density-density
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FIG. 8: The momentum-resolved FFM ν
(1)
|| (q) ratios from

(a) to (c), and the intensity plots from (d) to (f) for the
longitudinal DSF Szz. 2m equals 0.2 in (a) and (d), 0.5 in
(b) and (e), and 0.8 in (c) and (f), respectively. In (a), (b)
and (c), the blue, red and black lines are cumulative results

by including 1ψψ∗, 2ψψ∗, and 1χ(2)1ψψ excitations. The
broadening parameter in the intensity plots is γ = 1/400.

correlations of a 1D interacting spinless fermion sys-
tem through the Jordan-Wigner transformation with the
identification of the Fermi wavevector kf = π

2 (1− 2m).
At small polarizations, the contribution of string states

dominates the high energy spectra branch. The low en-
ergy excitations in the long wavelength regime are very
coherent due to the structure of 1D phase space, while
those at 2kf are incoherent, both of which can be de-
scribed by the 1D Luttinger liquid theory66. The high en-
ergy excitations are the reminiscence of the gapped exci-
tonic excitations in the commensurate Néel background.
As increasing polarization, particle filling touches the
band bottom where the band curvature is important, and
thus the low energy coherent excitations are suppressed
and particle-hole continuum becomes more prominent.
When the ground state evolves further away towards the
fully polarization, the low energy excitations are more
incoherent, and the spectra from the string state excita-
tions diminish.

VI. DISCUSSION AND CONCLUSION

We discussion the implication of our results for exper-
iments. The quasi-1D SrCo2V2O8 AFM chain can be
effectively described by the XXZ model with parameters
∆ = 2, J = 3.55meV, and the Landé factor gz = 6.2, and
the critical value of magnetic field is about hc = 4T 47,48.
The Brillouin zone of the material is folded into a fourth
due to its four-fold screw periodic structure, hence the
electronic spin resonance (ESR) measurements can de-
tect the DSF of S+− + S−+ at momenta 0, π

2 , π and
3π
2 , in which π

2 and 3π
2 are equivalent due to the inver-

sion symmetry of the Hamiltonian in Eq. (1). Indeed,
the ESR experiment on the material SrCo2V2O8

48 not
only confirms the real excitations but also for the first
time clearly observes the string excitations, in which the
experimental results agree well with our theoretical pre-
dictions in Fig. 5, demonstrating a rare success of the
strong-correlation description for the real material from
low to high energy regions48. Furthermore, the quantity
1/2(S+− + S−+) + Szz can be compared with inelastic
neutron scattering experiments for the whole range of
(q, ω).

Besides the spin system, the 1D bosonic system in
the hard-core regime is equivalent to the spin- 12 chain,

which has been realized in cold atom experiments67, and
quantum dynamics of two-magnon bound states has been
measured9. Our DSSF calculations and various identified
excitations provide helpful guidance to the experimental
study of quantum spin dynamics in these systems.

Although the above concrete calculations are based on
the integrity of the 1D spin- 12 XXZ model, we believe that
the underlying physics at high energies is universal not
limited to integrable models. Based on Fig. 2 (e) and (f),
we have explained the physical picture of 2 and 3-string
states, and the absence of 4-string states. Similar physics
is also speculated in non-integrable models, such as in
the two-dimensional AFM XXZ model. Under similar
physical parameter set-ups, we would expect it is possible
to observe contributions from 2, 3, 4, and up to 5-magnon
clustering states, since in a two-dimensional geometry the
coordination number is 4. Certainly for the 2D case, the
method of Bethe ansatz will not be possible, and the
theory study will be deferred to a future publication.

In summary, the zero temperature spin dynamics is
studied for the spin- 12 AFM XXZ model in the lon-
gitudinal magnetic field. We find that different dy-
namic branches are energetically separated, which origi-
nate from various classes of excitations including psinon-
psinon and psinon-antipsinon pairs at low energy, and
string excitations at intermediate and high energies. In
particular, for S+−(q, ω) at small magnetizations, states
with real rapidities contribute negligibly small to the
sum rule, and the 3-string states become more and more
dominant as approaching the critical line or increasing
anisotropy. These high-frequency spin dynamic features
cannot be captured within the low energy effective theory
of the Luttinger liquid. Our calculations provide impor-
tant guidance for analyzing the 1D spin dynamics ex-
periments in both condensed matter and ultra-cold atom
systems.
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Appendix A: Bethe ansatz in the axial regime

