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Abstract

We apply the compressive sensing lattice dynamics (CSLD) method to calculate phonon dis-

persion for crystalline solids. While existing methods such as frozen phonon, small displacement,

and linear response are routinely applied for phonon calculations, they are considerable more ex-

pensive or cumbersome to apply to certain solids, including structures with large unit cells or low

symmetry, systems that require more expensive electronic structure treatment, and polar semicon-

ductors/insulators. In the latter case, we propose an approach based on a corrected long-range

force constant model with proper treatment of the acoustic sum rule and the symmetric on-site

force constant matrix. Our approach is demonstrated to be accurate and efficient for these systems

through case studies of NaCl, CeO2, Y3Al5O12 and La2Fe14B.
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I. INTRODUCTION

With the advent of efficient density-functional theory (DFT) based methods for solving

the electronic ground state under the Born-Oppenheimer approximation, several ab ini-

tio methods for calculating the harmonic force constants or force constant matrix (FCM) of

crystalline solids have been proposed, such as the frozen phonon approach,1,2 the direct or su-

percell small displacement method,3,4 the density-functional perturbation theory (DFPT),5

and the compressive sensing lattice dynamics (CSLD) method.6,7 Due to these develop-

ments, ab initio determination of the harmonic phonon dispersion curves and phonon mode

Grüneisen parameters has become routine and readily available in many software packages

(for a recent review see Ref. 8).

Even though there is in principle no obstacle, phonon calculations still require a significant

amount of effort in practice, especially for solids with large unit cells or low symmetry.

Consider the worst case senario: a system with a large primitive cell (Na atoms) and no

symmetry. Under the “shortsightedness” assumption, each atom interact appreciably with

up to Nn atoms. The total number of non-zero FCM elements is ∼ 9
2
NaNn. In a supercell of

Np primitive cells, each DFT calculation returns information of 3NpNa−3 force components.

Assuming a ratio g > 1 for the number of training data points to the number of unknowns,

one needs at least

9

2
gNaNn/ (3NpNa − 3) ≈ 3

2
gNn/Np (1)

supercell calculations. In the limit of very large unit cells (Na → ∞), Np → 1, the above

number 3Nn (assuming g = 2) remains finite as long as the atomic interactions are short-

ranged. By taking advantage of the sparsity or “short-sightedness” of the force constant,

CSLD allows one to stay close to the above lower limit. In contrast, the direct method,

arguably the most widely used approach, requires ∼ 3gNa supercell calculations to displace

the three coordinates of each atom in the plus and minus directions (g = 2) in the worst

case, a number that grows linearly with the size of the unit cell.

Part I of this series contains technical details of CSLD while Part II focuses on phonon

calculations. First, we will clarify the theory of long-range Coulomb interactions in gapped

systems.
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II. LONG RANGE INTERACTIONS

In polar solids with a band gap, the long-range Coulomb interactions have to be treated

with care, as they give rise to the well-known physical effect of longitudinal/transverse-

optical (LO-TO) splitting.5 In practical calculations, the force constants have to be cut

off at some maximum interaction distance, but the LO-TO splitting is immediately lost at

any finite cut-off. The problem is particularly problematic for CSLD, since the effectively

infinite number of interacting atoms (Nn → ∞) is incompatible with the very assumption

of compressive sensing:9,10 sparsity in the unknown parameters (force constants).

In the direct method, the LO-TO splitting problem is treated with the help of the non-

analytical part of the long-range dynamical matrix D̃NA(q → 0) in the long wavelength

limit.11 At finite q, D̃NA is mixed in with an interpolation scheme, using either the semi-

empirical Guassian smoothing function by Parlinski and co-workers,12 or the mixed-space

approach by Wang and co-workers.13 Detailed discussions can be found in Ref. 8.
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FIG. 1. Comparison of phonon calculations using DFPT (left) and CSLD (right). FF=Fourier

transformation.
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A. Range-separation in real space

Our approach is based on the idea of separating the long-range interactions and the

residual short-range ones in real space (Fig. 1). We divide the force constant matrix between

atoms a (site κ in unit cell 0) and b (κ′ in cell R) into the long-range dipole-dipole term and

a residual, presumptively short-range one:

