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Predicting the critical temperature Tc of new superconductors is a notoriously difficult task, even
for electron-phonon paired superconductors for which the theory is relatively well understood. Early
attempts to obtain a simple Tc formula consistent with strong-coupling theory, by McMillan and
Allen and Dynes, led to closed-form approximate relations between Tc and various measures of the
phonon spectrum and the electron-phonon interaction appearing in Eliashberg theory. Here we
propose that these approaches can be improved with the use of machine learning algorithms. As an
initial test, we train a model for identifying low-dimensional descriptors using the Tc < 10 K data
tested by Allen and Dynes, and show that a simple analytical expression thus obtained improves upon
the Allen-Dynes fit. Furthermore, the prediction for the recently discovered high Tc material H3S at
high pressure is quite reasonable. Interestingly, Tc’s for more recently discovered superconducting
systems with a more two-dimensional electron-phonon coupling, which do not follow Allen and
Dynes’ expression, also do not follow our analytic expression. Thus, this machine learning approach
appears to be a powerful method for highlighting the need for a new descriptor beyond those used
by Allen and Dynes to describe their set of isotropic electron-phonon coupled superconductors. We
argue that this machine learning method, and its implied need for a descriptor characterizing Fermi
surface properties, represents a promising new approach to superconductor materials discovery which
may eventually replace the serendipitous discovery paradigm begun by Kamerlingh Onnes.
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I. INTRODUCTION

Discovery of new superconductors has historically pro-
ceeded largely serendipitously, with guidance from rules
of thumb (such as Matthias’ e/a ratio) rather than many-
body and ab-initio theory. The space of possible mate-
rials to search for new superconductors is vast, consid-
ering that many discoveries in the last thirty years are
multinary compounds. Thus, it is desirable to appeal to
recent computational developments, aided by theory, to
assist this process. The history of ab-initio and materials-
genome type approaches to superconducting materials
discovery has recently been reviewed by Norman,1 Pick-
ett,2 and Duan et al.3

While initially, success in prediction (as opposed to
analysis after discovery, i.e., postdiction) was rare to
nonexistent, more recently the potential for theory to
aid in the discovery of new high-temperature supercon-
ductors was dramatically demonstrated by the predic-
tion and subsequent discovery, in 2015, of superconduc-
tivity at Tc = 200 K in H3S at about 150 GPa pres-
sure.4 This experiment shattered the assumed ceiling for
Tc in electron-phonon superconductors5 and was followed
by the recent discovery of superconductivity in com-
pressed lanthanum hydride at 250 K,6,7 also preceded
by a theoretical prediction.8,9 Recent computational ap-
proaches to hydride superconductivity have been re-
viewed in Refs. 10–12.

Despite these undeniable successes and the demonstra-
tion that the old assumed limit of 35-40 K for Tc due to
the exchange of phonons, often quoted without proof in

early cuprate debates, is incorrect, these experiments do
not provide a clear strategy to optimize Tc in the vast
phase space of materials. This is at least partially due
to an inability to identify the correct materials descrip-
tors, parameters directly reflecting the underlying mech-
anism of superconductivity. For some classes of materi-
als, e.g., thermoelectrics, considerable progress has been
made in high-throughput approaches identifying simple
observables recorded in databases that contribute to a
material’s figure of merit.13 For superconductivity, how-
ever, such approaches14 are considerably more difficult,
both because the theory is more complex, and the fig-
ure of merit, Tc, depends extremely sensitively on the
underlying interactions.

This last difficulty is clear already from the Bardeen-
Cooper-Schrieffer (BCS) theory of superconductivity,15

among whose great successes was the proof that for weak
attractive interactions, fermions pair with an instability
that corresponds to an essential singularity in the dimen-
sionless coupling constant λ, leading to the well-known
expression,

Tc ' 1.14ωD e
− 1

λ , (1)

where ωD is the Debye frequency. BCS theory is success-
ful because it predicts superconducting properties accu-
rately in terms of measured Tc’s, but the essential sin-
gularity alone suggests that accurate calculations will be
difficult. Besides, Eq. (1) is strictly valid only in the weak
coupling limit λ � 1 and if the Coulomb interaction is
neglected.

The inadequacy of the BCS expression for Tc was al-
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ready clear by the late 1960’s, when McMillan5 intro-
duced an improved formula based on Eliashberg the-
ory,16 relating Tc to a small number of physical quantities
calculated from the effective electron-phonon interaction
α2F (ω) that could in principle be extracted from tunnel-
ing data,17

Tc '
ωD
1.45

exp

(
− 1.04(1 + λ)

λ− µ∗(1 + 0.62λ)

)
, (2)

where µ∗ is the Coulomb pseudopotential. This expres-
sion, although it was probably only meant to apply to
a finite range of λ, predicts a saturation of Tc in the
strong-coupling limit for fixed ωD. Dynes18 later replaced
the prefactor ωD/1.45 of the McMillan equation (2) with
〈ω〉/1.20, where 〈ω〉 is the first moment of the distribu-
tion g(ω) = 2/(λω)α2F (ω).