In this section, we present the Bethe ansatz equations
(BAE) and the Bethe quantum number (BQN) struc-
ture. We focus on the anti-ferromagnetic XXZ spin
chain (Eq. (1) in main text) in the axial regime with
∆ = cosh η > 1.
In the method of the algebraic Bethe ansatz18, the

monodromy matrix is a 2 × 2 matrix. Its matrix en-
tries A(λ), B(λ), C(λ), D(λ) are operators acting in the
many-body Hilbert space of the spin chain. By the virtue
of the Yang-Baxter equation, all the transfer matrices
T (λ) = A(λ) + D(λ) with different spectral parameter
λ’s commute, hence they can be simultaneously diagonal-
ized. The XXZ Hamiltonian can be expressed in terms
of these transfer matrices, and thus it shares common
eigenstates with all the transfer matrices.
A Bethe eigenstate with M down-spins can be ex-

pressed as the result of successively applying the magnon
creation operators B(λj) (1 ≤ j ≤M) onto the reference
state |F 〉 = ⊗Nj=1| ↑〉j , as ΠMj=1B(λj)|F 〉. The rapidities
{λj}1≤j≤M satisfy the Bethe ansatz equations,

Nθ1(λj) = 2πIj +

M
∑

k=1

θ2(λj − λk), (A1)

where

θn(λ) = 2 arctan(
tan(λ)

tanh(nη/2)
) + 2π⌊Re(λ)

π
+

1

2
⌋. (A2)

The symbol ⌊x⌋ represents the floor function, which
yields the largerst integer less than or equal to x.
The rapidities can be either real or complex in general.

If all λj ’s are real, then the corresponding state is called
a real Bethe eigenstate. If there exist complex-valued
λj ’s, then the state is called a string state20, whose name
comes from the pattern of λj ’s in the complex plane in
the thermodynamic limit. We will give a brief description
in Appendix B.
For a chain with even number of sites, the ascending

array of Bethe quantum numbers {Ij}1≤j≤M take integer
values when M is odd, and half-integer values when M
is even. The total momentum of this state is

P = πM − 2π

N

M
∑

j=1

Ij , (A3)

and the energy is

E =

M
∑

j=1

sinh2(η)

cosh η − cos(2λj)
. (A4)

In the subspace with a fixed value of SzT , there exist
M = N

2 −SzT down-spins. In this sector, the BQN of the
lowest energy state are given by

Ij = −M + 1

2
+ j, 1 ≤ j ≤M. (A5)

As for the excited states, the BQN can be grouped into
certain patterns by examining how they can be obtained
through modifying those in the ground state given in Eq.
(A5). We consider two different classes of excited states
with purely real rapidities. Eigenstates with n-pair of
psinons are denoted nψψ28, and their Bethe quantum
numbers {Ij}1≤j≤M satisfy

−M − 1

2
− n ≤ Ij ≤

M − 1

2
+ n, (A6)

where either I1 = −M−1
2 − n or IM = M−1

2 + n to avoid
over-counting. Another class of solutions are called n-
pair of psinon-anti-psinon states denoted nψψ∗. Among
their M Bethe quantum numbers Ij ’s, M − n of them

lying within the range [−M−1
2 , M−1

2 ], and the remaining

n ones lying outside28.

Appendix B: The Bethe-Gaudin-Takahashi

equations for string states

The rapidities of the BAE can take complex values,
and the corresponding solutions are called string states20.
The string ansatz assumes that the complex rapidities
form the string pattern described below.
For a single n-string of complex rapidities,

λnj = λ(n) + i(n+ 1− 2j)
η

2
, 1 ≤ j ≤ n, (B1)

where λ(n) and η are real numbers, and j is the rapidity
index inside the string. For a finite system the distri-
bution of rapidities does not exactly follow Eq. (B1).
The deviations become exponentially suppressed as en-
larging system size, and the string ansatz is asymptoti-
cally exact in the thermodynamic limit. Then a general
Bethe eigenstate with M rapidites is a collection of Mn

n-strings, where
∑

n nMn =M . A real Bethe eigenstate
can be also viewed as a collection of M 1-strings in this
language.
The BAE Eq. (A1) becomes singular in thermody-

namic limit for a string state with the rapidity pattern of
Eq. (B1). Their regularized version is called the Bethe-
Gaudin-Takahashi (BGT) equations20, which only con-
tain the common real part λ(n)

Nθn(λα) = 2πI(n)α +
∑

(m,β) 6=(n,α)

Θnm(λ(n)α − λ
(m)
β ), (B2)

with 1 ≤ α ≤Mn, 1 ≤ β ≤Mm, where

Θnm = (1− δnm)θ|n−m| + 2θ|n−m|+2 + ...

