This is the accepted manuscript made available via CHORUS. The article has been published as:

Rashba-like spin-orbit and strain effects in tetragonal PbTiO_\{3\}

R. Arras, J. Gosteau, H. J. Zhao, C. Paillard, Y. Yang, and L. Bellaiche

Phys. Rev. B 100, 174415 - Published 11 November 2019
DOI: 10.1103/PhysRevB.100.174415

Rashba-like spin-orbit and strain effects in tetragonal PbTiO_{3}

I. INTRODUCTION

Spin-orbit effects in non-magnetic materials lacking inversion symmetry allow a momentum-dependent lifting of band spin degeneracies and the appearance of spindependent electronic and transport properties.
Discovered 60 years ago, ${ }^{[1] 3}$ spin-orbit effects in nonmagnetic semiconductors were recently suggested as one of the most important research topics in condensedmatter science due to their possible use for spintronic and spinorbitronic applications ${ }^{[4 / 7]}$ Proposed some years after the Dresselhaus effect, ${ }^{11}$ which originates from the so-called bulk inversion asymmetry (BIA), the Rashba effect ${ }^{218}$ is generally related to the presence of a structural inversion asymmetry (SIA), linked with a potential asymmetry and a polar axis. Mostly known in twodimensional electron-gas systems, the Rashba effect offers a new way of functionalizing interfaces and surfaces as its strength can be tuned by applying an electric field ${ }^{9}$ The Rashba effect is also known as the key property to design the spin field-effect transistor (spin-FET) proposed by Datta and Das in $1990 \cdot \sqrt{4}$ In this device, the spin of electrons experiencing a magnetic field due to the Rasbha effect in the channel will rotate and acquire a certain state when entering in the drain, which will depend on the applied electric field. More recently, Manipatruni et al. ${ }^{77}$ proposed an energy-efficient spin-orbit logic device, in which writing operations were performed thanks to ferromagnetic magnetoelectric switching, while the reading was done using spin-to-charge conversion, allowed in non-magnetic materials, via the inverse spin Hall effect or the inverse Edelstein effect. ${ }^{10-14}$ The Spin-orbit effects could also be detected and used in innovative devices when taken into account in ferroelectric tunnel junctions, owing to the tunneling anomalous Hall effect. ${ }^{15}$
Some years ago, it was found theoretically that the Rashba effect can additionally be present in ferroelectric

Rashba semiconductors (FERSC) like GeTe and that the resulting spin textures can be reversed by manipulating the electric polarization. ${ }^{16}$ This first prediction was later confirmed experimentally ${ }^{[17 \mid 18}$ and motivated other investigations in order to propose new materials more suitable for applications. 19

In their study of BiTeI, Bahramy et al. ${ }^{26]}$ proposed some first rules to increase the Rashba parameter γ, considering $\boldsymbol{k} \cdot \boldsymbol{p}$ perturbative theory: A higher spin splitting could be obtained by maximizing the spin-orbit strength, minimizing the energy difference between neighboring states, and finally having neighboring states with compatible symmetry character, suggesting to look toward semiconductors with narrow bandgaps. Even if a high Rashba spin splitting (RSS) of $4.8 \mathrm{eV} . \AA$ was obtained with GeTe, its narrow bandgap appears in fact to be detrimental to retain the electric polarization and further to control the Rashba-induced spin texture.

Djani et al. ${ }^{[25}$ recently defined additional rules to obtain functional FERSC with high RSS at the bottom of the conduction band and a sustainable electric polarization. They first studied the perovskite WO_{3} which presents a heavy $5 \mathrm{~d}^{0}$ element in the octahedral atomic site and an out-of-plane polarization. They found that the lowest bands, with a majoritary $\mathrm{d}_{x y}$ character, i.e. orbitals lying in the plane perpendicular to the electric polarization, present an almost zero RSS, on the contrary to d bands lying above. They further studied $\mathrm{Bi}_{2} \mathrm{WO}_{6}$ material for which the electric polarization is in plane, while the atomic confinement is out-of-plane, moving the bottom $\mathrm{d}_{x y}$ bands upper in energy. For this material, they calculated a Rashba parameter of the order of $1 \mathrm{eV} . \AA$ and they showed that the electric polarization was also robust with electron doping.

In addition to Bi-based compounds, ${ }^{19 \mid 25}$ lead-based materials also show promising properties in the case of halide perovskites ${ }^{27 \mid 28}$

III. RESULTS

A. General properties of PbTiO_{3} bulk

The equilibrium lattice parameters have been calculated to be $a_{0}=3.881 \AA$ and $c_{0}=4.156 \AA$, corresponding to a c_{0} / a_{0} ratio of 1.071 , in agreement with theoretical and experimental data from the literature. ${ }^{41 / 42}$

FIG. 1. Band structure of PbTiO_{3} a) without and b) with the spin-orbit interaction. The majoritary d-orbital contributions are given in color. The origin of the energy is set at the top of the valence bands, which we also consider as the Fermi level. Some area of interests around the HS points are highlighted. c) The spin-moment decomposition (in arbitrary units) is given along the full HS lines Z-R and Z-A, to highlight the spin splitting of the yellow area and d) the corresponding iso-energy ($E=2.5 \mathrm{eV}$) spin texture is given in the Z-R-A plan (for $k_{z}=\frac{\pi}{c_{0}}$). The k_{x} and k_{y} axis are in units of $\frac{2 \pi}{a_{0}}$.

The calculated band structure without spin-orbit inter${ }_{141}$ action is given in Fig. Tha, showing an indirect band gap ${ }_{142}$ with a width of 1.65 eV , which is lower than the experi${ }_{143}$ mental value of $3.4 \mathrm{e}^{\sqrt{43}}$ (this underestimation is typical 44 of standard DFT calculations): The VBM is located at 145 the X point and has a mixed $\mathrm{Pb}-\mathrm{s}$ and $\mathrm{O}-\mathrm{p}$ character, 146 while the conduction band minimum (CBM) is at the Z point, with a $\mathrm{Ti}-\mathrm{d}_{x y}$ character and an energy close to its value at the Γ point. At the X point, we can notice a direct band gap of 2.86 eV between the VBM and the $\mathrm{d}_{x z}+\mathrm{d}_{y z}$ bands of Ti , the $\mathrm{p}_{x}+\mathrm{p}_{y}$ bands of Pb being only 0.03 eV above these last ones.

