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Abstract 

Interatomic potentials based on neural-network machine learning (ML) approach 

to address the long-standing challenge of accuracy verses efficiency in molecular 

dynamics (MD) simulations have recently attracted a lot of interest. Here, utilizing 

Pd-Si system as a prototype, we extend the development of neural-network ML 

potentials to compounds exhibiting various types of bonding characteristics. The ML 

potential is trained by fitting to the energies and forces of both liquid and crystal 

structures first-principles calculations based on density functional theory (DFT). We 

show that the generated ML potential captures the structural features and motifs in 

Pd82Si18 and Pd75Si25 liquids more accurately than the existing interatomic potential 

based on embedded-atom method (EAM). The ML potential also describes the 

solid-liquid interface of these systems very well. Moreover, while the existing EAM 

potential fails to describe the relative energies of various crystalline structures and 

predict wrong ground-state structures at Pd3Si and Pd9Si2 composition, the developed 

ML potential predict correctly the ground-state structures from genetic algorithm 

search. The efficient ML potential with DFT accuracy from our study will provide a 

promising scheme for accurate atomistic simulations of structures and dynamics of 

complex Pd-Si system.  

Keywords: machine learning; neural networks; molecular dynamics; genetic 

algorithm; solid-liquid interface  
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1. Introduction 

Molecular dynamics (MD) simulation has been attracting growing attentions in 

materials science, condensed matter physics, chemical and biological science due to 

its ability to reveal atomic-level structures and dynamics as well as structure-property 

relationship [1,2]. However, to perform reliable MD simulations, accurate and 

efficient description of interatomic forces are critical. Quantum mechanics calculation 

based on first-principles density functional theory (DFT) can provide accurate 

description on interatomic forces and total energies for many materials, and ab initio 

MD (AIMD) simulations based on DFT have been applied extensively to investigate 

the structures and dynamics in different systems [3,4]. However, due to the expensive 

computational demand, AIMD can usually be performed with smaller size (~ 500 

atoms) and shorter time (typically less than 1 ns) even with the advent of the 

newest-generation supercomputers. To overcome this limitation, various empirical 

interatomic potential schemes for MD simulations have been proposed. Traditionally, 

interatomic potentials are defined by assuming an analytical function with respect to 

the atomic coordinates based on one’s chemical and physical insights, such as 

Lennard-Jones potentials for noble gas and colloidal systems [5,6], Tersoff and 

Stillinger-Weber potentials [7,8] for covalent systems and embedded-atom method 

(EAM) potentials [9] for the metallic systems. Although these potentials have been 

widely used in MD simulations and have produced many useful results for better 

understanding the structures and properties of many compounds [10,11], limitations 

for their application in more complex systems have also been noticed. The fixed 
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mathematical function for the interatomic interactions inspired by human chemical 

and physical insights often cannot provide the balance between diverse properties 

stemming from different bonding characteristics [12]. New types of potential that can 

adapt to various bonding environments in the same systems are needed for systems 

with complex bonding characteristics.  

Machine learning (ML) is well-known for its ability in performing pattern 

recognition [13]. Since the energy and forces on an atom in a condensed matter 

system are predominately dependent on the species of the atom, its valence state and 

interactions with its neighbors, interatomic potentials fitting can be regarded as 

pattern recognition problem and ML is a promising approach. Under this premise, 

neural network potentials (NNPs) were first proposed by Behler and Parrinello [14] 

which were applied in MD simulations for systems containing thousands of atoms. In 

this approach, radial and angular symmetry functions were proposed as the 

“descriptors” of the bonding environments to map the atomic coordinates onto the 

input values of the neural network. The parameters of the feed-forward neural 

network were then optimized by fitting to the total energies of the system. Based on 

the Behler-Parrinello approach to construct the NNP, the related research has 

expanded into a number of different systems, such as bulk silicon [14] and carbon 