+ 2θn+m−2 + θn+m, (B3)

and θn is defined in Eq. (A2). The momentum of such a
state is

P = π
∑

n

Mn − 2π

N

∑

nα

I(n)α (B4)



9

and the energy is

E =
∑

nα

sinh(η) sinh(nη)

cosh(nη)− cos(2λ
(n)
α )

. (B5)

The general rules for determining BQN for distinct
eigenstates are rather complicated35. Since only Bethe
eigenstates with up to only two types of strings are con-
sidered in this article, we only present the rules for these
special cases below35.
Consider a string state with Mm m-strings and Mn

n-strings, where M = mMm + nMn. Without loss of
generality, we assumem < n. The BQN for them-strings
are within the sets of

A
(m)
i = {−Wm − 1

2
+i ≤ Imj ≤ Wm − 1

2
+i, 1 ≤ j ≤Mm},

(B6)
where

Wm = N − 2mMn − (2m− 1)Mm, (B7)

and 0 ≤ i ≤ 2m − 1. For the n-strings, the BQN are
within the sets of

A
(n)
i = {−Wn − 1

2
+ i ≤ Inj ≤ Wn − 1

2
+ i, 1 ≤ j ≤Mn},

(B8)
where

Wn = N − 2mMm − (2n− 1)Mn, (B9)

and 0 ≤ i ≤ 2n − 1. Not all these BQN yield distinct
Bethe eigenstates. To remove equivalent sets of BQN
giving same eigenstates, we need to exclude those simul-
taneously satisfying the following two conditions

I
(m)
1 ≤ −Wm − 1

2
+ 2m− 1,

I
(n)
Mn

≥ Wn − 1

2
+ 2n− (2m− 1). (B10)

In the following, the presence of the rules of Bethe
quantum numbers for 2-string and 3-string states are
combined together to reduce the content. We list the
rules for the BQN of the string states calculated in the

main text. In the following formulae, n = 2 or 3. The
rule for 1χ(n)1ψψ state is

−N−2M
2 ≤ I(n) ≤ N − 2M

2
+ 2n− 1,

−M−n+1
2 + i ≤ I

(1)
j ≤ M − n+ 1

2
+ i, 1 ≤ j ≤M − n,

(B11)

in which i is an integer. The DSF intensity distribu-
tion must be symmetric with respect to the momentum
π since the system possesses inversion symmetry. It is
possible for states with i = 0 to be transformed to those
with i 6= 0 under inversion, which must also be included.
For the excitations of the type of 1χ(n)1ψψ(∗), the rule

for the I(n) part is the same, while that for real rapidities
is

−M−n−1
2 + i ≤ I

(1)
jl

≤ M − n− 1

2
+ i,

1 ≤ l ≤M − n− 1,

−N−M+n−3
2 ≤ I

(1)
jM−n

≤ −M − n− 1

2
− 1 + i, or

M−n−1
2 + 1 + i ≤ I

(1)
jM−n

≤ N −M + n− 3

2
+ 1,(B12)

where I
(1)
j ’s should be arranged in an ascending array,

and −(2n − 1) ≤ i ≤ 2n − 1 again for the purpose
of symmetrization. The BQN need to be excluded if
they simultaneously satisfy the following two conditions

I(n) ≥ N−2M
2 + 2n − 2 and I

(1)
1 ≤ −N−M+n−3

2 + 1 to
avoid overcounting as mentioned above.

Appendix C: The determinant formulae

To carry out the DSF calculation, the normalized
Bethe state and the matrix element of spin operators
are needed. The normalized state of ΠMj=1B(λj)|F 〉
is denoted as |{λj}1≤j≤M 〉 below. The matrix entries
〈{µk}1≤k≤M+1|Saq |{λj}1≤j≤M 〉 can be formulated into

determinant forms68, which greatly facilitates both an-
alytical and numerical calculations.