Having spin splittings in a ferroelectric material like PbTiO_{3} is interesting as it presents a large band gap, which would allow avoiding charge leakage and alter${ }_{55}$ ing the electric polarization. Previous calculations have

206 given for $\mathrm{Pb}-\mathrm{p}$ and $\mathrm{Ti}-\mathrm{d}_{x y}$ bands in Table The term

$$
\begin{align*}
H_{C_{4 v}}= & \alpha\left(k_{x}^{2}+k_{y}^{2}\right)+\beta k_{z}^{2}+\gamma\left(k_{x} \sigma_{y}-k_{y} \sigma_{x}\right) \\
& +\gamma^{\prime} k_{x} k_{y}\left(k_{y} \sigma_{y}-k_{x} \sigma_{x}\right)+\gamma^{\prime \prime}\left(k_{x}^{3} \sigma_{y}-k_{y}^{3} \sigma_{x}\right) \tag{1}
\end{align*}
$$

${ }_{202}$ where $k_{i}(i=x, y, z)$ are the components of the wave 203 204 205 ing, down to $-0.15|e| /$ formula unit (f.u.) - where e cor- 207 responds to the electric charge of an electron - and even 20 increases by more than 40% in the case of electron doping 209 by adding $+0.15|e| / f . u \cdot{ }^{[4445}$ Moreover, this ferroelectric material presents the advantage to be well known and already widely used for different applications. This material or parent compounds have also been proposed to design future low-energy-consumption heterostructures such as magnetoelectric multiferroic interfaces, ${ }^{46 / 49}$ by adding a magnetic electrode. As we will show in the next section, the VBM and the CBM display interesting spin-orbit effects and these bands could be addressed by contacting PbTiO_{3} with a suitable metallic electrode. A good choice of metal would ideally have the same cubic structure than PbTiO_{3}, a small lattice mismatch, and a work function Φ close to the ionization potential (experimentally measured to $\left.6.2 \mathrm{eV}^{(43}\right)$ to address the VBM, or close to the electronic affinity $\left(2.8 \mathrm{eV}^{\sqrt{43}}\right)$ for the CBM: Some candidates could then be $\operatorname{Pd}(\Phi=5.22-5.60 \mathrm{eV}, 50$ $a=3.89 \AA), \operatorname{Pt}\left(\Phi=5.12-5.93 \mathrm{eV},{ }^{50} a=3.92 \AA\right)$, or Ir ($\Phi=5.00-5.67 \mathrm{eV}{ }^{50} a=3.84 \AA$) for the VBM, or Ag ($\Phi=4.26-4.74 \mathrm{eV},{ }^{50} a=4.08 \AA$) for the CBM. Confirming these hypotheses would require extended investigations, in particular to address all the specific questions which can arise when dealing with interfaces (preservation of the electric polarization, band alignement and band bending, etc.). ${ }^{51152}$ A major concern which can strongly affect the Schottky barrier height at metal/oxide interfaces results from the oxidization of the metallic electrode and the subsequent creation of oxygen vacancies in the oxide. Using metallic oxides can thus be interesting as demonstrated by Chen et al. ${ }^{[53]}$, who proposed that $\mathrm{RuO}_{2}\left(\phi=6.1 \mathrm{eV}^{54}\right)$ and $\mathrm{In}_{2} \mathrm{O}_{3}: \mathrm{Sn}\left(\phi=4.5 \mathrm{eV}^{\sqrt{55}}\right)$ could be used instead, with a preference for respectively hole and electron doping.

B. Effects of the spin-orbit coupling

As shown in Fig. 11 b , including the spin-orbit coupling in the calculations induces several lifting of band degeneracies, which are particularly visible for the p bands of the Pb heavy atom.

The P 4 mm space group of PbTiO_{3} is linked to the $\mathrm{C}_{4 v}$ point group. At the $\Gamma(0,0,0), \mathrm{Z}\left(0,0, \frac{1}{2}\right), \mathrm{M}\left(\frac{1}{2}, \frac{1}{2}, 0\right)$ and $\mathrm{A}\left(\frac{1}{2}, \frac{1}{2}, \frac{1}{2}\right)$ high-symmetry (HS) points, the little group remains $\mathrm{C}_{4 v}$ and it is possible to write a 2-band Hamiltonian, up to the 3rd order terms in \boldsymbol{k} : vector \boldsymbol{k} given regarding to any HS point taken as the origin, σ_{i} are the Pauli matrices. α is related to the effective mass m^{*} by the expression $|\alpha|=\frac{\hbar^{2}}{2 m^{*}}$ and is
shown that the polar distortion is robust upon hole dop- 206
$\gamma\left(k_{x} \sigma_{y}-k_{y} \sigma_{x}\right)$ has the usual form of the linear Rashba effect (γ is thus here the Rashba parameter) ${ }^{56157}$ which will induce a spin splitting in directions perpendicular to Γ-Z. The two other terms which depend on γ^{\prime} and $\gamma^{\prime \prime}$ are the 3rd-order terms in \boldsymbol{k} and are in agreement with the derivation made by Vajna et al. ${ }^{56}$ and Shanavas. 58

FIG. 2. Spin textures calculated according to the Hamiltonian of Eq. 1 for only one of the two splitted bands (with only one direction of spin), with a) a p_{z} character and b) a $\mathrm{d}_{x y}$ character at the Z point. These spin textures lead to the iso-energy ($E-E_{\mathrm{F}}=2.5 \mathrm{eV}$) spin textures given respectively in c) and d). The parameters $\alpha, \gamma, \gamma^{\prime}$ and $\gamma^{\prime \prime}$ used to solve the Hamiltonian are obtained by fitting the band energy dispersions calculated with the DFT and are given in Table

In the following, for the sake of simplicity, we will focus our discussion on the CBM bands around the Z HS point shown in Fig. 1. . Other points will be described only briefly and the special case of the $\mathrm{X}\left(\frac{1}{2}, 0,0\right)$ point, which is linked to a $\mathrm{C}_{2 v}$ little group, is described in the Appendix A. We can notice that according to symmetry considerations the Hamiltonian of Eq. 1 only displays terms depending on σ_{x} and σ_{y}. Near the HS points, no σ_{z}-dependent terms are allowed and we verified from our DFT results that the spin texture has a zero spin magnetization contribution along the $z[001]$ axis for every \boldsymbol{k} vectors.

From the previous Hamiltonian, we can derive the spindependent eigenvalues $E^{ \pm}$to obtain the band energy dispersions. The difference of these dispersion energies $\Delta E_{\mathrm{C}_{4 v}}=E^{+}-E^{-}$for the spin-splitted bands is defined in the $\mathrm{Z}_{\rightarrow \mathrm{R}}$ (considering R with coordinates $\left(\frac{1}{2}, 0, \frac{1}{2}\right)$) and $\mathrm{Z}_{\rightarrow \mathrm{A}}$ directions as:

$$
\begin{align*}
\Delta E_{\mathrm{C}_{4 v}}\left(\mathrm{Z}_{\rightarrow \mathrm{R}}\right) & =2\left(\gamma k_{x}+\gamma^{\prime \prime} k_{x}^{3}\right) \tag{2a}\\
\Delta E_{\mathrm{C}_{4 v}}\left(\mathrm{Z}_{\rightarrow \mathrm{A}}\right) & =2 \gamma k_{\|}+\tilde{\gamma}^{\prime} k_{\|}^{3} \tag{2b}
\end{align*}
$$

TABLE I. Main parameters of the Eq. 1 and 2 calculated at the HS points for the conduction bands with a mostly Pb-p or Ti-d $\mathrm{d}_{x y}$ character and an energy $E-E_{\mathrm{F}}$. The $k_{\text {lim }}$ defined in Eq. 3 and calculated in the Γ-M or Z-A directions is also provided to get an idea of the relative effect of the linear (γ) or cubic (γ^{\prime} and $\gamma^{\prime \prime}$) spin-splitting terms on the band dispersion.