Φab = CDD
ab + ΦSR

ab . (2)

The atomic forces are also range-separated:

~Fa = ~F SR
a + ~F LR

a = ~F SR
a −

∑
b

C̃ ′DD
ab · ~ub, (3)

where the summation is over all atoms in a given supercell, and C̃ ′DD is the Fourier-

transformation of CDD at q = 0 (see below). The prime indicates that C̃DD(q = 0) is

evaluated for the considered supercell, not the primitive cell. Next, the short-range force

constants {ΦSR
ab } are fitted to {~F SR

a } with CSLD. Finally, the total dynamical matrix

D̃κκ′ = C̃κκ′/
√
MκMκ′ = D̃SR

κκ′ + D̃DD
κκ′ (4)

is simply the sum of the short/long-range contributions at any wavelength, without having

to resort to a mixing scheme. In the following, we will refer to both C̃ and D̃ as the

dynamical matrix for brevity. The CSLD procedure for separating force constants in real

space is outlined in Fig. 1 and compared schematically to reciprocal space range-separation

in DFPT.14

B. Long-range force constant ansatz

Motivated by the well-known non-analytic dynamical matrix C̃NA responsible for LO-TO

splitting,5

C̃NA
κi,κ′j(q→ 0) =

4π

Ω0

(qkZ
∗
κ,ki)(qlZ

∗
κ′,lj)

q · ε · q , (5)

the following ansatz for the dipole-dipole force constant matrix for atoms 0, κ and R, κ′ was

introduced in order to reproduce eq. (5) in the long-wavelength limit:14,15

CDD
κi,κ′j(0,R) =

∑
i′j′

Z∗κ,ii′Z
∗
κ′,jj′V

DD
κi′,κ′j′(0,R), (6)

V DD
κi,κ′j(0,R) = (detε)−1/2

[
(ε−1)ij
D3

− 3
∆i∆j

D5

]
,
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where Z∗κ,ij and εij are the Born effective-charge and ion-clamped dielectric permittivity

tensors, respectively, ∆i =
∑

j(ε
−1)ijdj is the conjugate of the vector d = rκ′ + R− rκ, and

D =
√

∆ · d.

The set of FCMs in Eq. (6) should obey the constraints discussed in Part I. The acoustic

sum rule (ASR) due to translational invariance gives the on-site FCM14,16

CDD
κi,κj(0, 0) = −

∑
κ′,R6=κ,0

CDD
κi,κ′j(0,R). (7)

Additionally, CDD
κi,κj(0, 0) is symmetric (in indices i, j unless otherwise noted), and therefore∑

κ′,R6=κ,0

[
CDD
κi,κ′j(0,R)− CDD

κj,κ′i(0,R)
]

= 0. (8)

Turning to the reciprocal space, the long-range dynamical matrix is14,16

C̃DD
κi,κ′j(q) = ĈDD

κi,κ′j(q)− δκκ′
∑
κ′′

ĈDD
κi,κ′′j(q = 0), (9)

where ĈDD is the Fourier transformation of CDD, and the second term, which accounts for

the ASR in the reciprocal space, should also be symmetric to keep the dynamical matrix

C̃DD Hermitian17:

QDD
κ,ij ≡

∑
κ′′

[
ĈDD
κi,κ′′j(q = 0)− (i↔ j)

]
= 0. (10)

The Born effective charges Z∗ can be factored out from ĈDD:

ĈDD
κi,κ′j(q) =

∑
i′j′

Z∗κ,ii′Z
∗
κ′,jj′C̄

DD
κi′,κ′j′(q), (11)

and C̄DD(q), independent of Z∗, can be efficiently computed by Ewald summation of

eid·qV DD(0,R).14

C. Corrections for non-Hermiticity

However, closer examination of the long-range force constant ansatz in eq. (6) reveals a

severe problem. CDD
κi,κ′j is symmetric with respect to the composite atomic and cartesian

indices (κi ↔ κ′j), a prerequisite for force constants, but not to cartesian indices alone,

meaning that eq. (8) is not automatically satisfied term by term. In fact this leads to non-

vanishing Eq. (8) and its reciprocal-space equivalent Eq. (10), as well as a non-Hermitian
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dynamical matrix C̃DD in general. This can also be understood with the observation that

the tensors Z∗κ and QDD
κ are both constrained under the same site symmetry at κ. As

Z∗ is in general not a symmetric tensor, the anti-symmetric QDD does not vanish either.