1. Real states in the axial regime

We first present the determinant formulae for the real Bethe state. Since |〈{µk}1≤k≤M+1|S−
q |{λj}1≤j≤M 〉|2 =

|〈{λj}1≤j≤M |S+
−q|{µk}1≤k≤M+1〉|2, we only present the matrix element for S−

q and Szq .

The transverse matrix element can be expressed as

|〈{µ}|S−
q |{λ}〉|2 = NδP ({λ})−P ({µ}),q| sin iη|

ΠM+1
k=1 | sin(µk − iη/2)|2
ΠMj=1| sin(λj − iη/2)|2

× 1

Πk 6=k′ | sin(µk − µk′ + iη)|Πj 6=j′ | sin(λj − λj′ + iη)|
| detH−|2

| detΦ({µ}) detΦ({λ})| . (C1)
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in which H− is an (M + 1)× (M + 1) matrix. For 1 ≤ k ≤M + 1, 1 ≤ j ≤M ,

H−
kj =

1

sin(µk − λj)
[ΠM+1
l=1(l 6=k) sin(µl − λj + iη)− (

sin(λj − iη/2)

sin(λj + iη/2)
)NΠM+1

l=1(l 6=k) sin(µl − λj − iη)]; (C2)

and for 1 ≤ k ≤M + 1,

H−
k,M+1 =

1

sin(µk + iη/2) sin(µk − iη/2)
. (C3)

For the longitudinal matrix element, the expression for 〈{µk}1≤k≤M |Szq |{λj}1≤j≤M 〉 is

|〈{µ}|Szq |{λ}〉|2 =
N

4
δP ({λ})−P ({µ}),q ΠMk=1|

sin(µk − iη/2)

sin(λj − iη/2)
|2

× 1

Πk 6=k′ | sin(µk − µk′ + iη)|Πj 6=j′ | sin(λj − λj′ + iη)|
| det(H − 2P )|2

| det Φ({µ}) detΦ({λ})| , (C4)

in which the M ×M matrices H and P are given by

Hkj =
1

sin(µk − λj)
[ΠMl=1(l 6=k) sin(µl − λj + iη)− (

sin(λj − iη/2)

sin(λj + iη/2)
)NΠMl=1(l 6=k) sin(µl − λj − iη)], (C5)

and

Pkj =
ΠMl=1 sin(λl − λj − iη)

sin(µk + iη/2) sin(µk − iη/2)
, for 1 ≤ k ≤M, 1 ≤ j ≤M. (C6)

The off-diagonal matrix elements Φjk at (j 6= k) is

Φjk =
sin(2iη)

sin(λj − λk − iη) sin(λj − λk + iη)
, (C7)

and the diagonal matrix element Φjj is

Φjj = N
sin(iη)

sin(λj − iη/2) sin(λj + iη/2)
−

M
∑

l=1,l 6=j

sin(2iη)

sin(λj − λl − iη) sin(λj − λl + iη)
. (C8)

2. The reduced determinant formule for string states

In calculating the DSFs, if we directly plug in the rapidities of the string state solutions into Eqs. (C7, C8), the
matrix Φ becomes singular. The L’Hospital’s rule must be applied to remove the singularities35. The reduced matrix
Φ(r) is defined by35

Φ(r)
nα,nα = N

n
∑

j=1

[
sin(iη)

sin(λ
(nα)
j − iη/2) sin(λ

(nα)
j + iη/2)

−
M
∑

k=1(k 6=nαj,j±1)

sin(2iη)

sin(λ
(nα)
j − λk − iη) sin(λ

(nα)
j − λk + iη)

+

n
∑

l=1(l 6=j,j±1)

sin(2iη)

sin(λ
(nα)
j − λ

(nα)
l − iη) sin(λ

(nα)
j − λ

(nα)
l + iη)

],

Φ
(r)
nα,mβ =

n
∑

j=1

m
∑

k=1

sin(2iη)

sin(λ
(nα)
j − λ

(mβ)
k − iη) sin(λ

(nα)
j − λ

(mβ)
k + iη)

, nα 6= mβ, (C9)

in which λ
(nα)
j = λ(nα) + i(n+ 1− 2j)η/2, where λ(nα) is the common real part of the α’th length-n string.