[15], TiO2 [16], CaF2 [17], et al. However, the fixed symmetry functions reduce the 

flexibility of the neural network potentials (NNP) to describe the complex bonding 

situations, particularly for systems with many chemical elements. Recently, Zhang et 

al. proposed a more robust and flexible method for the description of the bonding 
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environment and developed a Deep Potential Molecular Dynamics (DeePMD) scheme 

based on the ML neural network to overcome this problem [18-21]. The DeePMD-kit 

package has been applied successfully in various systems such as molecules, MoS2, Pt, 

TiO2, CoCrFeMnNi high-entropy alloy, and Al-Mg alloy system etc. [18-21]. We 

would like to note that in addition to the NNP mentioned above, development of 

interatomic potentials based on ML has attracted considerable research interest in 

recent years. For example, K.T. Schütt, A. Tkatchenko, and K.-R. Müller et al. [22,23] 

have developed a SchNet package with the neural network architecture and 

SchNetPack framework to accurately predict chemical properties and potential energy 

surfaces of molecules. R. Kondor et al. [24] proposed covariant composition networks 

(CNNs) framework for learning the properties of molecules from their molecular 

graphs and the framework can extract multiscale structure and keep track of the local 

topology. Furthermore, other forms of ML potentials were also proposed such as the 

Gaussian approximation potential (GAP) [25-27], the Spectral Neighbor Analysis 

Potential (SNAP) [28-30], and the moment tensor potentials (MTP) [31-33]. For all 

the ML potentials, the total energy is calculated as a sum of the atomic energies which 

are determined by the atomic configurations and various “descriptors” have been used 

in different types of ML potentials to depict the atomic environment. A 

comprehensive comparison between different ML potentials can also be found in a 

recent paper by Zuo et al [34]. 

In this paper, we adopted the DeePMD-kit to develop an NNP for Pd-Si 

compound as a prototype system. The motivations for choosing such a system are as 
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follows: (i) The composition of Pd82Si18 can be readily fabricated into bulk metallic 

glasses (BMGs) [35] and an accurate potential at this composition can aid in 

understanding the metallic glass; (ii) There are many complex phases which form 

around the Pd82Si18 composition [36], and an accurate and efficient interatomic 

potential would be useful for determining the energy landscape and the structures of 

metastable phases around this composition;  (iii) Solidification processes can be 

investigated more efficiently by employing the newly generated NNP; (iv) Since 

interatomic potential for this system based on EAM is available in the literature [37], 

the developed ML potential can be directly compared with the existing EAM potential. 

We will show that the generated NNP describes the structures of Pd82Si18 and Pd75Si25 

liquids more accurately than the existing EAM potential. The NNP also outperforms 

the EAM potential in predicting the ground-state crystalline structures of Pd3Si and 

Pd9Si2 compounds. We note that the generated NNP should be accurate for MD 

simulations for Pd-Si systems with Si composition less than 25 at.% where a lot of 

interesting and complex new phases may exist.  

The paper is organized as follows. In section 2, we first introduce the ML 

potential development process including the datasets utilized and the detailed 

parameters used in the DeePMD-kit. The training and testing accuracies in 

comparison with the first-principles DFT results are then discussed. In section 3, the 

liquid structure obtained by NNP-MD is compared with that by AIMD and the EAM 

potential from Sheng [37] through the pair distribution functions (PDFs) and the 

cluster alignment method [38,39]. Genetic algorithm (GA) search is used to 
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demonstrate the promising applications of NNP in crystal structure prediction [40,41] 

and the profiles and migration of the solid-liquid interface (SLI) as well as the 

glass-transition process from the NNP-MD simulations are also discussed in section 3. 

Finally, a brief summary is given in section 4.  