Pb-p						
HS	$E-E_{\mathrm{F}}$	$\alpha\left(m^{*}\right)$	γ	γ^{\prime}	$\gamma^{\prime \prime}$	$\left\|k_{\text {lim }}\right\|$
Point	(eV)	$\mathrm{eV} . \AA^{2}\left(m_{0}\right)$	$(\mathrm{eV} . \AA)$	$\left(\mathrm{eV} . \AA^{3}\right)$	$\left(\mathrm{eV} . \AA^{3}\right)$	\AA^{-1}
A	5.65	$-8.00(1.35)$	0.51	-1.27	-2.82	0.50
Γ	5.46	$-4.71(2.29)$	0.93	-3.00	0.87	0.93
M	4.56	$-7.98(1.35)$	0.30	2.24	-3.35	0.74
Z	2.43	$10.16(1.06)$	0.30	0.92	-2.44	0.63
Ti-d $\mathrm{d}_{x y}$						
Γ	1.63	$7.25(1.48)$	0.01	-0.87	-0.04	0.15
Z	1.63	$6.75(1.59)$	~ 0	7.73	0.11	0.01

with $k_{\|}=\sqrt{k_{x}^{2}+k_{y}^{2}}$ and $\tilde{\gamma}^{\prime}=\gamma^{\prime}+\gamma^{\prime \prime}$.
We will first consider the Rashba spin splitting of the unoccupied p bands of the Pb atoms. The $\mathrm{Pb}-\mathrm{p}_{z}$ bands have an effective masse of $1.06 m_{0}$ near the Z point (see Table I). As it can be observed from the Fig. 1d (black arrows), these bands possess also an iso-energy spin texture which consists in two concentric circles with tangent spins rotating in inverse directions. The one-band total spin texture is displayed in Fig. $2 a$ and is clearly indicative of a linear Rashba spin splitting, as confirmed by our fits of the $\mathrm{Pb}-\mathrm{p}_{z}$ bands around the Z HS point, which give an almost isotropic linear-Rashba parameter $\gamma=0.3 \mathrm{eV} / \AA$.
In Table I we report the linear Rashba coefficients γ obtained at the other $\mathrm{C}_{4 v}$ HS points Γ, M and A for the $\mathrm{Pb}-\mathrm{p}$ conduction bands. The different spin splittings are generally of the order of $0.30 \mathrm{eV} . \AA$ but can increase up to $1 \mathrm{eV} / \AA$. These higher values remain however lower than the highest values reported in the litterature, i.e. $3.8 \mathrm{eV} . \AA$ for $\mathrm{BiTe} e^{\sqrt[59]{ }}$ or $4.8 \mathrm{eV} . \AA$ for $\mathrm{GeTe}^{\sqrt{16}}$ for example, even if they are of the same order of magnitude than the splitting reported for a $\mathrm{Au}(111)$ surface ${ }^{60}$ They also have the disadvantage to appear at higher energy compared to the Fermi level: from about 4.5 eV at the M point to approximately 5.5 eV at the Γ and A points, compared to 2.43 eV at Z .

The situation for the $\mathrm{Pb}-\mathrm{p}_{x}$ bands at the X HS point is more complicated because of its $\mathrm{C}_{2 v}$ little group and of the proximity of the Ti-d bands (see Appendix A. By comparing Fig. 1h and Fig. 1p, we can notice that the $\mathrm{Pb}-\mathrm{p}_{x}$ conduction states are splitted regarding to their spin and are lowered in energy when including the spin-orbit interaction, appearing thus as the lowest unoccupied states for this HS point. As discussed in Appendix A, the $O-p_{x}$ VBM at X also displays a linear ${ }_{31}$ anisotropic Rashba spin splitting with an averaged parameter of $\langle\gamma\rangle=0.31 \mathrm{eV} . \AA$.

Going back to Figs. 11-d, we can also be interested in
considering the $\mathrm{d}_{x y}$ bands of the Ti atoms, which are below the p bands of Pb and constitute the CBM. These bands have some effective mass of $1.59 m_{0}$ at the Z point, which is nearly 4 times higher than the calculated values at the $\mathrm{LaAlO}_{3} / \mathrm{SrTiO}_{3}$ interface. ${ }^{61}$ These bands nonetheless present some spin splitting, which could be compared to the Rashba effect reported in SrTiO_{3}. ${ }^{9158 / 61 \mid 62}$ By fitting the band-energy difference as a function of \boldsymbol{k}, we found that, on the contrary to the p bands, the γ^{\prime} cubic term is now dominating, partly because of the very low linear term γ. The cubic terms in the spinsplitting hamiltonian helps introducing an anisotropy as a function of $k_{\|}$, in the planes perpendicular to the polar axis, as $\Delta E_{\mathrm{C}_{4 v}}\left(\mathrm{Z}_{\rightarrow \mathrm{R}}\right)$ does not depend on γ^{\prime}, while $\Delta E_{\mathrm{C}_{4 v}}\left(\mathrm{Z}_{\rightarrow \mathrm{A}}\right)$ does. We can see that we have a very low spin-splitting in the $\mathrm{Z}_{\rightarrow R}$ direction, with a linear Rashba parameter γ of $1 \times 10^{-3} \mathrm{eV} . \AA$ and the cubic term $\gamma^{\prime \prime}$ equal to $0.11 \mathrm{eV} . \AA^{3}$. We can thus make the approximation that $\gamma \sim 0$, which gives a purely cubic variation of the spin splitting in the $\mathrm{Z}_{\rightarrow \mathrm{A}}$ direction, with $\tilde{\gamma^{\prime}}=7.84 \mathrm{eV} . \AA^{3}$, and leading to the one-band spin texture given in Fig. 2b.