Based on a reanalysis of Eliashberg theory and newly
available computational checks in special cases, Allen and
Dynes19 proposed an alternate approximate formula,

Tc =
f1f2ωlog

1.20
exp

(
− 1.04(1 + λ)

λ− µ∗(1 + 0.62λ)

)
, (3)

where f1 and f2 are correction factors that depend on
λ, µ∗, ωlog, and ω̄2. The frequencies ω̄n are the nth root
of the nth moment of g(ω). The additional tunnelling-
derived parameters ωph, defined as the high-frequency
cutoff in α2F (ω), and η, defined as McMillan-Hopfield
parameter, also appear in their discussion. They showed
that the expression (3) fit the Tc of a variety of super-
conductors known at the time, using data derived from
tunneling, and that it implied the absence of any maxi-
mum Tc, except that caused by the competition between
λ and ωlog ≡ exp〈lnω〉, where the average is taken over
g(ω). Unlike the McMillan expression, which saturates
to a constant value as λ → ∞, the Allen-Dynes equa-
tion obeys an asymptotic result of Eliashberg theory, that
Tc ∼

√
λ as λ→∞ with other parameters fixed.

The Allen-Dynes equation has played a crucial role
in the discussion of high-temperature superconductivity
and indeed is often used to extract quoted values of λ in
the literature for materials where tunneling data is not
available. Nevertheless, it is important to recall that it
has been derived from Eliashberg theory, which itself is
implemented with various approximations, e.g., the mo-
mentum dependence of the electron-phonon interaction
was often neglected in early studies. The full evaluation
of the Eliashberg equation is computationally expensive
and not currently suitable for high-throughput supercon-
ductor discovery. It would be highly desirable to develop
an expression for Tc that generalizes the Allen-Dynes
equation and is applicable over a large range of parame-
ters that are cheap to compute to guide such searches.

In this letter, we use modern machine learning tech-
niques to critically examine the Allen-Dynes equation
to demonstrate that similar analytic expressions can be
obtained from relatively small experimental datasets.
These symbolic regression techniques are analytical in
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FIG. 1. Beginning with feature space Φ0, consisting of ωlog,
λ and µ∗, each additional tier Φi is constructed by applying
4 binary operators (+, −, ×, /) and 7 unary operators (exp,
log,

√
, 3
√

, −1, 2, 3) to features from preceding tiers.
This procedure is applied up to level Φ3, after which sure-
independence screening is applied to eliminate features with
correlation factors (inner product) below 0.5 with respect to
Tc. Physical constraints as listed are then applied to further
reduce the feature space. We fit coefficients to the 6,021 fea-
tures and obtain the 100 models with lowest root-mean-square
error in predictions on the testing set.

nature, meaning they search for analytical relations be-
tween a minimal set of features, i.e., physical parameters,
and the desired properties.20–22 Specifically, we apply the
Sure-Independence Screening and Sparsifying Operator
(SISSO) method22 to estimate Tc from λ, µ∗, and ωlog

with the goal to obtain an equation of similar or enhanced
performance to the one proposed by Allen and Dynes.19

We find that we can improve on the Allen-Dynes fit to
strong-coupling superconductors, with a smaller set of
descriptors. More interestingly, the approach identifies
outliers like MgB2, Tc=39 K, which suggests the im-
portance of new physics essential to high Tc that needs
to be incorporated in an improved formula to guide the
search for new electron-phonon superconductors in ma-
terials space.

II. METHODS

To generate models for predicting Tc, we apply recently
developed methods of equation-based machine learning,
subject to physical constraints. In the SISSO approach,
the predictive models are expressed as analytical formu-
las relating physical quantities with algebraic operations
such as addition and exponentiation. Given a tabulated
set of scalar-valued physical quantities, or features, the
SISSO method constructs additional features by itera-
tively applying operations from a specified set, e.g., +,
×, exp,

√
, 2.