The formula for |〈{µ}|S−
q |{λ}〉|2, where |{µ}〉 is a string state, |{λ}〉 a real Bethe eigenstate, is given by

|〈{µ}|S−
q |{λ}〉|2 = NδP ({λ})−P ({µ}),q

| sin(iη)|
Πn(| sinn−1(2iη)|)Mn

ΠM+1
k=1 | sin(µk + iη/2)|
ΠMj=1| sin(λj + iη/2)|

1

Πj 6=j′ | sin(λj − λj′ + iη)|

× 1

Πmβl 6=nαl′ ,l′±1| sin(µ
(nα)
l − µ

(mβ)

l′
+ iη)|

| detH−|2
| detΦ({λ})| · | det Φr({µ})| . (C10)
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The expression for |〈{µ}|Szq |{λ}〉|2 can be obtained similarly, as

|〈{µ}|Szq |{λ}〉|2 =
N

4
δP ({λ})−P ({µ}),q

1

Πn(| sinn−1(2iη)|)Mn
ΠMj=1|

sin(µj + iη/2)

sin(λj + iη/2)
|2 1

Πj 6=j′ | sin(λj − λj′ + iη)|

× 1

Πmβl 6=nαl′ ,l′±1| sin(µ
(nα)
l − µ

(mβ)

l′
+ iη)|

| det(H − 2P )|2
| detΦ({λ})| · | detΦr({µ})| . (C11)

Appendix D: Deviation of string states

The string ansatz is known to be not exact even in the
thermodynamic limit. The solutions of rapidities may
deviate from the pattern assumed by string ansatz. Such
deviations must be taken into account when they are
large63. In this section, we give the formulae for an ex-
act treatment of string deviations for 1χ(2)R and 1χ(3)R
excitations.
The branch cut of logarithmic function is taken as the

negative real axis which is identified with R
− + i0. From

this the branch cut of arctan-function is accordingly de-
termined via the definition

arctan(z) =
1

2i
(ln(1 + iz)− ln(1− iz)). (D1)

For a 1χ(2)R type excitation, let the two complex ra-

pidities be λ
(2)
± = λ(2) ± i(η/2 + δ), where δ represents

the deviation from the pattern of string ansatz, and the
remaining M − 2 real rapidities be {λk}1≤k≤M−2. Let
the corresponding BQN be J± and {Jk}1≤k≤M−2. Then
the two BAE for the complex rapidities are

Nθ1(λ
(2)
a ) = 2πJa + θ2(λ

(2)
a − λ

(2)
−a)

+
∑M−2
k=1 θ2(λ

(2)
a − λk), (D2)

where a = ±. In the followings, we assume that λ(2) 6= 0,
δ 6= 0, and λ(2) − λj 6= 0, 1 ≤ j ≤M − 2.
From the choice of branch cut for arctan-function, the

real part of the difference between the equations of a = +
and a = − in Eq. (D2) gives

J− − J+ = Θ(δ), (D3)

in which Θ(x) = 1 when x ≥ 0, and Θ(x) = 0 when
x < 0. Taking the sum of the equations for a = + and
a = − in Eq. (D2), setting δ = 0, and comparing with
the reduced BGT equation, we obtain

J− + J+ = I(2) +N⌊λ
(2)

π
+

1

2
⌋+ N

2
(−)⌊

λ(2)

π/2
⌋. (D4)

The sign of δ can be determined from Eq. (D4) by notic-
ing that J± are integers (half-integers) when M is odd
(even), i.e.

Θ(δ) = mod (I(2) −M + 1 +
N

2
, 2). (D5)

Combining Eqs. (D4,D5) together, the BQN J± can be
determined from the reduced one I(2) in BGT equations.
For the BQN of real rapidities, it can be shown that
Jk = Ik, 1 ≤ k ≤ M − 2. To solve the exact values
of rapidities, Eq. (D2) are replaced with the following
two real equations. The first one is the sum of the two
equations in Eq. (D2), but not setting δ = 0. The second
one is obtained by taking the imaginary part of the a = +
equations in Eq. (D2), as

| tan(λ
(2)
+ − λ

(2)
− )− i tanh η

tan(λ
(2)
+ − λ

(2)
− ) + i tanh η

| = | tan(λ
(2)
+ )− i tanh η/2

tan(λ
(2)
+ ) + i tanh η/2

|N

·Πk|
tan(λ

(2)
+ − λk) + i tanh η

tan(λ
(2)
+ − λk)− i tanh η

|.