For comparison, we can mention that cubic spinsplitting parameters have been mesured or calculated in SrTiO_{3}. Nakamura et al.$^{[62]}$ deduced from their magnetotransport mesurements on $\mathrm{SrTiO}_{3}(001)$ surfaces a cubic Rashba coefficient of 1 to $2 \mathrm{eV} . \AA^{3}$ depending on the carrier density. This experimental value is however difficult to compare with our calculations owing to the fact that in our model, the cubic parameter depends on the considered reciprocal-space direction. The cubic Rashba in SrTiO_{3}-based two-dimensional electron systems is generally mostly attributed to the $\mathrm{d}_{x z}+\mathrm{d}_{y z}$ bands rather than the $\mathrm{d}_{x y}$ for which the Rashba spin splitting is rather linear, or even vanishing. ${ }^{[58 / 6163}$ The linear Rashba (when omitting the possibility to have a cubic order) is generally admitted to be of the order of $0.02 \mathrm{eV} . \AA,{ }^{9 \mid 61}$ while the cubic parameter has been reported with theoretical values of $4 \mathrm{eV} . \AA^{3}, 61$ and approximately $2.4 \mathrm{eV} . \AA^{3}$ [58

Until now, we said that the $\mathrm{Pb}-\mathrm{p}_{z}$ bands display a spin texture mainly described by its linear term, while the Ti$\mathrm{d}_{x y}$ bands are on the contrary more related to the cubic terms. It is however interesting to note that for the Pb p_{z} bands the calculated terms γ^{\prime} and $\gamma^{\prime \prime}$ given in Table \square seem to be not negligible, with non zero values. If we take the energy difference relation of Eq. 2 in the $\mathrm{Z}_{\rightarrow \mathrm{A}}$ direction (also valid for $\mathrm{A}_{\rightarrow \mathrm{Z}}, \Gamma_{\rightarrow \mathrm{M}}$ and $\mathrm{M}_{\rightarrow \Gamma}$ directions), we can define a momentum value above which the contribution of the cubic term $\tilde{\gamma}^{\prime}$ will start to be higher than the contribution of the linear term :

$$
\begin{equation*}
\left|k_{\lim }\left(\mathrm{Z}_{\rightarrow \mathrm{A}}\right)\right|=\sqrt{\frac{2|\gamma|}{\left|\tilde{\gamma^{\prime}}\right|}} \tag{3}
\end{equation*}
$$

The values calculated for $\left|k_{\text {lim }}\right|$ at each direction are 19 given in Table $\overline{1}$ and are really indicative of our obser220 vations. Indeed we can see that they vary from 0.50 to $0.90 \AA^{-1}$ (i.e. 0.31 to 0.58 in $\frac{2 \pi}{a_{0}}$ units) for the $\mathrm{Pb}-\mathrm{p}_{z}$
bands, which are lengths in the order of the size of the first Brillouin zone, while it is only $0.01 \AA^{-1}\left(0.01\right.$ in $\frac{2 \pi}{a_{0}}$ units) for the $\mathrm{Ti}-\mathrm{d}_{x y}$ bands.

If we made the approximation that the spin splitting for the $\mathrm{Pb}-\mathrm{p}_{z}$ bands only depends on γ, and those of the Ti- $\mathrm{d}_{x y}$ bands only on γ^{\prime}, then the spin texture would have a form described by the following equations:

$$
\begin{align*}
\left(m_{x}^{ \pm}, m_{y}^{ \pm}\right)_{\gamma} & =\left(\mp \frac{\sin (\theta)}{2}, \pm \frac{\cos (\theta)}{2}\right) \tag{4a}\\
\left(m_{x}^{ \pm}, m_{y}^{ \pm}\right)_{\gamma^{\prime}} & =\left(\mp h(\theta) \frac{\cos (\theta)}{2}, \pm h(\theta) \frac{\sin (\theta)}{2}\right) \tag{4b}
\end{align*}
$$

where θ is the angle between $k_{\|}$and $k_{x} . \quad h(\theta)=1$ if $0<\theta<\frac{\pi}{2}$ and $\pi<\theta<\frac{3 \pi}{2}$ and $h(\theta)=-1$ if $\frac{\pi}{2}<\theta<\pi$ and $\frac{3 \pi}{2}<\theta<2 \pi$. The spin magnetization is defined according to its in-plane components $m_{i}^{ \pm}=\langle \pm| \frac{\sigma_{i}}{2}| \pm\rangle$ $(i=x, y)$, where $|+\rangle$ and $|-\rangle$ are the spin-dependent eigenvectors of the Hamiltonian of Eq. 1.

The equation 4 predicts that the spin texture of the p_{z} bands would consist in spins rotating around the Z point. The bands $\mathrm{d}_{x y}$, if their spin splitting depended only on γ^{\prime}, would on the contrary have a spin texture made by spin rotating around the corner of the 2 D Brillouin zone A , and with no defined value along the Z-R axis. These two approximations agree rather well with the spin textures of Fig. 2. In the case of the $\mathrm{d}_{x y}$ bands (Fig. 2 p), we can observe some spins with a direction perpendicular to the Z-R axis, which are allowed if we take the complete expression for the spin texture, i.e. including the three γ, γ^{\prime} and $\gamma^{\prime \prime}$ terms. These perpendicular spins explain the non-zero m_{y} contribution plotted in Fig. 1 : for the ZR direction. Taking simultaneously the spin textures for the two directions of spin $(|+\rangle$ and $|-\rangle)$ and at the specific energy $E-E_{\mathrm{F}}=2.5 \mathrm{eV}$ allows to recover approximately the iso-energy spin texture for the $\mathrm{p}_{z}(\mathrm{Fig}, 2 \mathrm{~F})$ and $\mathrm{d}_{x y}$ (Fig. 2d) bands. Combining these two figures gives a result comparable to the DFT texture of Fig. 1 d .

The whole spin textures presented in this paper and extracted from the DFT calculations can however be a little more complex than those obtained from our model hamiltonian, especially those given in the Appendix A and B. Different aspects have to be kept in mind. First of all, the given hamiltonians are defined perturbatively and are only valid near the HS points. Secondly, higherorder terms in \boldsymbol{k} can still be considered, and their magnitudes are expected to increase relatively to the linear term when increasing k, i.e. when going away from the HS points. Finally, a 2-band hamiltonian omit different terms and can be insufficient to describe a system where several bands with different characters are close in energy and hybridize one with each other.
In the previous section, we also mentioned that the electric polarization is persistent upon charge doping. As a first approximation, we have considered that such doping does not change considerably the band structure, and that the change of the Fermi energy is linked with a rigid
${ }_{373}$ shift of the whole band structure. A verification of this 374 approximation is beyond the scope of this paper.
${ }_{375}$ If the correct magnitude of each spin splitting param376 eter is not easy to evaluate with a great precision, we 377 however verified that the rotation directions of the spins ${ }_{378}$ are reversible by switching the electric polarization for ${ }_{379}$ all the spin textures presented in this section and in the 380 appendices.

