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We propose a modified Boltzmann nonlinear electric-transport framework which differs from the
nonlinear generalization of the linear Boltzmann formalism by a contribution that has no counterpart
in linear response. This contribution follows from the interband-coherence effect of dc electric-
fields during scattering and is related to the interband Berry connection. As an application, we
demonstrate it in the second-order nonlinear Hall effect of the tilted massive Dirac model. The
intuitive Boltzmann constructions are confirmed by a quantum kinetic theory, which shows that
arbitrary nth-order nonlinear dc response up to the first three leading contributions in the weak
disorder potential is handled by the same few gauge-invariant semiclassical ingredients.

I. INTRODUCTION

The nonlinear response to an applied electric field in
crystalline solids has attracted revived interest, owing to
the essential role played by the quantum geometry of the
Bloch wave function [1–4]. In the optical high-frequency
regime of the electric field, the shift current photogalvanic
effect and second Harmonic generation have been shown
to be related to the Berry connection of each involved
Bloch band [5, 6]. In the low-frequency regime, higher-
order moments of the Berry curvature in momentum
space emerge in the nonlinear anomalous Hall responses
in the absence of magnetic field, such as the Berry cur-
vature dipole [3, 7–15] and quadrupole [16] in second-
and third-order Hall responses, respectively. In partic-
ular, the second-order nonlinear response dominates the
anomalous Hall effect in time-reversal-invariant crystals
that break inversion symmetry, and has been observed in
few-layer WTe2 [17, 18].

The quantum geometry of the Bloch electron also in-
fluences its scattering with disorder. A prominent case
is the linear anomalous Hall effect [19], where nonzero
Berry connection and curvature imply the presence of two
asymmetric scattering effects termed as skew scattering
and side-jump [20]. A Boltzmann transport formalism
for the linear anomalous Hall effect has been established
[21–25]. It has been generalized phenomenologically in
the recent efforts to understand the second-order nonlin-
ear response in the low-frequency limit [26–29]. A basic
question then arises: Is this framework valid in nonlin-
ear responses? The existing quantum transport theories
[30, 31] have not settled this issue. Moreover, there exist
two different proposals [26, 28] to generalize phenomeno-
logically the side-jump contribution to the second-order
nonlinear response. More importantly, it should be wor-
ried whether there is other contribution that is missed in
the direct generalization of the aforementioned semiclas-
sical formalism. If there is, can the nonlinear response
still be grasped by the few gauge-invariant semiclassical
ingredients as in the linear response?

In this work we address all the above concerns in the
dc limit by developing a recursive quantum kinetic the-
ory for arbitrary nth-order (finite n) electric current re-
sponse. We focus on the first three leading order contri-
butions in the weak disorder potential V̂ (namely, V −2n,
V −2n+1, V −2n+2 in the nth-order electric transport),
which are usually sufficient to account for both the longi-
tudinal and transverse transport in the regime ~/τ < ∆
(τ is the scattering time, ∆ is the band splitting around
the Fermi level). Remarkably, we find that arbitrary or-
der nonlinear response retains the same structure as the
linear response, except for a contribution resulting from
the electric-field induced interband virtual transition dur-
ing the scattering. This contribution only contributes to
nonlinear response and is related to the interband Berry
connection. A modified Boltzmann nonlinear-response
framework thus emerges, establishing for the first time
the consistency between the Boltzmann and quantum ki-
netics in nonlinear (Hall) electric transport. As an appli-
cation, we show the aforementioned contribution in the
second-order nonlinear Hall effect of the two-dimensional
(2D) tilted massive Dirac model.

Our paper is organized as follows. In Sec. II we set
forth the modified Boltzmann theory for nonlinear elec-
tric transport, which is applied to the model calculation
of the second-order nonlinear Hall effect in Sec. III. The
quantum kinetic theory that underlies the Boltzmann for-
mulation is outlined in Sec. IV, with the main ideas and
results elaborated. Finally, we compare our theory to
other existing theories in Sec. V and conclude this pa-
per in Sec. VI. The detailed derivation of our quantum
kinetic theory is presented in the Supplemental Material
[32] (see, also, reference [33] therein) for the convenience
of interested readers.

II. MODIFIED SEMICLASSICS

The outcomes of the quantum kinetic approach are
found to correspond to a semiclassical Boltzmann way to
understand the nonlinear transport. In this section we
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first describe the latter framework, considering its great
physical transparency and simplicity.

In the Boltzmann description of electronic transport in
crystalline solids, the charge current density is given by

j = e
∑
l

Flvl, (1)

where the occupation function Fl of the Bloch-state |l〉 =
|ηk〉, with η the band index and k the crystal momentum,
and the velocity vl are two central quantities. In the
perturbative treatment for the weak electric field, Fl can
be expanded in terms of ascending powers (denoted by
n) of the electric field E, namely

Fl =
∑
n≥0

Fn,l, (2)

where Fn,l ∝ En is the occupation function responsible
for the nth-order electric transport.

