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We study the correlated quantum magnet, YbCl3, with neutron scattering, magnetic suscep-
tibility, and heat capacity measurements. The crystal field Hamiltonian is determined through
simultaneous refinements of the inelastic neutron scattering and magnetization data. The ground
state doublet is well isolated from the other crystal field levels and results in an effective spin-1/2
system with local easy plane anisotropy at low temperature. Cold neutron spectroscopy shows low
energy excitations peaked at 0.5 meV that are consistent with nearest neighbor antiferromagnetic
correlations.

PACS numbers: 75.10.Dg, 75.10.Jm, 78.70.Nx

The Quantum Spin Liquid (QSL) is a state of matter
hosting exotic fractionalized excitations and long range
entanglement between spins with potential applications
for quantum computing1–4. Since QSL physics relies on
quantum fluctuations that are enhanced by low spin and
low dimensionality, spin-1/2 systems on two-dimensional
lattices provide a natural experimental platform for re-
alizing a QSL phase. It has also been shown that an
effective spin-1/2 system can be generated even in com-
pounds with high-angular-momentum ions like Yb3+ and
Er3+, where the combination of crystal-field effects and
strong spin-orbit coupling often yields highly anisotropic
interactions between effective spin-1/2 degrees of free-
dom5–7.

Magnetic frustration plays a central role in stabilizing
QSL phases8. While QSLs were traditionally associated
with geometrically frustrated systems (e.g., triangular
and kagome lattices), it has recently become well appreci-
ated that exchange frustration due to highly anisotropic
spin interactions can also stabilize QSL phases, even on
bipartite lattices9,10. Most famously, bond-dependent
spin interactions on the honeycomb lattice give rise to
the Kitaev model, an exactly solvable model with a gap-
less QSL ground state11. A number of honeycomb ma-
terials, primarily containing 4d or 5d transition met-
als such as Ru or Ir have been put forth as realiza-
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tions of the Kitaev model12,13. Prominent examples in-
clude (Na,Li)2IrO3

14–21 and H3LiIr2O6
22, as well as α-

RuCl3
23–36.

FIG. 1: Monoclinic crystal structure of YbCl3 with a =
6.7291(3) Å (x̂-axis), b = 11.6141(9) Å (ŷ-axis), c =
6.3129(3) Å and β = 110.5997(7)◦ obtained at 10 K. Refined
structure parameters are further described in SI37. (a) YbCl3
structure consisting of alternating planes of Yb3+ cations (red
spheres) forming a honeycomb lattice in the ab plane, with
Cl− anions (green spheres) separating the layers. (b) The
crystal field environment surrounding the rare earth ions con-
sists of 6 Cl ions arranged in a distorted octahedron with C2

point group symmetry. Note in this panel the octahedron has
been rotated to coincide with that used for the crystal field
modeling where the ŷ-axis is the axis of quantization (the ẑ-
axis in the rotated coordinate system). (c) Single layer of
Yb ions showing the honeycomb lattice in the monoclinic ab
plane with Yb-Yb distances at 10 K.

Recently, YbCl3 has been proposed as a candidate
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material for Kitaev physics on a honeycomb lattice38,39.
YbCl3 crystallizes in the monoclinic space group C12/m1
(#12). The crystal structure is composed of layers of
Yb3+ ions coordinated by slightly distorted Cl octahedra
as illustrated in Fig. 1. Despite being formally monoclinic
at 10 K, the Yb-Yb distances of 3.864 Å and 3.886 Å and
the Cl-Yb-Cl bond angles of 96.12◦ and 96.73◦ are nearly
identical37. The result of this atomic arrangement are
well-separated, nearly-perfect honeycomb layers of Yb3+

ions in the ab-plane as shown in Fig. 1(a,c). The environ-
ment surrounding the Yb3+ cations depicted in Fig. 1(b)
consists of 6 Cl− anions arranged in distorted octahedra
where the b-axis (ŷ-axis) is the unique C2 axis. Xing,
et al.38 have reported that YbCl3 undergoes short range
magnetic ordering at 1.2 K. A small peak in the heat ca-
pacity/temperature at 0.6 K may indicate a transition to
long range magnetic order. On the other hand, Yb-based
quantum magnets have been the subject of recent inves-
tigations and, surprisingly, in some cases these materials
have been found to possess strong effective Heisenberg
exchange interactions40–45. Indeed, Ref. [46] predicts
this to be the case for YbCl3. Thus, key open questions
for YbCl3 are the nature of the spin Hamiltonian and the
role of potential Kitaev terms. It is likewise important
to determine the single-ion ground state out of which the
collective physics grows and additionally if the ground
state doublet is well isolated and can be considered to
be in the effective quantum spin-1/2 limit. In this paper
we study the single-ion physics though inelastic neutron
scattering (INS) and thermodynamic measurements. We
also study the low energy excitation spectrum to deter-
mine the spin-spin correlations as an initial step towards
understanding the spin Hamiltonian governing the phys-
ical behavior of YbCl3.