C. Effects of the strain

a)

FIG. 3. a) Band structure of strained PbTiO_{3} with spinorbit interaction, for an in-plane lattice parameter $a=3.8 \AA$. b) Evolution as a function of the strain $\eta_{x x}$ of the lowest unoccupied band energies at the X (left panel) and Z (right panel) high-symmetry points. 392 this oxide has been found to be stable for a wide range of ${ }^{93}$ in-plane strain $\eta_{x x}$, from -7.0% to $+1.3 \%$. 6465 . We define $\eta_{x x}=\frac{a(\mathrm{Sub})-a_{0}(\mathrm{PTO})}{a_{0}(\mathrm{PTO})}$, with $a(\mathrm{Sub})$ being the lattice parameter of a selected substrate, and $a_{0}(\mathrm{PTO})$ the equilibrium in-plane lattice parameter calculated for PbTiO_{3}. Strain can affect the band structure of semiconductors by, e.g., (i) shifting bands, (ii) tuning band gaps and effective mass of carriers, and even (iii) introducing new band splittings ${ }^{39}$ The first two effects (i) and (ii) are general consequences of strain, while item (iii) only occurs

FIG. 4. Evolution as a function of the in-plane strain $\eta_{x x}$ of a) the Rashba parameter and b) the band character n. The results are given for the $\mathrm{Ti}-\mathrm{d}_{x y}$ (in red) and the $\mathrm{Pb}-\mathrm{p}_{z}$ (in black) bands at the Z point.
if strain modifies the crystal symmetry ${ }^{[66]}$ In our investigated PTO materials, only the in-plane biaxial strain $\left(\eta_{x x}=\eta_{y y}\right)$ and the resulting out-of-plane strain $\left(\eta_{z z}\right)$ can change their values, implying that the P 4 mm symmetry of PTO is conserved and therefore no new splitting can happen due to this strain application.
In the band structure of Fig. 3a, which corresponds to an in-plane lattice parameter of $3.8 \AA\left(\eta_{x x}=-2.1 \%\right)$, and which could be obtained by growing PbTiO_{3} on a substrate like $\mathrm{LaAlO}_{3}(a=3.789 \AA)$, we can see that the $\mathrm{d}_{y z}$ bands of the Ti atom are shifted upward in energy and the $\mathrm{p}_{x}+\mathrm{p}_{y}$ unoccupied bands are the lowest unoccupied bands at the X point, even if they remain higher in energy than the $\mathrm{d}_{x y}$ bands at the Γ and Z points, for which the energy almost does not change. This tendency is confirmed if we perform systematic calculations by applying a compressive in-plane strain to PbTiO_{3} in the range of $\eta_{x x}=-4.7 \%$ to $+0.5 \%$ (the calculated out-of-plane lattice parameters and the resulting change of eletric polarization P are given in the Appendix C). The complete variation of each band energies can be seen in Fig. 3 b as a function of the in-plane strain, showing that the relative order of the bands stays the same at the Z point, contrary to the X point which is mainly affected by the strong variation of the $\mathrm{d}_{y z}$ bands. With a very large in-plane strain, it could be possible to decorrelate the unoccupied p bands of the heavy atom and the d bands of the transition metal. We have found it is indeed the case for another lone-pair ferroelectric oxide, with a naturally high c / a ratio: BiScO_{3} (see Appendix D p possesses Sc-d bands higher in energy than the Bi-p bands and gives Rashba effects similar to those already observed in $\mathrm{BiAlO}_{3}{ }^{19}$

,
Focusing on the band splitting at the Z point, Fig. 4 a shows that the crystal distortion upon in-plane strain affects the Rashba parameter: We observe a linear increase (decrease) as a function of $\eta_{x x}$ with a coefficient of $7.74 \mathrm{eV} . \AA\left(-30.27 \mathrm{eV} . \AA^{3}\right)$ for the unoccupied $\mathrm{Pb}-\mathrm{p}_{z}$ (Ti- $\mathrm{d}_{x y}$) bands. For the $\mathrm{Pb}-\mathrm{p}_{z}$ bands the averaged linear Rashba coefficient is consequently strongly reduced, from almost $0.35 \mathrm{eV} . \AA$ to nearly $0.02 \mathrm{eV} . \AA$ when the lattice parameter is strained down to $\eta_{x x}=-4.7 \%$, while on the contrary $\tilde{\gamma^{\prime}}$ increases from $7.84 \mathrm{eV} . \AA^{3}$ to $9.29 \mathrm{eV} . \AA^{3}$. From the group theory, considering the strain effect,

446 we can demonstrate this linear variation. It is indeed ${ }_{447}$ possible to show that each coefficient $(\alpha, \beta, \gamma \ldots)$ can be ${ }_{448}$ re-written following the same form:

$$
\begin{equation*}
\tilde{\gamma}=\gamma+\gamma_{1}\left(\eta_{x x}+\eta_{y y}\right)+\gamma_{2} \eta_{z z} \tag{5}
\end{equation*}
$$

$$
\begin{equation*}
\tilde{\gamma}=\gamma+\tilde{\gamma_{1}} \eta_{x x} \tag{6}
\end{equation*}
$$

$$
477
$$

IV. CONCLUSIONS

We have analyzed the spin splitting resulting from the 494 spin-orbit interaction for the highest occupied and low-
est unoccupied bands of the tetragonal and ferroelectric oxide PbTiO_{3}. We have shown that the unoccupied $\mathrm{p}{ }_{52}$ bands of Pb atoms of PbTiO_{3} and occupied p bands of oxygen atoms present a non-negligible linear Rashba spin splittings at different HS points of the first Brillouin zone such as the X or Z point, where they are the closest from the Fermi level, with a linear Rashba coefficent of approximately $0.3 \mathrm{eV} / \AA$. The unoccupied Ti-d bands, which constitutes the CBM, also display different spin splitting, the variation of which is dominated by cubic terms as a function of the wave vector \boldsymbol{k}.
The whole spin textures resulting on the combined spin splitting of each band are all reversible by switching the electric polarization direction, but they are quite complex due to the anisotropy induced by the cubic terms, by the symmetry breaking at some HS point, or by the contribution of several bands at some energies. Applying a compressive in-plane strain could help promoting the contribution of the desired cubic or linear terms of one band or another, by changing both the magnitude of the spin-splitting parameters or the relative energies of each band, which will then be able or not to participate to the tranport processes.

Appendix A: Spin texture in the $Г-\mathrm{X}-\mathrm{M}$ plan

FIG. 5. Spin-projected band structures, with the corresponding iso-energy spin textures for a) the lowest unoccupied and b) highest occupied bands. The spin projection for the band structures is done on m_{y} along $\mathrm{X}-\Gamma$ direction and m_{x} along the $\mathrm{X}-\mathrm{M}$ direction, because only k_{x} or k_{y} are respectively varying along these directions. The iso-energy spin textures are plotted in the Γ-X-M plan (for $k_{z}=0$) and for energies $\left.E-E_{\mathrm{F}}=2.7 \mathrm{eV}\right)$ and -0.3 eV .