In the conventional Boltzmann recipe the driving term
by the applied electric field and the collision term by
scattering are clearly separated in the steady-state Boltz-
mann equation [34]

− e

~
E · ∂kFl =

∑
l′

(ω
(2)
l′l Fl − ω

(2)
ll′ Fl′). (3)

The semiclassical scattering rate, regarded to be inde-
pendent of the electric field, is given by the golden rule

ω
(2)
l′l = ω

(2)
ll′ =

2π

~
Wl′lδ (εl − εl′) , Wl′l = 〈|Vll′ |2〉c. (4)

Here Wl′l is the scattering matrix element, 〈..〉c stands
for the disorder average. In the constant relaxation time
approximation the collision term on the right hand side
of Eq. (3) reduces to Fl/τ , where 1/τ ∼ V 2, and
the recursive solution of this equation yields the scaling
Fn,l ∼ Enτn ∼ EnV −2n.

A. Modification to scattering by electric field

In the conventional Boltzmann equation the scatter-
ing process is independent of the electric field. But this
is not true in general. A prominent example is the linear
anomalous Hall current originating from the work done
by the electric field during scattering. The key ingredi-
ent here is the coordinate-shift of a semiclassical electron
during any scattering process [20]

δrl′l = Al′ −Al − (∂k + ∂k′) arg Vl′l, (5)

where Al = 〈uηk|i∂k|uηk〉 is the intraband Berry connec-
tion, with |uηk〉 the periodic part of the Bloch state. This
picture implies that the energy conservation condition in
the golden rule [Eq. (4)] is modified to be

δ (εl − εl′ + eE · δrl′l) ' δ (εl − εl′)+
∂δ (εl − εl′)

∂εl
eE·δrl′l.

(6)

The direct generalization of this semiclassical construc-
tion into nonlinear responses leads to an occupation func-
tion which scales as Fn,l ∼ Enτn−1 ∼ EnV −2n+2. This
Fn,l yields an important contribution to the second-order
nonlinear Hall effect [26, 27, 29]. Note that the first-order
expansion in the above equation is already sufficient to
obtain the Fn,l of order of V −2n+2.

We reveal in the following that, there is another
electric-field-induced effect during scattering, which only
contributes to nonlinear responses. The intuitive moti-
vation is that not only the energy conservation delta-
function but also the scattering matrix element Wl′l of
the semiclassical scattering rate should be corrected by
the E-field. This term is an interband-coherence (inter-
band virtual transition) effect of the E-field during scat-
tering. More precisely, the Bloch states involved in the
scattering have to be dressed by the electric field, thus
Vll′ → 〈l̃|V̂ |l̃′〉 where |l̃〉 = |l〉+|δEl〉 is the E-field-dressed
Bloch state, and

|δEl〉 = −e
′∑
l′′

|l′′〉E · Al
′′l

εl − εl′′
(7)

arises from the electric-field induced interband virtual
transition [35]. All′ = 〈uηk|i∂k|uη′k〉 is the interband

Berry connection. Hereafter the notation
∑′

means that
all the index equalities should be avoided in the summa-
tion. In order to obtain the Fn,l of order of V −2n+2, it is
sufficient to retain

Wl′l →Wl′l + δEWl′l, (8)

where the E-field corrected scattering matrix element is
linear in E and reads

δEWl′l = 2 Re〈Vll′(〈l′|V̂ |δEl〉+ 〈δEl′|V̂ |l〉)〉c (9)

= −eE ·
′∑
l′′

2 Re〈Vll
′Vl′l′′Al′′l
εl − εl′′

+
Vll′Al′l′′Vl′′l
εl′ − εl′′

〉c.

In Fig. 1 we show schematically the physical processes
described by δEWl′l in a two-band system. The Fermi
level is assumed to locate at the conduction band. Be-
cause of the presence of the vertical interband virtual
transition induced by the electric field, these scattering
processes involve an off-shell Bloch state away from the
Fermi surface.

Collecting Eqs. (4), (6), (8) and (9), the E-field cor-
rected scattering rate takes the following form

δEω
(2)
l′l = δE1 ω

(2)
l′l + δE2 ω

(2)
l′l , (10)

where

δE1 ω
(2)
l′l =

2π

~
Wl′l

∂δ (εl − εl′)
∂εl

eE · δrl′l, (11)

δE2 ω
(2)
l′l =

2π

~
δEWl′lδ (εl − εl′) . (12)
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FIG. 1. Schematics of Eq. (9) describing the electric-field
induced interband virtual processes during scattering in two-
band systems. The contributions from (a) and (b) to δEWl′l

are complex conjugated, so do (c) and (d).