To pinpoint the best equations, the SISSO method em-
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FIG. 2. Machine learning of optimal analytical expression for Tc as a function of three parameters (ωlog, λ, and µ∗) trained on
the low-Tc dataset of Allen and Dynes19 using the SISSO algorithm.22 (a) The 3-parameter machine-learned equation results in a
smaller RMSE than the 4-parameter Allen-Dynes or the 3-parameter McMillan equation (b) The testing of the machine-learned
equation using nine different superconductors assumes that µ∗ = 0.1 and takes ωlog and λ from tunneling measurements.23–31

This extrapolation shows larger deviations with a testing RMSE = 3.4 K or 17%. To compare, we also show four materials
(Nb3Sn, MgB2(1), La3Ni2B2N3, and LuNi2B2C) for which ωlog is obtained from low-temperature specific heat measurements
and λ from high-temperature resistivity32 and MgB2(2), for which λ is from density-functional calculations.33 The extrapolation
reveals two outliers, NbS2 at low temperatures and MgB2 at high temperatures.

ploys the sure-independence screening (SIS) method and
the sparse-solution algorithm using sparsifying operators
(SO) in tandem. After constructing the feature space, the
SIS method selects a subspace of features with the largest
linear correlation with the target property (Tc), i.e., the
largest absolute value of their dot product. The SO step
then evaluates all possible combinations of features from
the SIS subspace, yielding the optimal least-squares so-
lution and residual. With such a vast feature space, the
combinatorial optimization in each SO step relies on L0

regularization, which penalizes the number of non-zero
coefficients. Combined with one numerical prefactor, fit
from available data, each feature is used to generate one
predictive model.

We benchmark the performance of different models
identified by SISSO using leave-one-out cross-validation.
Given N available data points, each model is repeatedly
fit using N − 1 points and evaluated with the excluded
point. The average evaluation error across N iterations,
where each point is tested once, is the leave-one-out cross-
validation error. This method can help to maximize the
transferability of a model by reducing “overfitting”, i.e.,
models that exhibit low root-mean-square error in pre-
dictions on the training data but very high root-mean-
square error in the testing data.

We apply the SISSO method to estimate Tc from λ,
µ∗, and ωlog to obtain an equation of similar performance
to the one proposed by Allen and Dynes.19 We use the
values of λ, µ∗, and ωlog, and the target property, Tc,
from the data for 29 superconducting materials provided
by Allen and Dynes (Table I in Ref. 19). Next, we ap-
ply the SISSO method with 4 binary operators (+, −,
×, /) and 7 unary operators (exp, log,

√
, 3
√

, −1, 2, 3)
three times to generate 3,414,094 features. Fig. 1 shows
the rapid growth of the feature space with the number
of iterations. Of the initial feature space, we select the
equations with the highest linear correlation to Tc using
sure-independence screening with a minimum correlation
magnitude (inner product) of 0.5. To further reduce the
number of features and eliminate unphysical equations,
we apply constraints. We select equations that are lin-
early proportional to ωlog and obey the proper λ → 0
limiting behavior. Additionally, we filter for equations
that are strictly positive, real, finite, continuous, and
monotonic across the relevant training and testing fea-
ture spaces. To evaluate the generalizability and perfor-
mance of these equations, we compute the error against
a testing set of 9 superconductors,23–31 shown in green
in Fig. 2.

Our software that processes the SISSO equations to
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enforce physical constraints and proper physical dimen-
sions as well as perform linear regression with additional
additive and multiplicative numerical coefficients is freely
available at Github.34

III. RESULTS

A. Optimal Tc Expression

Fig. 2 illustrates the main proof-of-principle result
that machine learning can provide an analytic equa-
tion of similar performance to the Allen-Dynes equation.
The equation-based machine learning uses the values of
λ, ωlog, and µ∗ of the 29 materials in Table I of Allen
and Dynes,19 and neglects the average frequency ω̄2 that
is also used in the Allen-Dynes equation. The SISSO
method and subsequent physical constraints lead to the
optimal equation,

Tc
SISSO = 0.0953

λ4ωlog

λ3 +
√
µ∗ . (4)

Importantly, Eq. (4) emerged from our approach with
the smallest root-mean-square error (RMSE) even before
any of the physical constraints summarized in Fig. 1 were
applied. Fig. 2(a) compares the performance of this equa-
tion with the modified McMillan and Allen-Dynes equa-
tions for the measured Tc’s of the 29 materials that train
the model. The leave-one-out cross-validation RMSE
(LOOCV-RMSE) is 0.26 K, which is very similar to the
RMSE of this equation evaluated on the training data
of 0.25 K. This indicates that the model is not overfit
to the training set. The RMSE of 0.25 K of the learned
analytic equation is significantly smaller than the RMSE
of 0.92 K for the modified McMillan equation, and also
slightly lower than the RMSE of 0.30 K for the Allen-
Dynes equation. This result is impressive given the use
of only 3 parameters and a single numerical coefficient
compared to 3 parameters and 4 coefficients for the mod-
ified McMillan and 4 parameters and 7 coefficients for the
Allen-Dynes equation.