Fig. $5 \mathrm{a}, \mathrm{b}$ give the spin-projected band structure and 520 me iso-energy spin textures around the X HS point for

541

$$
\begin{equation*}
\Delta E_{C_{2 v}}=2 \sqrt{\left(\gamma_{x} k_{x}\right)^{2}+\left(\gamma_{y} k_{y}\right)^{2}} \tag{A1}
\end{equation*}
$$

The spin texture of the VBM shows the linear Rashba spin splitting made by states with a mostly $\mathrm{O}-2 \mathrm{p}_{x}$ character, slightly hybridized with $\mathrm{Pb}-\mathrm{s}$ states. Unlike for the $\mathrm{Pb}-\mathrm{p}_{z}$ states at the Z point and presented in Fig. 1 d , we can see that the circular contours are not exactly isotropic. This is reflected by the two different Rashba coefficients calculated to be $\gamma_{x}=0.44 \mathrm{eV} . \AA$ in the $\mathrm{X}_{\rightarrow \Gamma}$ direction and $\gamma_{y}=0.19 \mathrm{eV} . \AA$ for the $\mathrm{X}_{\rightarrow \mathrm{M}}$ direction. The unoccupied $\mathrm{Pb}-\mathrm{p}_{x}$ states are found less anisotropic $\left(\gamma_{x}=0.20 \mathrm{eV} . \AA\right.$ and $\left.\gamma_{y}=0.19 \mathrm{eV} . \AA\right)$ but the complixity of their corresponding spin texture resides in the energy proximity of the Ti- $\mathrm{d}_{y z}$ bands. As seen in Fig. 3b, these $\mathrm{d}_{y z}$ bands can be shifted upward in energy by applying an in-plane strain, which could help to explain the different variations observed for γ_{x} and γ_{y} as a function of $\eta_{x x}$ (see Fig 6).

FIG. 6. Variation of the linear Rashba parameters γ_{x} and γ_{y} as a function of the in-plane strain $\eta_{x x}$ around the X point.
1 both the lowest unoccupied bands and the VBM. Due to 52 the $\mathrm{C}_{2 v}$ little group of X point, the difference of energies makes appear an anisotropic spin splitting in the \boldsymbol{k} space, even if considering only first-order terms in \boldsymbol{k} :

For the VBM (/lowest unoccupied bands) along $\mathrm{X}_{\rightarrow \Gamma}$, γ_{x} decreases from $0.44 \mathrm{eV} . \AA$ (respectively $0.19 \mathrm{eV} . \AA$) to $0.38 \mathrm{eV} . \AA$ (respectively $0.07 \mathrm{eV} . \AA$) when decreasing a from $3.9\left(\eta_{x x}=+0.5 \%\right)$ to $3.7 \AA\left(\eta_{x x}=-4.7 \%\right)$. The Rashba coefficient γ_{y} shows on the contrary an increase of approximately 40% in the $\mathrm{X}_{\rightarrow M}$ direction for the VBM, from 0.17 to $0.24 \mathrm{eV} . \AA$. It is also noteworthy that the variation of the Rashba spin splittings as a function of the in-plane lattice parameter is linear in the range of $\eta_{x x}=$ -4.7% to -0.8% at the X point (Fig. 6), with an increase rate of $\gamma_{x} 2.92 \mathrm{eV} . \AA$ and $1.68 \mathrm{eV} . \AA$, respectively for the CBM and VBM in the $\mathrm{X}_{\rightarrow \Gamma}$ direction. Above $\eta_{x x}=$ -0.8%, the sudden increase of γ_{y} for the unoccupied $\mathrm{Pb}-\mathrm{p}_{x}$ bands (yellow curve) is certainly a result of the crossing with the $\mathrm{d}_{y z}$ bands.

FIG. 7. a) One-band spin texture calculated from the Hamil- ${ }^{59}$ tonian of Eq. 1 by using the parameters of Table \square for the $\mathrm{d}_{x y}$ bands around Γ point and b) the corresponding iso-energy spin texture $(E=1.65 \mathrm{eV})$ in the $\Gamma-\mathrm{X}-\mathrm{M}$ plan (for $k_{z}=0$).

We described previously the spin splitting and spin textures of the $\mathrm{Pb}-\mathrm{p}_{z}$ or $\mathrm{Ti}-\mathrm{d}_{x y}$ bands at the Z point, where we demonstrated that the behavior is mostly dependent either on γ or γ^{\prime}. However, if we consider the $\mathrm{d}_{x y}$ bands at Γ, we can see from the values of Table I that $\left|k_{\text {lim }}\right|$ is equal to $0.15 \AA^{-1}$, which corresponds to 0.09 in $\frac{2 \pi}{a_{0}}$ units. We thus expect a competition between the linear and cubic spin-splitting terms in the viscinity of the Γ point. In Fig 7 a, we can see that for $k_{x}<0.05$, we have a linear Rasbha-like behaviour, which can give iso-energy spin textures (Fig 7b) consistent with the DFT calculations, while for $k_{x}>0.05$ the spin texture becomes more complex and the model less accurately match the DFT results (not shown). Despite the discrepancies appearing between the DFT calculations and our model for this spin texture, the band dispersion energies are on the contrary correctly fitted. This shows that, as mentioned at the end of the section IIIB, the model for the spin texture may be mostly valid for \boldsymbol{k} vectors close from the HS points, i.e. $k_{x}<0.05$ in the present case.

Appendix C: Tetragonal distortion under strain

Decreasing the in-plane lattice parameter a from 3.9 to $3.7 \AA$ increases accordingly the c / a ratio from 1.054 to 1.257 , i.e. by $\approx 19 \%$, as it can be seen in Fig. 8 a.

The value of the electric polarization P for the equi- ${ }^{603}$ librium lattice parameters $\left(\eta_{x x}=0\right)$ was estimated to be $0.89 \mathrm{C} . \mathrm{m}^{-2}$, from calculations using the Berry-phase 604 formalism ${ }^{[67]}$ This value is in agreement, even if a little 605 higher, with experimental (0.75 C.m $\left.{ }^{-2}\right)^{68}$ and theoretical 60 (0.79 C.m $\left.{ }^{-2}\right)^{64}$ values reported in the literature. We then ${ }_{607}$ calculated an increase of P as a function of the in-plane strain $\eta_{x x}$ (see Fig. 8b), reaching a value of 1.22 C. m^{-2} for $\eta_{x x}=-4.7 \%$. Such strain-induced enhancement of polarization is well-known in the literature. ${ }^{64}$

b)

FIG. 8. a) Calculated out-of-plane lattice parameter c and c / a ratio as a function of the in-plane lattice parameter a. b) Electrical polarization P as a function of the in-plane strain $\eta_{x x}$.

Appendix D: Band structure of BiScO_{3}

The Fig. 9 displays the band structure calculated for ${ }_{593}$ tetragonal $\mathrm{BiScO}_{3}(a=3.807 \AA$ and $c=4.894 \AA)$, 94 which has already been predicted to possess an axial ratio $c / a=1.285 .6$ band gap of 1.26 eV , with a Bi-p character for the lowest conduction bands. Different spin splittings can be noticed in the vicinity of the HS points. These linear RSS mainly correspond to Rashba parameters of approximately $0.4 \mathrm{eV} . \AA$ in the viscinity of Z, i.e. for $k_{z}=\pi / c$, while they are well lower, with values of $0.06-0.08 \mathrm{eV} . \AA$ near Γ and X , for $k_{z}=0$.