Exceptions exist, e.g. when CDD
κi,κ′j becomes symmetric and Eq. (8) holds term by term, or

when QDD
κ vanishes due to point symmetry of site κ. Such special cases include, mutually

non-exclusively:

• binary semiconductors AB with two atoms per primitive cell and Z∗A = −Z∗B, including

the rock salt, cesium chloride, and zinc blende crystal structures,

• solids with cubic symmetry on all sites and hence scalar Born effective charges Z∗κ,ij ∝
δij, e.g. the fluorite (AB2) and perovskite (ABX3 and AX3) crystal structures,

• other structures with linearly related Z∗ tensors, e.g. wurtzite,

• site symmetry groups of all occupied Wyckoff positions have at least two perpendicular

rotation axes or mirror planes, including the mmm, 3̄m, 4/mmm, 6/mmm, m3̄, m3̄m

Laue classes. These groups guarantee symmetric second-order tensors (including Z∗κ)

and hence vanishing QDD
κ .

Note that the ASR for Z∗, or the charge neutrality condition,
∑

κ Z
∗
κ,ij = 0, does not

guarantee Eq. (8). Numerical tests, including using an independent DFPT code, also reveal

ubiquitous non-Hermitian C̃DD in low-symmetry polar semiconductors.

We would like to make a few general comments on FCMs. Symmetric FCMs may be

derived naturally from a pairwise, translationally invariant potential
∑

a<bE(ra,1−rb,1, ra,2−
rb,2, ra,3−rb,3). Asymmetry, if present in a FCM, has to come from many-body effects and will

be canceled in the sum of Eq. (8) due to translational invariance. We conclude that, except

for special cases, Eq. (6) cannot be the second derivatives of a translationally invariant

potential energy function and is not a valid force constant ansatz for all distances. This

does not negate the DFPT procedure of Gonze and Lee, since the latter requires the total

dynamical matrix D̃ to be Hermitian (or equivalent the total force constants to satisfy the

ASR), not individual short- and long-range terms. However, the non-hermiticity issue is in

conflict with our goal towards short-range force constants that satisfy the ASR.

As a remedy, we propose a new form of long-range FCM with real-space corrections Φcor,

CDD,New
κi,κ′j = CDD

κi,κ′j + Φcor
κi,κ′j. (12)
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The short-ranged (see discussions later) FCMs Φcor help CDD,New satisfy both the long-range

behavior of Eq. (6) and Hermiticity of Eq. (10):∑
κ′′

[
ĈDD,New
κi,κ′′j (q = 0)− (i↔ j)

]
=
∑
κ′′

{[
Φ̂cor
κi,κ′′j(q = 0) + ĈDD

κi,κ′′j(q = 0)
]
− (i↔ j)

}
=
∑
κ′′

[∑
R

Φcor
κi,κ′′j(0,R)− (i↔ j)

]
+QDD

κ,ij

=
∑

κ′,R6=κ,0

[
Φcor
κi,κ′j(0,R)− (i↔ j)

]
+QDD

κ,ij = 0. (13)

Here the Fourier transformation Φ̂cor does not include the on-site term Φcor
κi,κj(0, 0). To

properly account for crystal symmetry, we adopt a procedure similar to Section II of Part

I. Φcor is symmetrized using space group symmetry, excluding translational invariance, as

Φcor = Cspgφcor, (14)

where Φcor is the one-dimensional list combining matrix elements of representative Φcor
κi,κ′j(0,R)

(κ′,R 6= κ, 0) excluding on-site terms, and φcor is the symmetry-reduced list of parameters.