Figure 2(b) shows the testing of Eq. (4) for a variety
of other superconductors, mostly of higher Tc. Because
µ∗ data were not available for these materials, we adopt
a constant value of µ∗ = 0.1. This procedure introduces
some unknown error into the analysis, but despite this,
the fit to the new materials is rather good, with a RMSE
of only 3.4 K (17%) on the testing set.

It is important to note that Eq. (4) is not derived
from any physical theory and therefore may contain some
terms that may make no physical sense, e.g., the appear-
ance of the

√
µ∗ term, which may be a proxy for a con-

stant term due to the small range of data and the paucity
of features at this level of learning. The limit Tc → 0 as
λ → 0 in Eq. (4) even at nonzero µ∗ may reflect the
lack of data at small coupling. Also, Eq. (4) increases
monotonically with λ, with linear behavior at very high
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FIG. 3. λ dependence of Tc in the top 100 models, ranked
by testing error assuming µ∗ = 0.1. Two red curves corre-
spond to the Allen-Dynes equation with the minimum and
maximum values of ω̄2/ωlog in the training set. The mod-
ified McMillan equation systematically predicts smaller Tc’s
and over the range of available λ values, the simple machine-
learned model closely matches the more complex Allen-Dynes
equation.

couplings. This behavior violates the asymptotic limit of
Eliashberg theory, Tc ∼

√
λ, built into the Allen-Dynes

equation.19 Again, this disagreement with physics is due
to the absence of data points, either in the training or
the testing set, which deviate significantly from the lin-
ear behavior predicted by Eq. (4).

Fig. 3 shows the functional behavior Tc(λ) of the 100
highest-scored equations discovered by SISSO; it is clear
that almost all of these equations are equally valid over
the range of λ values where data exist. This highlights
the need for measurements to determine the materials
parameters λ, ωlog, and µ∗ reliably for both very low Tc
materials, as well as for some of the recently discovered
higher-Tc systems.

Fig. 2(b) also shows some dramatic failures of the
learned equation, namely for MgB2 and NbS2. The prob-
able reasons for these failures are both revealing and re-
assuring. The point labeled MgB2(1) with a predicted
Tc of 10 K is one where ωlog, a logarithmic average of
the electron-phonon interaction function α2F/ω, was de-
termined from a specific heat measurement of the Debye
frequency ωD, which depends only on the phonon density
of states F (ω). Relating the Debye frequency with ωlog

neglects the difference between the two distributions.19

This assumption is particularly poor in MgB2, where
high-frequency phonons couple anomalously strongly. In
addition, λ was determined from standard expressions for
the high-temperature resistivity of a 3D metal. It is well
known that MgB2 has strong 2D character, and that the
full momentum and band dependence of the Eliashberg
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function λnk,nk′ must be accounted for to obtain reason-
able values for Tc from first principles.33 It is interesting
to note that if one uses the higher value of λ obtained
from Ref. 33 in Eq. (4), one obtains data point MgB2(2),
with the significantly enhanced predicted Tc of 20 K, but
still far from the measured value of 40 K and even further
from the full Eliashberg calculation of 50 K.33

These discrepancies indicate, not surprisingly, that a
machine trained on a database of nearly isotropic low-
Tc superconductors cannot capture the physics of highly
anisotropic higher-Tc materials using the simple averaged
descriptors chosen by Allen and Dynes. The same prin-
ciple apparently applies to NbS2, which while having a
low-Tc is quite 2-dimensional. Nevertheless, Eq. (4) may
have significant predictive power extrapolated to higher-
Tc 3D systems. To illustrate this extrapolation, we ap-
ply Eq. (4) to the two high-pressure hydrides, LaH10 and
H3S, taking the values of λ and ωlog calculated from first
principles and µ∗ = 0.1. For LaH10 at 210 GPa35 we
obtain Tc = 273 K, compared to 286 K for the Eliash-
berg calculation35 and about 250 K for the experiment
at 170 GPa.6 For H3S at 140 GPa pressure,36,37 the pre-
dicted Tc from Eq. (4) is 262 K, compared to the mea-
sured value of 203 K. This result is similar to the result
obtained from the Allen-Dynes equation, but substan-
tially higher than the modified McMillan equation used
in Refs. 36 and 37.

B. Dimensionality and Complexity

Despite using one fewer feature, the performance of our
machine-learned Eq. (4) is comparable in performance to
the Allen-Dynes expression, Eq. (3). We next investi-
gate if increasing the dimensionality and complexity can
further increase the performance of the machine-learned
expressions.