2. Computational methods 

2.1 Data sets for machine learning training and validation 

Liquid data sets for the development of the NNP for Pd-Si system are generated 

by AIMD simulations. The AIMD simulations for Pd82Si18 and Pd75Si25 liquids and 

undercooled liquids are performed using 200 atoms by Vienna Ab-Initio Simulation 

Package (VASP) [3,42]. Projected-augmented-waves (PAW) with the 

Perdew-Burke-Ernzerhof (PBE) form of exchange-correlation potentials are adopted 

[43,44]. The PBE-DFT method is accurate for depicting the atomic interaction in 

Pd-Si system which has been validated in Ref. [45,46]. Only the Γ point is utilized to 

sample the Brillouin zone and the default energy cutoffs of 251 eV are employed. The 

AIMD simulations are carried out using the NVT ensemble with Nóse-hoover 

thermostat under periodic boundary conditions. The simulation temperatures of the 

two compositions are 1800, 1600, 1400, 1200, 1100, 1000, 900, and 800 K, 

respectively and the liquid at lower temperatures is quenched from 1800 K at a 

constant cooling rate of 0.1 K/step. At each temperature, the simulation box size is 

adjusted to ensure that the average pressure of the system is in the range of 0.0 ± 1.0 

kB. The time step of the AIMD simulations is 3 fs and a total simulation time of 30 ps 

is performed at each temperature. The snapshots are recorded every 0.3 ps at each 
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temperature and then the static DFT calculations on the AIMD structures are 

performed with the energy cutoff of 400 eV, k-mesh grid of 2π× 1/25 Å-1, and the 

electronic convergence criterion of 10-5 eV in VASP. Thus 800 frames of data 

consisting of total energy and the forces on each atom have been collected for each 

composition. In the NNP development process, 100 frames of data for each 

composition at 800 K are used as validating data and the remaining data are used as 

training data. We use the data at lower temperature of 800 K as validating data to 

make sure that the NNP trained by the configurations at higher temperatures can 

predict the atomic motion and trajectories at lower temperatures.  

Besides the liquid data described above, perfect and distorted crystal structures at 

Pd9Si2 and Pd3Si, whose compositions are close to the liquid compositions of Pd82Si18 

and Pd75Si25, respectively, are also added to the training and validating data sets. The 

distorted crystal structures are constructed as follows: (i) The unit cell of the perfect 

crystal is compressed and dilated uniformly by σc = 0.9 + 0.01n (n = 0, 1, 2, …, 10) to 

cover various box sizes; (ii) The atomic positions in the unit cell are randomly 

displaced with σa = -0.025 + 0.005n (n = 0, 1, 2, …, 10) times the length of the cell 

vector, which acts as an analogy to include the effect of thermal vibrations. In total, 

1000 structures including the perfect crystal structure are generated at each 

composition and the energies and forces are calculated by VASP. In these calculations, 

plane-wave basis with the energy cutoff of 400 eV is used and the calculations are 

performed with a k-mesh grid of 2π× 1/25 Å-1 in VASP. The electronic energy 

convergence criterion is 10-5 eV. It should be noted that these settings in VASP are the 
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same as that of the aforementioned static calculations on AIMD structures. The 1000 

configurations contain the information of atomic positions, total energies and forces 

on every single atom at each composition, in which 800 configurations are used as 

training data and the rest are used as validating data. Furthermore, AIMD at 300 K for 

Pd3Si (128 atoms) and Pd9Si2 (352 atoms) crystalline phases are performed followed 

by static calculations with the same settings as above in VASP. The total energy, 

atomic forces and PDFs of the crystalline structures at 300 K for the two compositions 

are used to validate the generated NNP. 

Combining the liquid and crystal data sets at different compositions, we have 

3000 configurations in the training process and 800 configurations for the validating 

purpose.  

2.2 DeePMD training 

The DeepPot-SE model [19] in the DeePMD-kit package is applied in the 

training process. The cutoff radius of the model is set to 6.0 Å and descriptors decay 

smoothly from 5.8 Å to the cutoff radius of 6.0 Å. The size of the filter and fitting 

networks are {50,100} and {240,240,240}, respectively. A skip connection is built 

(ResNet) between two neighboring fitting layers. The model is trained by the Adam 

stochastic gradient decent method [47] and the learning rate decreases exponentially 

with respect to the starting value of 0.001. The decay rate and decay step are set to 

0.96 and 10000, respectively. In addition, the prefactors in the loss functions are pe
start 

= 0.2, pe
limit = 2, pf

start = 100, pf
limit = 1, pv

start = 0, pv
limit = 0. No virial data is included 

in the training process. 
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2.3 MD simulations and structural analysis 

With the interface of the DeePMD-kit to the LAMMPS code [48], MD 

simulations can be directly performed with the generated NNP. To compare the liquid 

structures obtained by AIMD, NNP, and EAM potential, the same simulation 

condition is applied. Specifically, the same starting configuration, same time step (3 

fs), same simulation time (30 ps), and NVT ensemble are used in AIMD and the 

classical MD simulations with NNP and EAM potential. Atomic coordinates are 

collected every 0.3 ps and in total 100 snapshots are used for further structural 

analysis. The total and partial PDFs of the liquid structures are compared. 