Anhydrous beads of YbCl3 and LuCl3 were purchased
from Alfa Aesar and utilized in the experimental work
presented here. Additional information and results of
sample characterization are provided in the SI37. Refine-
ments of neutron powder diffraction data did not reveal
any significant chlorine deficiency or secondary phases37.

The crystal field (CF) excitations were measured with
INS performed with the SEQUOIA spectrometer at the
Spallation Neutron Source at Oak Ridge National Labo-
ratory (ORNL)47. Approximately 4.2 g of polycrystalline
YbCl3 and 2.5 g of its nonmagnetic equivalent LuCl3 were
loaded into cylindrical Al cans and sealed under helium
exchange gas. The use of the LuCl3 measurement as a
background subtraction is described in the SI37. The
samples and an empty can for Al background subtrac-
tion48 were measured at T = 5 K, 95 K and 185 K, with
incident energies, Ei = 6 meV, 45 meV and 60 meV with
the high resolution chopper. The inelastic data presented
here have had the measured backgrounds subtracted and
data reduced using the software packages Dave49 and
MANTID50.

Figures 2(a) and (b) show the INS spectra as a function
of wave-vector transfer, Q, and energy transfer, h̄ω, mea-
sured at T = 5 K and 95 K respectively. Figure 2(c) is

FIG. 2: Dynamic structure factor S(|Q|, h̄ω) of YbCl3 col-
lected with SEQUOIA with Ei= 60 meV at (a) T = 5 K and
(b) T = 95 K. The nonmagnetic background determined from
LuCl3 has been subtracted. Crystal field excitations are visi-
ble at h̄ω = 21.04, 32.03, and 39.28 meV. (c) Comparison of
the intensity of the CF transitions at T = 5 K and T = 95 K
for YbCl3, in the momentum transfer range Q = [2.5, 3.5]
Å−1. The solid lines are the results of the CF analysis using
Eq. 1. Horizontal black lines denote instrumental resolution.
The T = 5 K data and model are offset by 0.3 units along the
vertical axis. The data are scaled so that the strongest CF
level has an intensity of 1.

the wave-vector integrated scattering intensity from the
Ei = 60 meV measurements for 2.5 ≤ Q ≤ 3.5 Å−1. The
prominent higher energy modes are identified as CF exci-
tations both from their Q-dependence and from compar-
ison with the nonmagnetic analog LuCl3

37. At T = 5 K
they are centered at energy transfers of h̄ω = 21.04,
32.03, and 39.28 meV. Increasing temperature reduces
intensity but does not appreciably shift or broaden these
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FIG. 3: Top: Inverse magnetic susceptibility χ as a function
of temperature for polycrystalline YbCl3 in the range 4 ≤T≤
700 K shown on a log-log scale for H = 1 T . The red line is the
result of a simultaneous fit of the CF model to the INS data
(Fig. 2), the magnetic susceptibility, and the magnetization
at 10 K. The top inset shows the calculated magnetization at
10 K compared with the experimental data. The bottom inset
shows the calculated torque diagram using the CF parameters
(green curve) at 2.1 K under an applied field of 5 T (red circle)
in the ab plane as measured in Ref. [38].

transitions, consistent with the behavior expected for CF
excitations. Note there are some low energy phonon
modes in the data that are not well subtracted, particu-
larly near 4 meV.

To understand the nature of the CF spectrum, we ana-
lyze the energy levels following a formalism described by
Wybourne51–53 and Stevens54. Given the C2 site sym-
metry of the local Yb environment, the CF Hamiltonian
consists of 14 parameters55. Prather’s convention56 for
the minimal number of CF parameters was achieved by
rotating the environment by π/2 around the a-axis (x̂-
axis), i.e. the axis of quantization becomes the b-axis
(the ẑ-axis in the rotated coordinate system). To con-
strain the parameters, we simultaneously fit the neutron
scattering data at 5 and 95 K between 15 and 45 meV
(Fig. 2(c)), the magnetic susceptibility between 10 and
700 K (Fig. 3) and the field-dependent magnetization at
10 K (inset Fig. 3).