To assess the performance of descriptors with increased
dimensionality and complexity, we first use leave-one-out
cross validation using all seven primary features reported
by Allen and Dynes in Table I for 29 materials.19 We note
that while Allen and Dynes report these seven parame-
ters for each of the 29 materials, values such as ω1 and
ω2 were not reported in the literature for most materials
in our testing set. When including all seven properties as
primary features, Eq. (4) is the equation with the lowest
LOOCV-RMSE. The next best SISSO equation satisfy-
ing physical constraints is

Tc = −0.0591
(
ω̄2 − ω̄1 −

ω̄2

λ

) λ3

3
√
λ
. (5)

with a RMSE of 0.27 K and a LOOCV-RMSE of 0.28 K.
Among other equations with higher LOOCV-RMSE val-
ues, ωph and η occasionally appear. The observation that
Eq. (4) provides the lowest LOOCV-RMSE demonstrates
that the machine-learning of analytic relations can select
the optimal primary features from a large list of plausible
materials parameters.

Next, to assess the utility of increased complexity
through additional fitting coefficients, we first followed
the approach described in22 to identify equations with in-
creased descriptor dimensionality n, where n is the num-
ber of expressions from Φ3 used to construct an equation
by linear combination. When n is greater than 1, addi-
tional terms are iteratively selected using SIS based on
the largest correlation with the residual error from each
preceding iteration rather than the correlation with the
target property. The SO step then pinpoints the best
linear combination of terms, optimizing the n fit coef-
ficients. The best two-term and three-term equations
identified by SISSO are

Tc = 0.0983
λ4ωlog

λ3 +
√
µ∗ − 0.0148λ2ω3

loge
− 1

µ∗ (6)

and

Tc = 0.248
λ

3
2ωlog

λ+ 1
λ

− 0.0264λ2ω3
loge

− 1
µ∗

+0.0513
(
λ3µ∗ωlog − λ

4
3ωlog

)
(7)

with RMSEs of 0.21 K and 0.19 K (LOOCV-RMSEs of
0.23 K and 0.20 K), respectively. On the testing set,
the equations yield RMSEs of 4.0 K and 7.5 K, respec-
tively. While the training errors are slightly lower than
that of Eq. (4), we note that Eqs. (6) and (7) have even
more terms with little physical meaning and significantly
higher testing RMSEs. Moreover, none of the two- or
three-term equations among the best 5,000 identified by
SISSO satisfy our desired physical constraints.

As an alternative to a linear combination of models,
we also investigate the inclusion of additional fit coeffi-
cients beyond the slope and intercept described in.22 We
inserted one additive and one multiplicative coefficient to
each occurrence of a primary feature in a SISSO equa-
tion. After combining like terms, all remaining coeffi-
cients are optimized simultaneously using the Levenberg-
Marquardt algorithm. When applied to Eq. (4), the re-
optimized equation becomes

Tc = 0.715ωlog
(0.507λ+ 0.0436)

4

(0.828λ+ 0.00637)
3

+
√

1.85µ∗ − 0.0743
.

(8)
with a RMSE of 0.24 K and a LOOCV-RMSE of 0.29 K.
On the testing set of 9 materials, this reoptimized equa-
tion has a RMSE of 3.5 K. Despite the increase in model
complexity from a single numerical coefficient to seven
numerical coefficients, which increases the risk of over-
fitting and reduces the physical interpretability of the
equation, the model performance is nearly the same as
that of Eq. (4).

IV. CONCLUSION

We have demonstrated that machine learning can dis-
cover equations and the relevant physical parameters
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that describe the dependence of superconducting Tc’s
on moments of distributions of phonon frequencies and
electron-phonon couplings, as used originally by Allen
and Dynes in their attempt to understand the systemat-
ics of Tc in the framework of Eliashberg theory. While
the method is quite successful in predicting known super-
conductors of the same general type as the original Allen-
Dynes dataset, with fewer parameters and only a single
numerical coefficient, the existence of a few anomalous
outliers suggests that the use of such methods for high-
throughput materials discovery will require new descrip-
tors that capture anomalous features, e.g., the anisotropy
of the electron-phonon interactions and unusual elec-
tronic states that take advantage of them. A natural
modern extension of the philosophy of Allen and Dynes
is then to calculate from first principles a few key mea-
sures of electronic structure crucial for superconductivity,
together with the moments discussed above, and apply
machine-learning methods as described here. We antici-

pate that this approach will allow a much more efficient
and thorough investigation of materials space than cur-
rent approaches that rely on fully anisotropic Eliashberg
calculations for each material.
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