Furthermore, the cluster alignment method which has been used extensively in 

different systems [49-51] is employed to classify the atomic-level motif. For the 

cluster alignment method, the alignment score is calculated as follows: 

                  (1) 

where N is the number of neighbor atoms in the template;  and  are the atomic 

positions in the aligned cluster and template, respectively; and α is a coefficient to 

adapt the bond length of the template which is chosen to be in the range of 0.8 to 1.2 

in the present study. Common motifs like BCC, FCC, HCP, and ICO are used as 

templates in the cluster alignment process as well as the recently excavated 

Pd-centered 1551 (Z13) and Si-centered Z9 motifs [52]. The alignment score indicates 

the deviations of the cluster from the template and the smaller alignment score 

suggests the higher similarity between the cluster and template and vice versa. 

For the MD simulations on the glass transition process of Pd82Si28 and Pd75Si25, 
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the isothermal-isobaric ensemble (NPT, N = 5000 atoms, P = 0) and a Nóse-hoover 

thermostat are used. The periodic boundary conditions are applied in the three 

directions and the time step of the simulations is 2.5 fs. The liquid sample is first 

annealed at 1600 K for 1 ns to reach equilibrium and then cooled down to 300 K at 

1012 and 1013 K/s for the two compositions. In addition, MD simulations at 800 K 

(just above the glass transition temperature as can be seen later in Fig. 10) are 

performed to investigate the SLI profiles and migration where initially one part of the 

simulation cell contains the crystal seeds (Pd3Si or Pd9Si2) and the other part contains 

the corresponding liquid with the same composition. In these MD simulations, there 

are 2048 and 2376 atoms in the cell at the Pd3Si and Pd9Si2 composition, respectively. 

The x direction which is perpendicular to the SLI is allowed to change and the NPxT 

ensemble is employed using the Nóse-hoover thermostat under periodic boundary 

conditions. The time step is 3 fs and the total simulation time is 12 ns at each 

composition.  

2.4 Crystal structure search using genetic algorithm 

Genetic algorithm (GA) code is linked to the DeepMD-kit package and then the 

generated NNP is used to perform crystal structure prediction for Pd-Si system. For 

the purpose of comparison, GA crystal structure prediction is also performed with the 

EAM potential from the literature for Pd-Si system [37]. The crystal unit cells 

containing 16 atoms for Pd3Si and 44 atoms for Pd9Si2 are used in the GA search. In 

addition, the GA search is performed for 5 times at each composition with the initial 

structures belonging to random symmetry groups to improve statistics. The pool size 
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for the GA search is 400 and the search is considered to be converged when the lowest 

energy of all the structures remains unchanged in 500 consecutive GA generations. 

3. Results and discussions 

3.1 Performance of the NNP for liquid structures 

The performance of the NNP [53] for liquid structures of Pd82Si12 and Pd75Si25 in 

the training and validating data sets are shown in Figs. 1 and 2 respectively. The 

root-mean-square errors (RMSEs) for the NNP energies and forces from the structures 

in the training set in comparison with those from static calculations on AIMD 

structures are less than 1.7 meV/atom for the energies and 100 meV/Å for the forces. 

While the RMSE for the structures in the validating set is less than 1.5 meV/atom for 

the energies and 95 meV/Å for the forces. We can see that the RMSEs from the 

training and validating sets are comparable to each other. These results indicate that 

overfitting in ML is unlikely to occur in this case and the information learned at 

higher temperatures can indeed predict the atomic motion at lower temperatures. The 

energy RMSE of less than 2.0 meV/atom and the force RMSE of less than 100 

meV/Å are acceptable and the generated NNP should be promising to describe the 

liquid structures accurately.  