Hund’s rules state that, for a 4f13 ion, L = 3 and
S = 1/2, thus J = ‖L + S‖ = 7/2 57. Therefore the CF
Hamiltonian can be written in terms of Steven’s opera-
tors as

H =

6∑
n=2

≤n∑
m=0

Bmn Ô
m
n +

6∑
n=4

≤n∑
m=2

B(i)mn Ô(i)mn (1)

for n even, where Bmn are the CF parameters, and Ômn are
the Steven’s operators58 both in real and imaginary (i)
form. Once Eq. 1 is diagonalized, the scattering function,

B0
2 B2

2 B0
4 B2

4 B4
4

−3.145 −27.347 5.623 39.845 −36.900
B0

6 B2
6 B4

6 B6
6

−3.158 10.389 8.004 55.813
B(i)24 B(i)44 B(i)26 B(i)46 B(i)66

−6.29× 10−3 −9.89× 10−3 6.45× 10−3 −0.062 −0.028

TABLE I: Refined CF parameters in units of meV determined
as described in the text. Each coefficient is presented divided
by the corresponding Steven’s parameter αJ , βJ and γJ

58.

S(|Q|, h̄ω), can be written as

S(|Q|, h̄ω) =
∑
i,i′

(
∑
α |〈i|Jα|i′〉|

2
)e−βEi∑

j e−βEj
L(∆E+h̄ω,Γi,i′)

(2)
where β = 1/kBT , α = x, y, z, ∆E = Ei − Ei′ ,
and L(∆E + h̄ω,Γi,i′) is a Lorentzian function73 with
halfwidth Γi,i′ that parameterizes the lineshape of the
transitions between CF levels (eigenfunctions of Eq. (1))
i → i′. We calculate the scattering function using this
formalism, accounting for the Yb3+ magnetic form fac-
tor, and compare these values with the experimental
data, and then vary the CF parameters to minimize the
χ2 difference between the model and the data shown in
Figs. 2(c) and Fig. 3.

Point charge calculations were used to determine the
starting parameters for the refinement of the CF Hamil-
tonian. Once convergence was achieved additional refine-
ment loops were run where the CF parameters were var-
ied to check that the solution was not a local minimum.
The refinement of the Hamiltonian (Eq. 1) in the scatter-
ing function described in Eq. 2 yields the CF parameters
presented in Tab. I and the set of eigenfunctions written
in Tab. II of the SI37. The ground state eigenfunction is
found to be

±0.697

∣∣∣∣±7

2

〉
∓0.341

∣∣∣∣∓5

2

〉
±0.538

∣∣∣∣±3

2

〉
∓0.328

∣∣∣∣∓1

2

〉
.

(3)
The imaginary part of the eigenfunction is not shown
because it is ≈ 2 orders of magnitude smaller than the
real part. The calculated S(|Q|, h̄ω) is plotted at both
temperatures and shown in Fig. 2(c) as solid lines. The
integrated intensity of the three CF excitations is repro-
duced as is the magnetic susceptibility (Fig. 3) and the
field dependent magnetization at 10 K (inset of Fig. 3).

The CF model demonstrates that the Yb3+ ions have a
planar anisotropy and a calculated magnetic moment of
2.24(5) µB/Yb is obtained for the ground state. The cal-
culated components of the g-tensor for the ground state
doublet, using the convention described above, for YbCl3
are gz = 4.09(2), gx = 3.96(2), and gy = 2.04(2), which
shows somewhat more anisotropy than Ref. [38]. Addi-
tionally, using the CF model derived here as a starting
point, we calculated a magnetic torque diagram at 2.1
K for an applied field of 5 T (Fig. 3 inset). The re-
sult reproduces the data in Ref. [38] (note the difference
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FIG. 4: Low energy magnetic spectrum of YbCl3. All data
have had the T = 100 K YbCl3 measurement subtracted as a
background. (a) Scattering intensity as a function of Q (top
axis) and h̄ω. (b) Scattering intensity as a function of Q (top
axis) integrated over h̄ω = [0.1, 1.2] meV. The solid line is
the RMC calculation described in the text. (c) Scattering
intensity as a function of h̄ω (bottom axis) integrated over
Q = [0.2, 2] Å−1.

in coordinate conventions), demonstrating that the CF
ground state is anisotropic independent of any additional
exchange anisotropy.