FIG. 9. Band structure calculated for BiScO_{3} with the contribution of each atom in color and two spin textures calculated in a ($k_{x}, k_{y}, 0$) plane, to highlight the spin splittings of the VBM at the X point and the CBM at the Z point.

ACKNOWLEDGMENTS

The authors want to thank M. Bibes and A. Zunger for useful discussions. This study has been partially supported through the EUR grant NanoX n° ANR-17-EURE-0009 in the framework of the "Programme des Investissements d'Avenir". H.J and L.B. thank the Department of Energy, Office of Basic Energy Sciences, under Award No. DE-SC0002220. C.P. acknowledges ${ }_{11}$ ARO Grant No. W911NF-16-1-0227. This work was
${ }_{612}$ granted access to the HPC resources of CALMIP (allo- 613 cation 2019/P1229).
${ }^{668}{ }^{24}$ J. Varignon, J. Santamaria, and M. Bibes, Phys. Rev.
Lett. 122, 116401 (2019)
${ }^{20}$ H. Djani, A. C. Garcia-Castro, W.-Y. Tong, P. Barone,
${ }^{1}$ G. Dresselhaus, Phys. Rev. 100, 580 (1955)
${ }^{2}$ E. I. Rashba and V. I. Sheka, Fiz. Tverd. Tela: Collected Papers 2, 162 (1959).
${ }^{3}$ G. Bihlmayer, O. Rader, and R. Winkler, New J. Phys. 17, 050202 (2015)
${ }^{4}$ S. Datta and B. Das, Appl. Phys. Lett. 56, 665 (1990).
${ }^{5}$ D. Bercioux and P. Lucignano, Rep. Prog. Phys. 78, 106001 (2015)
${ }^{6}$ A. Manchon, H. C. Koo, J. Nitta, S. M. Frolov, and R. A. Duine, Nature Mater. 14, 871 (2015)
${ }^{7}$ S. Manipatruni, D. E. Nikonov, C.-C. Lin, T. A. Gosavi, H. Liu, B. Prasad, Y.-L. Huang, E. Bonturim, R. Ramesh, and I. A. Young, Nature 565, 35 (2019)
${ }^{8}$ Y. A. Bychkov and E. I. Rashba, JETP Lett. 39, 78 (1984)
${ }^{9}$ A. D. Caviglia, M. Gabay, S. Gariglio, N. Reyren, C. Cancellieri, and J.-M. Triscone, Phys. Rev. Lett. 104, 126803 (2010)
${ }^{10}$ V. M. Edelstein, Solid State Commun. 73, 233 (1990)
${ }^{11}$ J. C. R. Sánchez, L. Vila, G. Desfonds, S. Gambarelli, J. P. Attan, J. M. De Teresa, C. Magén, and A. Fert, Nature Commun. 4, 2944 (2013)
${ }^{12}$ S. Bhattacharjee, S. Singh, D. Wang, M. Viret, and L. Bellaiche, J. Phys. Condens. Matter 26, 315008 (2014).
${ }^{13}$ E. Lesne, Y. Fu, S. Oyarzun, J. C. Rojas-Snchez, D. C. Vaz, H. Naganuma, G. Sicoli, J.-P. Attan, M. Jamet, E. Jacquet, J.-M. George, A. Barthlmy, H. Jaffrs, A. Fert, ${ }^{69}$ M. Bibes, and L. Vila, Nature Mater. 15, 1261 (2016)
${ }^{14}$ W. Han, Y. Otani, and S. Maekawa, npj Quantum Materials 3, 1 (2018)
${ }^{15}$ M. Y. Zhuravlev, A. Alexandrov, L. L. Tao, and E. Y. Tsymbal, Applied Physics Letters 113, 172405 (2018).
${ }^{16}$ D. D. Sante, P. Barone, R. Bertacco, and S. Picozzi, Adv. Mater. 25, 509 (2013)
${ }^{17}$ M. Liebmann, C. Rinaldi, D. D. Sante, J. Kellner, C. Pauly, R. N. Wang, J. E. Boschker, A. Giussani, S. Bertoli, M. Cantoni, L. Baldrati, M. Asa, I. Vobornik, G. Panaccione, D. Marchenko, J. Snchez?Barriga, O. Rader, R. Calarco, S. Picozzi, R. Bertacco, and M. Morgenstern, Adv. Mater. 28, 560 (2016)
18 C. Rinaldi, S. Varotto, M. Asa, J. S?awi?ska, J. Fujii, G. Vinai, S. Cecchi, D. Di Sante, R. Calarco, I. Vobornik, G. Panaccione, S. Picozzi, and R. Bertacco, Nano Lett. 18, 2751 (2018)
${ }^{19}$ L. G. D. da Silveira, P. Barone, and S. Picozzi, Phys. Rev. B 93, 245159 (2016)
${ }^{20}$ D. Di Sante, P. Barone, A. Stroppa, K. F. Garrity, D. Vanderbilt, and S. Picozzi, Phys. Rev. Lett. 117, 076401 (2016)
${ }^{21}$ L. L. Tao and J. Wang, J. of Appl. Phys. 120, 234101 (2016)
${ }^{22}$ L. L. Tao, T. R. Paudel, A. A. Kovalev, and E. Y. Tsymbal, Phys. Rev. B 95, 245141 (2017).
${ }^{23}$ L. L. Tao and E. Y. Tsymbal, Nature Commun. 9, 2763 (2018) H. Djani, A. C. Garcia-Castro, W.-Y. Tong, P. Barone, E. Bousquet, S. Picozzi, and P. Ghosez, npj Quantum

674

675
676
677

679

672
$678 \underbrace{}_{29}$
68030
681 49 (1979)
${ }^{42}$ T. Shimada, T. Ueda, J. Wang, and T. Kitamura, Phys. Rev. B 87, 174111 (2013).
${ }^{43}$ R. Schafranek, S. Li, F. Chen, W. Wu, and A. Klein, Phys. Rev. B 84, 045317 (2011).
H. J. Zhao, A. Filippetti, C. Escorihuela-Sayalero, P. DeluRev. B 84, 045317 (2011).
H. J. Zhao, A. Filippetti, C. Escorihuela-Sayalero, P. Delugas, E. Canadell, L. Bellaiche, V. Fiorentini, and J. iguez, Phys. Rev. B 97, 054107 (2018).
Mater. 4, 51 (2019).
M. S. Bahramy, R. Arita, and N. Nagaosa, Phys. Rev. B 84, 041202 (2011)
M. Kepenekian and J. Even, J. Phys. Chem. Lett. 8, 3362 (2017)
${ }^{28}$ S. D. Stranks and P. Plochocka, Nature Mater. 17, 381 (2018)
${ }^{4}$ G. Kresse and J. Hafner, Phys. Rev. B 49, 14251 (1994)
G. Kresse and J. Furthmller, Phys. Rev. B 54, 11169 (1996)
P. E. Blöchl, Phys. Rev. B 50, 17953 (1994)