Fig. 3 displays the comparison of the PDFs for the liquids of Pd82Si18 and 

Pd75Si25 at 1600 K obtained by AIMD, NNP and the EAM potential, respectively. It 

can be found that the PDFs from the NNP are in a very good agreement with that from 

AIMD up to the distance of 10 Å indicating that the NNP can also accurately describe 

the longer-range atomic correlations. However, the results from the EAM potential 
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underestimate the interaction among the Pd atoms and overestimate the bonding 

between the Pd and Si atoms, as can be seen in Figs. 3 (b,c) and (f,g) where the EAM 

potential gives the weakest first peak in the Pd-Pd partial PDF and strongest first peak 

in the Pd-Si partial PDF. In addition, the Si-Si partial PDF from the EAM potential 

deviate much from that by AIMD and a small prepeak around 2.3 Å in Si-Si partial 

PDF shown in Figs. 3 (d,h) obtained by the EAM potential is not seen in either AIMD 

or NNP-MD simulations.  

We also investigate how NNP captures the atomic-level short-range order (SRO) 

motifs in the liquids as compared with the results from AIMD and the EAM potential 

simulations. We perform cluster-template alignment [38,39] to quantify the degree of 

the SRO in the liquids. Common motifs like BCC, FCC, HCP, and ICO as well as the 

recently excavated Pd-centered 1551 (Z13) and Si-centered Z9 motifs [52] are used as 

templates in our cluster-template alignment. The alignment score of 0.15 is used as 

the cutoff to assign the SRO motif to the Pd-centered or Si-centered clusters. If a 

cluster has an alignment score less than 0.15 for more than one template, the lowest 

alignment score is used to assign the cluster to the corresponding motif. It should be 

noted that the same cutoff value has been used in other systems to identify the SRO, 

such as Ni-Zr and Ni-Nb systems [50,51] and the relative ratios between different 

motifs are not dependent on the choice of the cutoff value as long as this value is 

reasonable. The most dominant motifs for the liquid structures of Pd82Si18 and 

Pd75Si25 are the Pd-centered 1551 and Si-centered Z9 motifs, and the fractions of 

these dominant motifs as the function of temperature are plotted in Fig. 4. In general, 
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the fractions of the dominant motifs in both Pd82Si18 and Pd75Si25 liquids increase as 

the temperature decreases from 1600 to 800 K, as one can see from Figs. 4(a)-(d). The 

results from the NNP are in a much better agreement with the AIMD results, while the 

EAM potential underestimates the fractions of the SRO in both systems. Therefore, 

the generated NNP could depict the atomic interactions in the liquid more accurately 

than the EAM potential. 

We note that for the Pd-centered clusters in both systems, the fraction of the 

dominant SRO, namely 1551 motif, is still less than 5% with respect to the total 

Pd-centered clusters at 800 K indicating that the first shell of Pd atom is considerably 

disordered. However, for the Si-centered clusters in both systems, the fraction of the 

Z9 motif is larger than 15% with respect to the total Si-centered clusters at 800 K 

from AIMD or the NNP. It should be noted that the Si-centered Z9 cluster is often 

referred to as a trigonal prism capped with three half-octahedra [46,52], which is a 

“crystal gene” in Pd3Si crystalline phase.  

3.2 Performance of the NNP for crystal structures 

Figs. 5 and 6 show the RMSEs in the energies and forces for the undistorted and 

distorted crystal structures of Pd3Si and Pd9Si2 compositions in the training set and 

validating set, respectively (see the method section above) when comparing the NNP 

results with respect to the DFT results. The RMSEs are still small at these two 

compositions with less than 3 meV/atom for the energies and less than 90 meV/Å for 

the forces in the training and validating data. Comparing the results between two 

compositions, the energy errors at Pd3Si are larger than that at Pd9Si2, while the force 



 15

errors are on the contrary. For the AIMD structures at 300 K, the RMSEs between the 