The matrix Cspg is derived from symmetry of the interactions. The on-site term is as usual

dictated by the ASR:

Φcor
κi,κj(0, 0) = −

∑
m

BASR
κij,mΦcor

m , (15)

where BASR is a matrix that takes into account the crystal structure as discussed in Part

I. Φcor
κi,κj(0, 0) is not required to be symmetric. Instead, to cancel the anti-symmetric QDD

from Eqs. (13,14), we solve for∑
m

[
BASR
κij,m − (i↔ j)

]
(Cspgφcor)m = −QDD

κ,ij. (16)

This is an under-determined set of linear equations for unknowns φcor, as long as the in-

teraction distance cutoff for the correction FCMs is large enough to include more unknown

parameters than known asymmetric elements of QDD (at most 3 times number of symmet-

rically distinct atoms). To keep the corrections simple, one may include as few short-range

pairs as possible in Φcor. Different choices in Φcor will be compensated by ΦSR, so the total

corrected dynamical matrix C̃SR + C̃DD + C̃cor is not affected. Here C̃cor is the Fourier
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transformation of Φcor with a simple real-space sum, just like C̃SR. In this work we con-

sidered correctional interactions within the first coordination shell of any symmetrically

distinct atom κ to cancel QDD
κ . The small under-determined problem was solved exactly

with compressive sensing (no approximation necessary). Finally, the full set of correctional

force constants can be obtained from Eqs. (14, 15). Overall our correction scheme has a

simple physical picture: keeping the dipole-dipole force constant ansatz beyond the first

coordination shell, while satisfying the acoustic sum rule by modification to the interactions

within the first shell.
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FIG. 2. Phonon calculations of La2Fe14B: (a) dispersion curves using CSLD with 10 supercell

calculations (solid lines), and phonopy with 30 supercell calculations (dashed lines); (b) total and

partial DOS using CSLD; and (c) root-mean-square (RMSE) and maximum absolute (MAE) errors

of the CSLD band energies compared to phonopy vs. the number of CSLD training structures. The

special points are Γ (0,0,0); A (.5, .5, .5); M (.5, .5, 0); R (0, .5, .5); X (0, .5, 0); Z (0, 0, .5).
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III. RESULTS

All calculations followed the same computational settings as Part I. DFT calculations

adopted the Perdew-Becke-Ernzerhof (PBE) version of the generalized gradient approxima-

tion (GGA)18 except for CeO2, for which GGA+U19 with U = 5 eV and the HSE06 hybrid

method20 were used. While fittings of FCM can be performed using total energies if accu-

rate Hellmann-Feynman forces are not available,7 in this work we fit forces. Fittings of pair

force constant matrices were performed together with third order force constant tensors of

the form Φa,a,a (one-atom anharmonicity) and Φa,a,b (nearest-neighbor pair anharmonicity)

in order to increase the fitting accuracy, similar to the use of plus/minus displacement in

the direct method. These third-order terms typically decrease the relative fitting error from

1–3% to less than 1%. All atoms in the supercell calculations were independently displaced

in a random direction by 0.01 Å away from equilibrium, in contrast to the direct method,

which usually moves one atom in one direction at a time. In polar semiconductors, the Z∗κ,ij

and εij tensors were computed using DFPT and the PBE functional.

A. Metallic solid

The first case study is the rare-earth alloy Nd2Fe14B (NdFeB), one of the most widely used

permanent magnet.21,22 However, our GGA calculation failed to converge with satisfactory

numerical precision due to the 4f -electrons of neodymium. Instead, we studied La2Fe14B as

a model system for NdFeB by replacing Nd with La. The crystal structure is tetragonal with

space group P42/mnm and has 68 atoms in the unit cell. Spin-polarized GGA calculations

were performed in a 2 × 2 × 1 supercell with 272 atoms. For comparison, the phonopy

program23 was also used, which adopts the conventional direct method for force constant

computation.

Fig. 2 shows the obtained phonon dispersion and density of states (DOS) of La2Fe14B.

The phonon spectra feature acoustic modes with not only iron but also significant rare

earth contributions due to the large mass of the latter. The optical phonons are clearly

divided into iron-dominated low-frequency modes and high-frequency ones, which are well

separated from other modes and mainly attributed to the light boron atoms. As shown in

Fig. 2a, CSLD results with 10 supercell calculations are in excellent agreement with those
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using phonopy and 30 calculations. The difference in CSLD and phonopy band energies are

shown in Fig. 2c versus the number of supercell structures used in CSLD fitting. Reasonable

convergence is reached with as few as 8 structures.