While δE1 ω
(2)
l′l has been well-known, δE2 ω

(2)
l′l is proposed

for the first time in the context of the nonlinear Hall
effect. We note here that interband virtual processes are

also indispensable in δE1 ω
(2)
l′l through the coordinate-shift

δrl′l [20].

B. Boltzmann equation for nonlinear responses

Taking into account the effect of the E-field during
scattering, the Boltzmann equation (3) is modified to be

− e

~
E · ∂kFl =

∑
l′

(ω
(2)
l′l + δEω

(2)
l′l ) (Fl − Fl′) . (13)

In combination with Eq. (2), it can be written in a re-
cursive form

− e
~
E · ∂kFn−1,l −

∑
l′

δEω
(2)
l′l

(
Fn−1,l − Fn−1,l′

)
=
∑
l′

(ω
(2)
l′l Fn,l − ω

(2)
ll′ Fn,l′), (n ≥ 1) (14)

where the effect of the electric-field during scattering ap-
pears as an effective driving term in the Boltzmann equa-
tion for Fn,l, and Fn,l is accurate to the third leading
order of the weak disorder potential, namely the order of
V −2n+2.

In linear response, n = 1, F0,l is the Fermi distribution

and (F0,l−F0,l′)δ(εl−εl′) = 0, thus δE2 ω
(2)
l′l does not con-

tribute to the Boltzmann equation. This explains why

this term is absent in the Boltzmann theory of linear re-
sponse [22]. By contrast, it constitutes a basic ingredient
of the Boltzmann description of nonlinear responses.

Higher-order disorder corrections to ω
(2)
l′l on the right

hand side of Eq. (14) are included through replacing Vll′
by the T-matrix Tll′ [22, 25]. The golden rule thus yields

ωll′ = ω
(2)
ll′ +ω

(3)
ll′ +ω

(4)
ll′ up to the first three leading orders

of the disorder potential. Hereafter the superscript (i)
means the order in disorder potential. It is easy to check

that such corrections to δEω
(2)
l′l are not needed provided

that the electric current is considered up to the three
leading orders of the disorder potential.

In the considered case the occupation function is the
sum of the leading (L), sub-leading (SL) and sub-sub-
leading (SSL) contributions:

Fn,l = FL
n,l + F SL

n,l + F SSL
n,l , (15)

where FL
n,l, F

SL
n,l and F SSL

n,l are of order of V −2n, V −2n+1

and V −2n+2, respectively. The semiclassical occupation
functions with positive exponent of V can be neglected
in the weak disorder regime, thus in equilibrium F0,l =
FL
0,l is just the Fermi distribution and F SL

0,l = F SSL
0,l =

0. This point is in fact implicit in previous works on
the semiclassical Boltzmann theories for the linear and
nonlinear anomalous Hall effects [22, 26–29].

Therefore, the Boltzmann equation can be cast into
the following three equations

− e

~
E · ∂kFL

n−1,l =
∑
l′

ω
(2)
l′l (FL

n,l − FL
n,l′), (16)

− e
~
E · ∂kF SL

n−1,l =
∑
l′

ω
(2)
l′l (F SL

n,l − F SL
n,l′)

+
∑
l′

(ω
(3)as
l′l FL

n,l − ω
(3)as
ll′ FL

n,l′), (17)

and

− e
~
E · ∂kF SSL

n−1,l −
∑
l′

δEω
(2)
l′l (FL

n−1,l − FL
n−1,l′) =∑

l′

ω
(2)
l′l (F SSL

n,l − F SSL
n,l′ ) +

∑
l′

(ω
(4)as
l′l FL

n,l − ω
(4)as
ll′ FL

n,l′),

(18)

which are of order of V −2n+2, V −2n+3 and V −2n+4, re-
spectively. In linear response, n = 1, these three equa-
tions just reduce to the familiar ones in the study of the
linear anomalous Hall effect [22]. In line with the Boltz-
mann recipe for the linear response [22, 35], the anti-
symmetric part (ωasl′l ≡ (ωl′l − ωll′) /2) of ωll′ , namely

ω
(3)as
ll′ and ω

(4)as
ll′ , yields the skew scattering contribution

to nonequilibrium phenomena, while the inessential sym-

metric part of ω
(3)
ll′ and ω

(4)
ll′ has been suppressed in the

above three equations.
F SL
n,l arises from the conventional skew scattering in-

duced by non-Gaussian disorder, thus can also be labeled
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by F csk
n,l . F SSL

n,l comprises contributions from the skew

scattering induced by Gaussian disorder (through ω
(4)as
l′l )

and the electric-field-corrected scattering rate, thus can
be decomposed into

F SSL
n,l = FGsk

n,l + F a
n,l, (19)

with

− e
~
E · ∂kFGsk

n−1,l =
∑
l′

ω
(2)
l′l (FGsk

n,l − FGsk
n,l′ )