(D6)

Combining these two equations with the BAE for real
rapidities, the exact solutions can be solved. The first
order deviation of δ can be obtained from Eq. (D6). Up
to first order of δ, the left hand side (LHS) of Eq. (D6)
is |δ|/(sinh(η) cosh(η)).
For the case of 1χ(3)R excitation, the logic is similar.

Let the three complex rapidities be λ
(3)
a with a = ±, 0,

and the real rapidities be {λk}1≤k≤M−3. Let the cor-
responding Bethe quantum numbers be Ja (a = ±, 0),
and {Jk}1≤k≤M−3. To parametrize the string deviations,

the complex rapidities are written as λ
(3)
0 = λ(3), and

λ
(3)
± = λ(3)+ ǫ± i(η+δ). The BAE for the three complex

rapidities are

Nθ1(λ
(3)
a ) = 2πJa +

∑

b6=a θ2(λ
(3)
a − λ

(3)
b )

+
∑M−3
k=1 θ2(λ

(3)
a − λk), (D7)

where a, b = ±, 0. We assume that λ(3) 6= 0, ǫ 6= 0,
δ 6= 0, and λ(3) − λj 6= 0, 1 ≤ j ≤M − 3.
The real part of the difference between the equations

for a = + and a = − in Eq. (D7) gives

J− − J+ = 1. (D8)

Taking the sum of the three equations in Eq. (D7), set-
ting ǫ = δ = 0, and comparing with the reduced BGT
equation, we obtain

J+ + J0 + J− = I(3) +N(2⌊λ(3)

π + 1
2⌋+ (−)⌊

λ(3)

π/2
⌋)

−
∑

k(⌊λ
(3)−λk

π + 1
2⌋+ 1

2 (−)⌊
λ(3)−λk

π/2 ⌋).

(D9)
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To determine J± and J0, the sum of the equations for a = ± in Eq. (D7) is taken, yielding

2π(J+ + J−) + θ2(λ
(3)
+ − λ

(3)
0 ) + θ2(λ

(3)
− − λ

(3)
0 ) = N(θ1(λ

(3)
+ ) + θ1(λ

(3)
− ))−

∑

k

(θ2(λ
(3)
+ − λk) + θ2(λ

(3)
− − λk)). (D10)

Define A to be the right hand side of Eq. (D10). Since

θ2(λ
(3)
+ − λ0) + θ2(λ

(3)
− − λ0) ∈ (−2π, 2π), J+ + J− is the

even (odd) integer number within (A/2π − 1, A/2π + 1)
when M is even (odd). Hence

J+ + J− = (1 + (−)M )⌊ 1
2 (

A
2π + 1)⌋

+(1− (−)M )(⌊ 1
2 (

A
2π + 1) + 1

2⌋ − 1
2 ).

(D11)

From Eqs. (D8, D9, D11), the values of J± and J0 can be
determined from the reduced BQN I(3) in BGT equation.
The BQN for real rapidities can be proved to be of the
following expression in similar manner,

Jk = Ik − ⌊λk − λ(3)

π
+

1

2
⌋ − 1

2
(−)⌊

λk−λ(3)

π/2
⌋, (D12)

where 1 ≤ k ≤M − 3.

For solving rapidities, Eq. (D7) are replaced with the
following three real equations. The first one is the sum
of the equations for a = ±, a = 0 in Eq. (D7) without
setting ǫ and δ to be zero. The second one is Eq. (D10).
The third one is by taking imaginary part of the differ-
ence between the equations for a = + and a = − in Eq.
(D10), which is

| tan(λ
(3)
+ − λ

(3)
0 )− i tanh η

tan(λ
(3)
+ − λ

(3)
0 ) + i tanh η

| = | tan(λ
(3)
+ − λ

(3)
− ) + i tanh η

tan(λ
(3)
+ − λ

(3)
− )− i tanh η

| · | tan(λ
(3)
+ )− i tanh η/2

tan(λ
(3)
+ ) + i tanh η/2

|N · Πk|
tan(λ

(2)
+ − λk) + i tanh η

tan(λ
(2)
+ − λk)− i tanh η

|.