B. Polar semiconductors and insulators

1. Separating short-range force

In the test case of NaCl (as well as the next case of ceria), as discussed previously, both

ions possess cubic point group symmetry and the dipole-dipole non-Hermitian correction is

not necessary. Fig. 3 shows the results with one single supercell calculation. As shown in

Fig. 3a, the dominant short-range interaction is the nearest-neighbor Na-Cl pair separated by

0.5a0 (half lattice constant). Other short-range force constants are one order of magnitude

smaller and practically vanish beyond 1.5a0 according to the CSLD fitting, confirming that

the residual interactions other than long-range electrostatics are indeed short-ranged, in

agreement with similar observation achieved through reciprocal space range-separation.15 As

a result, the calculated phonon dispersion (Fig. 3b) is reasonably accurate using the small

1×1×1 conventional face-centered cubic (fcc) cell, which allows fitting of the shortest pairs,

and well converged with the 2×2×2 fcc cell. Compared to our previous result (supplemental

material of Ref. 6) using the Parlinski interpolation scheme, the current dispersion is smooth

and free of the roughness near Γ. As shown in the bottom part of Fig. 3, the acoustic modes

are in good agreement with experiment,24 while the optical modes are underestimated, due

to PBE’s insufficient description of van der Waals interactions.25 This serves as a cautionary

tale that phonon calculations are sensitive to the exchange-correlation functional used, and

appreciable errors may arise in “trivial” text-book systems like rock salt. With the same

PBE functional, our results are nearly identical to previous ones.25

2. Combining hybrid functional calculations

Hybrid functionals, the rung above (semi)-local approximations in Jacob’s ladder for

DFT, typically offer systematic improvement in electronic structure and mechanical proper-

ties. Hybrid-DFT is known for much better agreement with experimental phonon dispersion

over GGA in e.g. CeO2.
26 However, hybrid-DFT calculations as implemented in most DFT
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codes for periodic systems are considerably more expensive than standard DFT, particularly

for large unit cells. Here we show that high-quality results may be obtained by combining

conventional DFT calculations in large supercells and hybrid functional calculations in rel-

atively small supercells. The short range force constants in Eq. (2) are decomposed into

ΦSR
ab = Φ̃SR

ab + ∆ΦSR
ab , (17)

where ΦSR and Φ̃SR are the force constant matrices according to the more accurate but

expensive (e.g. hybrid-DFT) and the less expensive (e.g. GGA) computational approaches,

respectively, while ∆ΦSR is the difference. Assuming that the Φ̃SR values are a reasonable

approximation, one might expect ∆ΦSR to be even more sparse. The strategy is to first fit

the normal GGA short-range force constants Φ̃SR
ab , and then obtain the hybrid corrections

to GGA according to Eq. (17).

One GGA+U calculation for CeO2 was carried out in the 3× 3× 3 fcc cell following the

same procedure as in the previous NaCl example. Similar to the NaCl results, the short-

range force constants are indeed found to be short ranged: they are practically identical

compared to those using the 4 × 4 × 4 cell and very close to the 2 × 2 × 2 fcc cell (not

shown). Relatively minor difference in phonon dispersion was found using GGA+U or

GGA (not shown). To get the hybrid corrections ∆ΦSR
ab , two HSE06 hybrid calculations

were performed in a 2 × 2 × 2 supercell of the primitive cell of ceria (8 formula units) and

fitted with CSLD. The hybrid-corrected dispersion (with HSE06 modifications to GGA+U

only on the nearest- and 2nd-nearest-neighbor force constants) is shown in Fig. 4. The

phonon dispersion is almost identical with the results of Ref. 26 using HSE06 calculations,

phonopy and the direct method, shown in Fig. 4 as gray dotted lines, except for the LO

modes near the Γ point. The difference in long-wavelength LO modes may come from the

different treatment of LO-TO splitting (interpolation of the non-analytic correction versus

our separated treatment of short-range and long-range interactions in Section II A) and/or

different Z∗ and ε∞ parameters used. Similar to Ref. 26, our results are in good agreement

with experimental data, shown in Fig. 4 as large red circles and diamonds. This result

suggest that the predominant effects of hybrid functional on lattice dynamics on very short-

ranged in CeO2. Note that we kept the Z∗ and ε∞ values were from GGA+U rather than