NNP and DFT are 1.4 meV/atom and 51 meV/Å for Pd3Si and 0.7 meV/atom and 56 

meV/Å for Pd9Si2, respectively. In addition, the comparison of the PDFs for the solid 

phases of Pd3Si and Pd9Si2 at 300 K obtained by AIMD, NNP is displayed in Fig. 7. It 

can be found that the PDFs from NNP are in a good agreement with that from AIMD 

indicating that the NNP can well capture the MD process of Pd3Si and Pd9Si2 

crystalline phases at 300 K. In combination of the RMSEs and PDF comparisons 

between NNP and AIMD at 300 K, the generated NNP can perform well at room 

temperature (300 K). 

To further validate that NNP is able to distinguish structures with different 

energies, we apply the potential to reconstruct the energy vs volume (E-V) curve 

implicitly contained in the datasets and the results are exhibited in Fig. 8. In the 

datasets (1000 structures) at each composition, there are 500 structures at the 

equilibrium volume (Relative Volume = 1) of the corresponding crystal structure 

including the perfect crystal structure and the randomly distorted structures as well as 

500 randomly distorted structures at other volumes. From Fig. 8, it can be clearly seen 

that the NNP could reproduce the E-V curve in the datasets very accurately and the 

energy of the perfect crystal phase is considerably lower than others.  

The accurate description of the energies and forces by the NNP at these two 

compositions endows its promising application in the crystal structure prediction. To 

demonstrate this, we perform genetic algorithm (GA) structure search using the 

developed NNP to determine the ground-state structures of Pd3Si and Pd9Si2 phases. 
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The atomic position of these two structures are known in the literature. In our NNP 

development, these two ground-state structures are intentionally excluded from the 

training dataset. Details of the GA search have been described in Sec 2.4. For the 

purpose of comparison, GA search for the low-energy structures of these two phases 

are also performed using the available EAM potential.  

Fig. 9 displays the lowest-energy structures discovered by the GA runs at the 

composition of Pd3Si and Pd9Si2 by NNP (Fig. 9 (a,b)) and the EAM potential (Fig. 9 

(c,d)). The corresponding energies from DFT, NNP and EAM calculations are also 

shown for comparison. For the GA searches at the composition of Pd3Si, the 

ground-state structure of Pd3Si crystal phase with the space group of 62 as shown in 

Fig. 9(a) can be found by NNP within a few generations in every one of the five GA 

runs. The discrepancy between the NNP and DFT energies for this structure is around 

2 meV/atom. In contrast, all the 5 GA runs by the EAM potential for Pd3Si discover a 

structure with the space group of 82 as shown in Fig. 9(c), whose energy by the EAM 

potential is 40 meV/atom lower than that of the known ground-state Pd3Si crystal 

structure. When we calculate the energy of this structure by DFT and NNP, the energy 

is 33 meV/atom and 28 meV/atom respectively higher than the known ground-state 

Pd3Si crystal structure. These results indicate that the EAM potential fails to describe 

the energy ordering of crystal structures at the Pd3Si composition. For the GA search 

at the Pd9Si2 composition with 44 atoms, the NNP also correctly captures the known 

ground-state structure as shown in Fig. 9(b) in every one of the five GA runs. The 

discrepancy in the energy for this structure by the NNP and DFT is only about 1 
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meV/atom, which indicates that the NNP potential is accurate in describing the energy 

landscape of different crystal structures. On the other hand, the GA search using the 

EAM potential fails to predict the ground-state structure of Pd9Si2. The lowest-energy 

structure obtained by the GA search using the EAM potential is shown in Fig. 9(d) 

which exhibits space group 1 symmetry and has energy 21 meV/atom lower than that 

of the ground-state structure shown in Fig. 9(b) by the EAM potential. We note that 

the failure in correctly predicting the ground-state structure of the Pd9Si2 phase is not 

the problem of the GA search (since it can get the lower-energy structure by the 

potential) but the accuracy problem of the EAM potential. Indeed, DFT and NNP 

calculations show that the lowest-energy structure of Pd9Si2 predicted by the EAM 

potential shown in Fig. 9(d) has energy of 29 meV/atom and 35 meV/atom 

respectively higher than that of the true ground-state structure shown in Fig. 9(b).  