2 G. I. Csonka, J. P. Perdew, A. Ruzsinszky, P. H. T. Philipsen, S. Lebègue. J. Paier. O. A. Vydrov, and J. G. Ángyán, Phys. Rev. B 79, 155107 (2009).
${ }^{33}$ H. J. Monkhorst and J. D. Pack, Phys. Rev. B 13, 5188 (1976)
M. I. Aroyo, A. Kirov, C. Capillas, J. M. Perez-Mato, and H. Wondratschek, Acta Crystallogr. Sect. A 62, 115 (2006)

Aroyo Mois Ilia, Perez-Mato Juan Manuel, Capillas Cesar, Kroumova Eli, Ivantchev Svetoslav, Madariaga Gotzon, Kirov Asen, and Wondratschek Hans, Zeitschrift fr Kristallographie - Crystalline Materials 221, 15 (2009).
G. F. Koster, J. D. Dimmock, R. G. Wheeler, and H. Statz, Properties of the thirty-two point groups, edited by G. F. Koster (Cambridge, Mass., M.I.T. Press, 1963).
${ }^{7}$ S. L. Altmann and P. Herzig, Point-Group Theory Tables (Oxford Science Publications, 1994).
38 R. Winkler, Spin-Orbit Coupling Effects in TwoDimensional Electron and Hole Systems (Springer, Berlin, Heidelberg, 2003).
${ }^{9}$ L. C. Lew Yan Voon and W. M., The $k p$ Method (SpringerVerlag Berlin Heidelberg, 2009).
${ }^{0}$ S. Steiner, S. Khmelevskyi, M. Marsmann, and G. Kresse, Phys. Rev. B 93, 224425 (2016).
${ }^{41}$ S. A. Mabud and A. M. Glazer, J. Appl. Crystallogr. 12,
C. Paillard, E. Torun, L. Wirtz, J. Íñiguez, and L. Bellaiche, Phys. Rev. Lett. 123, 087601 (2019)
${ }^{6}$ M. Fechner, I. V. Maznichenko, S. Ostanin, A. Ernst, J. Henk, P. Bruno, and I. Mertig, Phys. Rev. B 78, 212406 (2008)
V. S. Borisov, S. Ostanin, I. V. Maznichenko, A. Ernst, and I. Mertig, Phys. Rev. B 89, 054436 (2014).
8 A. Quindeau, V. Borisov, I. Fina, S. Ostanin, E. Pippel, I. Mertig, D. Hesse, and M. Alexe, Physical Review B 92 (2015)
R. Arras and S. Cherifi-Hertel, ACS Appl. Mater. Interfaces 11, 34399 (2019).
"CRC Handbook of chemistry and physics, internet version," (CRC Press, Boca Raton, FL, 2005) pp. 12-124.
${ }_{730}^{730}{ }_{731}^{51} \begin{gathered}\text { Y. Umeno, B. Meyer, C. Elssser, } \\ \text { ical Review B 74, } 060101(2006)\end{gathered}$ and P. Gumbsch, Phys-
${ }_{32}{ }^{\mathrm{JL}}$ V. Pankoke and S. Gemming, The European Physical Jour${ }_{733}$ nal B 67, 57 (2009).
${ }_{734}{ }^{53}$ F. Chen, R. Schafranek, S. Li, W. B. Wu, and A. Klein, ${ }^{3} 54$ J. Phys. D 43, 295301 (2010).
${ }_{36}{ }^{54}$ R. Schafranek, J. Schaffner, and A. Klein, J. Eur. Ceram. ${ }_{37}$ Soc. 30, 187 (2010) electroceramics XI Special Issue.
${ }^{738}{ }^{55}$ Y. Gassenbauer, R. Schafranek, A. Klein, S. Zafeiratos,
M. Hävecker, A. Knop-Gericke, and R. Schlögl, Phys. Rev. 74 B 73, 245312 (2006)
${ }_{741}{ }^{50}$ S. Vajna, E. Simon, A. Szilva, K. Palotas, B. Ujfalussy, and L. Szunyogh, Phys. Rev. B 85, 075404 (2012)
${ }_{743}{ }^{57}$ S. D. Ganichev and L. E. Golub, Phys. Status Solidi(b)
744 251, 1801 (2014).
${ }_{745}{ }^{58}$ K. V. Shanavas, Phys. Rev. B 93, 045108 (2016)
${ }_{746}{ }^{59}$ K. Ishizaka, M. S. Bahramy, H. Murakawa, M. Sakano,
${ }^{747}$ T. Shimojima, T. Sonobe, K. Koizumi, S. Shin, H. Miya-

748 hara, A. Kimura, K. Miyamoto, T. Okuda, H. Namatame,
749 M. Taniguchi, R. Arita, N. Nagaosa, K. Kobayashi, Y. Mu-
750 rakami, R. Kumai, Y. Kaneko, Y. Onose, and Y. Tokura,
$751 \quad$ Nature Mater. 10, 521 (2011)
${ }_{752}{ }^{60}$ S. LaShell, B. A. McDougall, and E. Jensen, Phys. Rev.
753
\square Lett. 77, 3419 (1996)
${ }^{61}$ Z. Zhong, A. Tth, and K. Held, Phys. Rev. B 87, 161102
${ }^{755}$ (2013)
$756{ }^{\circ 2}$ H. Nakamura, T. Koga, and T. Kimura, Phys. Rev. Lett.
757 108, 206601 (2012)
${ }^{3}$ W. Lin, L. Li, F. Do?an, C. Li, H. Rotella, X. Yu, B. Zhang,
759 Y. Li, W. S. Lew, S. Wang, W. Prellier, S. J. Pennycook,
760 J. Chen, Z. Zhong, A. Manchon, and T. Wu, Nature Commun. 10, 1 (2019)
${ }^{762}{ }^{64}$ Y. Yang, M. Stengel, W. Ren, X. H. Yan, and L. Bellaiche, Phys. Rev. B 86, 144114 (2012).
${ }^{64}{ }^{65}$ C. Paillard, S. Prokhorenko, and L. Bellaiche, Npj Comput. Mater. 5, 1 (2019)
66 A. Skierkowski and J. A. Majewski, Acta Phys. Pol. A 112,
767455 (2007)
$768{ }^{\circ}$ R. D. King-Smith and D. Vanderbilt, Phys. Rev. B 47,
$769 \quad 1651$ (1993).
${ }_{770}{ }^{68}$ L. Sun, Y. Chen, W. Ma, L. Wang, T. Yu, M. Zhang, and N. Ming, Appl. Phys. Lett. 68, 3728 (1996)
${ }_{72}{ }^{69}$ J. Íñiguez, D. Vanderbilt, and L. Bellaiche, Phys. Rev. B 67, 224107 (2003)