HSE06 calculations.
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FIG. 4. CSLD phonon dispersion for CeO2 from GGA+U (dot-dashed lines) and HSE06 hybrid

(solid) calculations. For comparison, data points from the literature were shown: red open cir-

cles: neutron scattering data (Ref. 27); solid diamonds at the Γ point: Raman and infrared data

(Ref. 28); gray dotted lines: full phonon calculations by Wang et al (Ref. 26)

3. Dipole-dipole non-Hermitian correction in YAG

Now we demonstrate the dipole-dipole non-Hermitian correction on yttrium aluminum

garnet (YAG, Y3Al5O12), a solid-state laser material with space group Ia3̄d and 80 atoms

in the body-centered cubic (bcc) primitive cell. Despite the cubic space group, the point

groups of the ions are lower and give rise to non-scalar Born effective charges and a non-

Hermitian dipole-dipole dynamical matrix, as discussed in Section II C. In particular, the

anti-symmetric tensor QDD was found to vanish only on the yttrium sublattice with Wyckoff

position 24c (site symmetry 2.2 2), not on Al(1) on 24d (symmetry −4..), Al(2) on 16a

(.− 3.) or oxygen on 96h (1). The ill-defined dynamical matrix becomes particularly erratic

on the acoustic branches near the zone center, as shown in Fig. 5a with the real part of the

eigenvalues (dashed lines).

With the corrected dipole-dipole FCM introduced in Section II C, a Hermitian dynamical

matrix is recovered together with the vanishing acoustic modes near Γ (solid lines in Fig. 5a).
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FIG. 5. CSLD phonon calculations for Y3Al5O12: (a) phonon dispersion before and after the

correction, and with the correction, (b) Frobenius norm of the short-range force matrix ΦSR vs.

interaction distance, (c) dispersion curves compared with phonopy results, and (d) total and partial

phonon DOS.

Compared to NaCl, the residual short-range force constants are one order of magnitude larger

(Fig. 5b), suggesting significantly more covalent nature of the bonding in the Y3Al5O12 oxide.

Fig. 5c shows the CSLD calculated phonon dispersion (solid lines) using 3 training structures

in the conventional bcc cell (160 atoms), again in good agreement with the direct method

using 11 training structures as implemented in phonopy. The total and projected DOS plots

are displayed in Fig. 5d.

IV. DISCUSSIONS AND CONCLUSIONS

Now we address the important question of convergence of phonon calculations using

CSLD. First, how large does the supercell have to be? The examples presented suggest that

the (short-range) force constants practically vanish at a distance of 7–9 Å. More generally,

one may monitor the magnitude of the force constants versus distance (e.g. Fig. 3). If the

obtained force constants of the longest distance are appreciable, then the used supercell is too

14



small. If computational costs are a concern, mix-and-matching supercells of different shape

and/or aspect-ratio is completely compatible with CSLD, as possibly problematic long-range

electrostatic forces are already taken out. Second, how many training supercell structures

are needed? A main advantage of CSLD is that it requires fewer structures than the direct

method. If the crystal symmetry is very low or the primitive cell is huge, the reduction

can be more significant, as the number of required supercell structures is capped at a finite

∼ 6Na. In general, one should keep a certain number of data points as a prediction set apart

from the training set29, monitor the prediction error, and add training structures if required.

The examples show empirically 1/3–1/4 of the requirement number of supercell calculations

in the direct method are enough for force prediction error of <∼ 1% for semiconductors and

∼ 2% for metals. Finally and broadly applicable to any first-principles phonon calculations,

care should be taken to ensure convergence with respect to computational settings such as

the number of k-points and energy cut-off.30

In conclusion, the compressive sensing lattice dynamics method is applied to calculate the

phonon spectrum of a few metallic and semiconductor solids. Through a few case studies,

we show that the CSLD method is particularly efficient for systems with large supercells

and requires fewer training supercell structures than the direct method by effectively taking

advantage of the “short-sightedness” of the atomic interactions. In polar semiconductors,

this is achieved after the long-range Coulomb forces and force constants are separated, and

the non-Hermitian dynamical matrix of the dipole-dipole force constant matrix is corrected

with a few short-range terms.
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