3.3 Performance of the NNP for glass transition process and SLI 

After demonstrating the performance of the NNP for the liquids and crystals, it is 

interesting to investigate the glass transition process and SLI by MD simulations 

using the NNP. Figs. 10(a) and (b) display the relationship between instantaneous 

potential energy (E-3kBT) [52,54,55] and temperature for Pd75Si25 and Pd82Si18, 

respectively at the cooling rate of 1012 and 1013 K/s. It can be found that the glass 

transition temperature (Tg) of Pd75Si25 and Pd82Si18 is similar to each other and a 

glassy sample with the lower energy can be obtained at the lower cooling rate. The Tg 

of Pd82Si18 at such a fast cooling rate is a little higher than that from experiment (645 

K) which is measured at much lower cooling rate (1800 K/s) [56]. These results 
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indicate that the generated NNP can reasonably well describe the glass formation 

process for Pd75Si25 and Pd82Si18 considering that the higher cooling rate will result in 

the higher Tg [57]. In the MD simulation of SLI, 2048 atoms are used at the 

composition of Pd3Si. Among them 1024 atoms are initially arranged in crystal 

structure and the other 1024 atoms are initially in liquid state so that a SLI parallel to 

the (100) plane of the Pd3Si crystal is formed as shown in Fig. 10 (c). The simulations 

are performed at 800 K with periodic boundary condition in all three directions. The 

change in the total energy (kinetic plus potential energy) with annealing time is 

displayed in Fig. 10(d). It can be seen that the total energy decreases continuously 

with the annealing time indicating that the crystalline phase continues to grow out of 

the liquid phase at 800 K. This crystallization process can be seen more clearly from 

Fig. 10(c) where almost the whole MD cell has been turned into the Pd3Si crystalline 

phase at the MD simulation time of 12 ns. These results indicate that the liquidus 

temperature (Tl) at the composition of Pd3Si by the NNP should be above 800 K, 

which is consistent with the experimental observation and phase diagram [36]. The 

setup and MD simulation of SLI for the Pd9Si2 are carried out in the way similar to 

the case of Pd3Si described above. The MD simulation cell contains 2376 atoms and 

initially 1188 atoms are arranged in the crystalline phase and the rest 1188 atoms are 

in the liquid phase as shown in Fig. 10(e). The interface is parallel to the (100) plane 

of the Pd9Si2 crystal. In contrast to the case of Pd3Si, the energy of the system 

decreases very slowly over the simulation time of 12 ns as shown in Fig. 10(f). The 

energy drop over the 12 ns is less than 0.03 eV/atom. A snapshot of the atomic 
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structure at 12 ns as displayed in Fig. 10(e) shows that the Pd9Si2 crystal solidifies 

more slowly than Pd3Si crystal at 800 K. These results suggest that the crystallization 

kinetics for Pd9Si2 is slower than that for Pd3Si at 800 K, which may be due to the 

relatively lower Tl of Pd9Si2. This result is consistent with the phase diagram [36] that 

the Tl of Pd9Si2 is lower than that of Pd3Si by more than 200 K and Pd9Si2 is around 

the eutectic composition. By comparing the Tg, Tl and SLI profiles at Pd3Si and Pd9Si2, 

the value of Tg/Tl should be larger for Pd9Si2 than Pd3Si, which indicates that the GFA 

of Pd82Si18 should be better than Pd3Si according to D. Turnbull [58]. In addition, the 

Pd82Si18 is around the eutectic composition and the eutectic instability could also 

trigger the “eutectic-glass” transition [59,60]. What’s more, the critical cooling rate 

(Rc) is a frequently used criterion to denote the GFA of a system in experiment and the 

lower Rc suggests the better GFA. In this case, the Rc of Pd82Si18 is around 1800 K/s 

[56,61] while that of Pd75Si25 is around 106 K/s [61], which is consistent with the 

conclusion above that the GFA of Pd82Si18 should be better than Pd3Si. 