Despite the overall quality of the fits, one aspect of
the CF excitation spectrum remains puzzling. The line-
shape of the CF excitation centered at 21 meV extends
toward higher energies. A similar broadening is not ob-
served for the other CF excitations. Thus the broadening
is a characteristic of the level at 21 meV and not of the
ground state. To fully account for the spectral weight,
we have modeled the lineshape for this excitation as two
constrained Lorentzians with the widths fixed to be the
same and the positions offset by a fixed amount. The
lack of observable impurity peaks in the neutron diffrac-
tion data37 suggests that this effect is not due to an im-
purity phase. Deviations from ideal Cl stoichiometry are
similarly hard to detect. Another possibility, that is not
supported by the available neutron diffraction data, is
that stacking faults result in a variation of the CF po-
tential along the c-axis. In this scenario, the level at 21
meV would be more strongly affected by such stacking
faults given the strong charge density out of the plane for
this eigenfunction (see SI37 Fig. S4 for plots of the charge

density for each eigenfunction). Additionally, first princi-
ples calculations of the phonon density of states suggests
that this feature is not the result of hybridization of the
CF level with a nearby phonon mode. However, the sym-
metry of the closest phonon modes at 16 and 25 meV does
not prohibit hybridization with the CF level37. Studies
of single crystals are required to further understand the
origin of this broadening. Finally, we note that using a
single Lorentzian in the CF modeling does not signifi-
cantly change the refined CF parameters.

To probe for low-energy magnetic correlations, we per-
formed INS measurements using the HYSPEC instru-
ment59. The same sample used in the SEQUOIA mea-
surements was cooled to T = 1.6, 5, and 10 K and mea-
sured with Ei = 3.8 meV at two positions of the detector
bank to cover a large range of Q. A measurement at
100 K of the YbCl3 sample was used as the background.
Figure 4(a) shows the energy and wave-vector dependent
magnetic spectrum. A broad dispersive mode with ad-
ditional scattering is evident. The additional scattering
may be due to a quantum continuum however, other ex-
planations such as broadened excitations from a short
ranged ordered state, magnon decay, etc, cannot be ex-
cluded with the data at hand. The Q integrated scat-
tering intensity in Fig. 4(c) shows a single peak at 0.5
meV with no indication of a spin gap within the energy
resolution of 0.091 meV or additional scattering inten-
sity above 1.3 meV. Given that long range magnetic or-
der occurs at a maximum temperature of 0.6 K38, the
energy scale of the spin excitations suggests low dimen-
sional and/or frustrated spin interactions in YbCl3. The
h̄ω integrated intensity in Fig. 4(b) is a broad function
which peaks at approximately Q = 1.1 Å−1 likely cor-
responding to the reciprocal lattice points (1 1 0) and
(0 2 0), which is consistent with spin correlations within
the basal plane. The data in Fig. 4(c) were collected at
T= 1.6 K, which is at lower T than the maximum in the
specific heat capacity (1.8 K)37,38. Thus, the low temper-
ature spin excitations may be responsible for a portion of
the loss of entropy despite the lack of apparent long range
order. An additional observation is that the scattering
observed here for YbCl3 appears to be quite different
from the scattering above the ordering temperature in
polycrystalline samples of RuCl3[29] indicating the two
materials have distinct spin Hamiltonians governing the
physical behavior despite their structural and chemical
similarities. Measurements using single crystals are re-
quired to fully understand the nature of the magnetic
ground state and the spin excitation spectrum.

To investigate the spin-spin correlations in YbCl3, we
performed Reverse Monte Carlo (RMC) calculations as
implemented in Spinvert60 (see [37] for more details).
Within this approximation, we fit the integrated intensity
of the low energy excitation spectrum as a function of Q.
Uniaxial, easy plane, and isotropic local spin anisotropies
were all tried as initial starting points for the simulations.
Only starting configurations with the spins in the plane
resulted in good agreement with the data. The result
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of the RMC modeling with an easy plane anisotropy is
shown as a solid line in Fig. 4(b). The radial spin-spin
correlation function was calculated for each final spin
configuration as a means to investigate the orientation of
the spins with respect to each other. Assuming a purely
hexagonal geometry, the nearest neighbor spins are anti-
ferromagnetically correlated, second neighbor spins have
weak ferromagnetic correlations, followed by a rapid de-
cay of spin correlations at larger distances. This result is
independent of the type of starting correlation used for
the modeling.

We analyzed the spectroscopic properties of the quan-
tum magnet YbCl3. Our studies show that YbCl3 has
CF excitations at h̄ω = 21.04, 32.03, and 39.28 meV. The
ground state is a well separated effective spin-1/2 doublet
with easy plane ansisotropy and an average magnetic mo-
ment of 2.24(5) µB/Yb. At T= 1.6 K, where long range
order is not believed to exist, the low energy dynamics of
the YbCl3 are consistent with an interacting spin system
with antiferromagnetic nearest neighbor correlations.
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