(D13)

Let ǫ = r sin θ, δ = r cos θ. For first order deviation,
we remark that up to first order in ǫ and δ, the LHS of
Eq. (D13) is r/(2 sinh η cosh η), and θ can be determined
from Eq. (D10) as

θ = −φ+ πsignφ, (D14)

in which φ is defined to be 1
2A−πJ0. The values of r and

θ can be used as the initial inputs in an iterative solution
of ǫ and δ.

Appendix E: Sum rules

The momentum-resolved first frequency sum rules
are presented below. The transverse first fre-
quency moment (FFM) sum rule is W⊥(q) =
∫∞
0

dω
2π ω [S+−(q, ω) + S−+(q, ω)] = α⊥+β⊥ cos q, where

α⊥ = −e0−∆∂e0/∂∆+mh and β⊥ = (2−∆2)∂e0/∂∆+
∆e0. Its longitudinal version is also known as W‖(q) =
∫∞
0

dω
2πωS

zz(q, ω) = (1 − cos q)α‖
60, where α2 = −e0 +

∆∂e0/∂∆.
Here we summarize the derivation of the first frequency

moment sum rule in Eq. (6) following Ref. [60]. The first
frequency moment is defined as

ωaā(q) =

∫ ∞

−∞

dω

2π
ωSaā(q, ω). (E1)

The expressions of ω+− + ω−+ and ωzz are derived as a
function of ∆ and h for the XXZ Hamiltonian (Eq.(1) in
main text).

By inserting a complete set of eigenstates and per-
forming the integration with respect to t and ω, ωii
(i = x, y, z) can be transformed as

ωii =
1

N

∑

j,j′

e−iq(j−j
′
)

∫ ∞

−∞

dω

2π

∫ ∞

−∞
dtωeiωt

∑

µ

ei(EG−Eµ)t〈G|Sij |µ〉〈µ|Sij′ |G〉 = − 1

N

∑

j,j′

e−iq(j−j
′
)〈G|[H,Saj ]Saj′ |G〉.
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Similarly

ωii =
1

N

∑

j,j′

e−iq(j−j
′
)〈G|Sij [H,Sij′ ]|G〉. (E2)

Since the system is invariant under inversion tranforma-

tion defined as P ~SjP
−1 = ~S−j , i.e.

P |G〉 = |G〉, PHP−1 = H, (E3)

Eq. (E2) becomes

ωii =
1

N

∑

j,j′

e−iq(j−j
′
)〈G|Si

j′
[H,Sij ]|G〉, (E4)

where in obtaining the last line the change of summation
indices −j → j

′

and −j′ → j is performed. Combining
these results together, we obtain

ωii = − 1

2N

∑

j,j′

e−iq(j−j
′
)〈G|[[H,Sij ], Sij′ ]|G〉, (E5)

The commutation relations for i = x, y, z can be carried
out explicitly, and the results for ωii are

ωxx(yy) = − 1

N

∑

j

[(1 −∆cos q)〈G|Sy(x)j S
y(x)
j+1 |G〉+ (∆− cos q)〈G|Szj Szj+1|G〉 −

h

2
Szj ],

ωzz = − 1

N
(1− cos q)

∑

j

〈G|(Sxj Sxj+1 + Syj S
y
j+1)|G〉.

(E6)

In the main text S+−(q, ω) and S−+(q, ω) are calcu-
lated, and their first frequency moment sum rule can be
derived from ωxx and ωyy through

ω+− + ω−+ = 2(ωxx + ωyy). (E7)

Under the help of the Hellman-Feynman theorem, we
have

〈G|
∑

j

SzjS
z
j+1|G〉 =

∂e0
∂∆

,

〈G|
∑

j

(Sxj S
x
j+1 + Syj S

y
j+1)|G〉 = e0 −∆

∂e0
∂∆

.