4. Summary 

In the present work, the DeePMD scheme is applied to develop a machine 

learning neural network interatomic potential for Pd-Si system containing complex 

mixed covalent and metallic bonding interactions. The developed NNP can accurately 

describe the energies and forces in comparison with the results from first-principles 

DFT calculations around the compositions of Pd82Si18 and Pd75Si25 with the RMSEs 

on the training and validating datasets less than 3 meV/atom for the energies and 100 

meV/Å for the forces for both the liquid and crystalline structures. We also show that 
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the NNP yield more accurate description of the liquid structures than the existing 

EAM potential in comparison with the AIMD results. Moreover, the developed NNP 

describes well the energy landscape of various crystalline structures while the EAM 

potential fails to correctly predict the ground-state structure for the Pd3Si and Pd9Si2 

crystalline phases.  MD simulations of glass transition process, SLI, and crystal 

growth with thousands of atoms also indicate that the developed NNP can correctly 

capture the crystallization kinetics and GFA for these systems. We anticipate that the 

developed NNP can find promising applications in investigating and unveiling the 

atomic-level structures and dynamics of glass formation, nucleation and 

crystallization in these systems. In addition, the developed NNP can also be used to 

explore novel complex metastable structures in these systems by combining it with 

genetic algorithm and first-principles calculations. 
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Figure captions 

Fig. 1. NNP vs DFT energies and forces for Pd82Si18 and Pd75Si25 liquid structures in 

the training data. The corresponding root-mean-square errors (RMSEs) are shown for 

each system. 

Fig. 2. NNP vs DFT energies and forces for Pd82Si18 and Pd75Si25 liquid structures in 

the validating data. The corresponding root-mean-square errors (RMSEs) are shown 

for each system. 

Fig. 3. The comparison of the pair distribution functions of (a)-(d) Pd82Si18 and (e)-(h) 

Pd75Si25 at 1600 K obtained by AIMD (blue), NNP (red), and the EAM potential 

(green). 

Fig. 4. The fractions of the dominant motifs for Pd-centered (a,c) and Si-centered (b,d) 

clusters in the structures for both systems at different temperatures. (e) shows the 

Pd-centered 1551 template and (f) exhibits the Si-centered Z9 template. 

Fig. 5. NNP vs DFT energies and forces for Pd3Si and Pd9Si2 crystal structures in the 

training data. The corresponding root-mean-square errors (RMSEs) are shown for 

each system. 

Fig. 6. NNP vs DFT energies and forces for Pd3Si and Pd9Si2 crystal structures in the 

validating data. The corresponding root-mean-square errors (RMSEs) are shown for 

each system. 

Fig. 7. The comparison of the pair distribution functions of (a)-(d) Pd3Si and (e)-(h) 

Pd9Si2 at 300 K obtained by AIMD (blue) and NNP (red). 

Fig. 8. The E-V curve obtained by NNP and DFT calculations at the composition of (a) 
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Pd3Si and (b) Pd9Si2. The relative volume denotes the ratio of the volume of crystal 

structure to that of the ground-state (a) Pd3Si and (b) Pd9Si2 crystal structures, 

respectively. The results from NNP are almost identical to DFT, so they overlap with 

each other.  

Fig. 9. The lowest-energy structures obtained from the classical GA searches at the 

composition of Pd3Si and Pd9Si2 by NNP (a,b) and EAM (c,d) with the corresponding 

DFT, NNP, and EAM energies. The red and blue balls stand for Pd and Si atoms, 

respectively and the bonds are plotted for connecting the nearest neighbors. 

Fig. 10. (a) and (b) display the instantaneous energy (E-3kBT) as a function of 

temperature at different cooling rates for Pd75Si25 and Pd82Si18, respectively. (c) and (e) 

exhibit the snapshots at different annealing times of the composition at Pd3Si and 

Pd9Si2, respectively. The red balls denote the Pd atoms and the blue ones represent the 

Si atoms. (d) and (f) show the change in the total energy during the annealing process 

of the Pd3Si and Pd9Si2 compositions respectively at 800 K obtained by NNP. 
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