(E8)

where e0 is defined as

e0 =
∑

j

〈G|(Sxj Sxj+1 + Syj S
y
j+1 +∆Szj S

z
j+1)|G〉. (E9)

The magnetic field h and magnetization m are related
through the Legendre transform

h =
1

N

∂e0
∂m

. (E10)

Combining these results together, the first frequency mo-
ment sum rule can be expressed as

ω+−(q) + ω−+(q) = − 2

N
[(∆(1 + ∆cos q)− 2 cos q)

∂e0
∂∆

+ (1−∆cos q)e0 −m
∂e0
∂m

], (E11)

ωzz(q) = − 1

N
(1− cos q)(e0 −∆

∂e0
∂∆

). (E12)

Appendix F: Bethe eigenstates at spectral peak

positions in transverse DSFs

In this section, we identify the Bethe eigenstates with
the largest weight values around the spectral peaks at
momenta 0, π2 , π. The energies of these eigenstates can
be obtained by solving the Bethe ansatz equations, which
correspond to the peak positions in the DSSF spectra as

shown in Fig. 5. In the following, SzT =
∑N

i=1 S
z
i is the z-

component of the total spin; M = N
2 −SzT is the number

of magnons; andm = SzT /N is the magnetization per site.
For simplicity, we assume that both N and SzT are even
integer numbers. For the expressions of the momentum
k of the excitations χ(n) (n = 1, 2), ψ and ψ∗, the limit
of N → ∞ is taken with m fixed.

For the line of χ
(3)
π
2

in Fig. 5, the Bethe quantum num-

bers of the corresponding Bethe eigenstate are given by

I(3) =
1

2
SzT ,

I
(1)
j = −M − 4

2
+ j − 1 + Θ(j − M

2
+ 3), (F1)

where 1 ≤ j ≤M − 3, and Θ is the step function defined
as Θ(x) = 0 if x ≤ 0 and Θ(x) = 1 if x > 0. The
momenta of the excitations are determined by Eq. (B4)
as kχ(3) = π(1−m), kψ = 0 and kψ∗ = π(1/2 +m).

For the line of χ
(2)
π/2, the Bethe quantum numbers of



14

FIG. 9: Distributions of Bethe quantum numbers for the
string excitations which have local maximal weight values at
the corresponding momentum. The positions of the solid cir-
cles represent the Bethe quantum numbers of the particles.
The system size and magnetization are taken as N = 32 and
Sz
T = 8.

the corresponding Bethe eigenstate are

I(2) = −1

2
SzT ,

I
(1)
j = −M − 3

2
+ j − 2 + Θ(j − M

2
+ 1), (F2)

where 1 ≤ j ≤ M − 2. The momenta of the excitations
are kχ(2) = π(1 +m), kψ = π and kψ∗ = π(3/2−m).

For the line of χ
(2)
π , the Bethe quantum numbers of the

corresponding Bethe eigenstate are

I(2) = SzT + 2,

I
(1)
j = −M − 3

2
+ j,

(F3)

where 1 ≤ j ≤ M − 2. The momenta of the excitations
are kχ(2) = π(1− 2m), kψ = kψ∗ = π(1/2 +m).

For the line of R−+
π/2 (m ≤ 1/4), the Bethe quantum

numbers of the corresponding Bethe eigenstate are

I
(1)
j = −M − 1

2
+ j − 1 + Θ(j −M +

N

4
), (F4)

where 1 ≤ j ≤ M . The momenta of the excitations are
kψ1 = π(1/2 +m) and kψ2 = π(1 −m).
For the line of R+−

0 , the Bethe quantum numbers of
the corresponding Bethe eigenstate are

I
(1)
j = −M − 1

2
+ j, 1 ≤ j ≤M − 1,

I
(1)
M =

M − 1

2
+ SzT + 1. (F5)

The momenta of the excitations are kψ = π(1/2+m) and
kψ∗ = π(1/2−m).

For the line of R+−,a
π/2 , the Bethe quantum numbers of

the corresponding Bethe eigenstate are

I
(1)
j = −M − 1

2
+ j, 1 ≤ j ≤M − 1,

I
(1)
M =

N

4
− M − 1

2
. (F6)

The momenta of the excitations are kψ = π(1/2+m) and
kψ∗ = π(1−m).

For the line of R+−,b
π/2 , the Bethe quantum numbers of

the corresponding Bethe eigenstate are

I
(1)
j = −M − 1

2
+ j, 1 ≤ j ≤M − 1,

I
(1)
M =

N

4
+
M − 1

2
. (F7)

The momenta of the excitations are kψ = π(3/2−m) and
kψ∗ = πm.
Schematically, we present the distributions of Bethe

quantum numbers of string excitations are shown in Fig.
9.
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