+
∑
l′

(ω
(4)as
l′l FL

n,l − ω
(4)as
ll′ FL

n,l′) (20)

and

− e
~
E · ∂kF a

n−1,l −
∑
l′

δEω
(2)
l′l (FL

n−1,l − FL
n−1,l′) =∑

l′

ω
(2)
l′l (F a

n,l − F a
n,l′). (21)

Here F a
n,l can be further decomposed as F a

n,l = F a1
n,l+F

a2
n,l,

in correspondence to Eq. (10). We note again that F a2
1,l =

0 in the linear response.

C. Electric current in the semiclassical framework

It has been well known that vl is not equal to the
usual group velocity v0

l , but contains corrections from in-
terband virtual transitions induced by both the electric-
field and scattering [21, 35]: vl = v0

l + vbc
l + vsj

l . Here

vbc
l = e

~ (∂k × Al) × E and vsj
l =

∑
l′ ω

(2)
l′l δrl′l are the

Berry-curvature anomalous velocity and side-jump veloc-
ity, respectively [20].

Therefore, the nth-order electric current is given by

jn = e
∑
l

FL
n,lv

0
l + e

∑
l

F csk
n,l v

0
l

+ e
∑
l

FGsk
n,l v0

l + e
∑
l

F a1
n,lv

0
l + e

∑
l

F a2
n,lv

0
l

+ e
∑
l

FL
n,lv

sj
l + e

∑
l

FL
n−1,lv

bc
l (22)

up to the first three leading orders of the weak disorder
potential. The third term on the second line is absent in
all recent works on the semiclassical Boltzmann theory of
the second-order nonlinear anomalous Hall effect [26–29].

Both F a1
n,l and vsj

l are related to the coordinate-shift,
thereby the sum of these two terms is usually referred to
as the side-jump contribution [20–22, 26–29]. However,
F a1
n,l has nothing to do with the sideways shift, which

is the original meaning of side-jump [36]. Accordingly,
in the following the terminology “side-jump” is only as-
signed to the vsj

l term.

III. MODEL CALCULATION IN
SECOND-ORDER NONLINEAR HALL EFFECT

To be specific, we illustrate the contribution from the
F a2
n,l term in the second-order nonlinear Hall effect in

inversion-breaking nonmagnetic materials [3, 17, 18]. To
obtain analytic result, we follow the previous publica-

tions involving δE1 ω
(2)
l′l [26, 27, 29] to take the constant

relaxation time so that
∑
l′ ω

(2)
l′l (F a2

2,l−F a2
2,l′) = F a2

2,l/τ and

F a2
2,l = −τ

∑
k′

2π

~
δEWl′lδ(εl − εl′)(FL

1,l − FL
1,l′). (23)

Here FL
1,l solves the conventional Boltzmann equation

(16), reading FL
1,l = − e

~E · ∂kF
L
0,lτ in the constant relax-

ation time approximation. When the E-field is applied
in the x direction, the resultant transverse current is

jay = e
∑
l

F a2
2,lv

0
l,y ≡ ΞayxxExEx, (24)

where Ξayxx is the corresponding second-order response
coefficient. One can show that Ξayxx can be nonzero
when the inversion symmetry is broken, even if the time-
reversal symmetry remains. This character is the same as
the known contributions of order of τ to the second-order
nonlinear Hall effect [27–29, 31].

Eq. (24)

FIG. 2. The second-order nonlinear Hall responses in the 2D
tilted massive Dirac model that are beyond the conventional
Boltzmann equation, from the Berry curvature and side-jump
velocities, E-field working during scattering eE · δrl′l and in-
terband effect of E-field during scattering (Eq. (24)). Pa-
rameters are chosen as t = 0.1 eV·Å, v = 1 eV·Å, ∆ = 0.1
eV, niV

2
0 = 102 (eV·Å)2. h = 2π~ is the Planck constant.

Let us take the 2D tilted massive Dirac model [3]

Ĥ0 = tkx + v
(
kxσx + kyσy

)
+ ∆σz (25)

with scalar disorder as a concrete example, which is the
minimal model of the considered effect [3, 17, 27, 29, 31].
σx,y,z are the Pauli matrices, and the gapped Dirac cone
is tilted along the x direction. Here one can consider
the contribution from only one Dirac cone because, as
addressed in Refs. [3, 27], taking into account that from
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another one of the pair of Dirac cones simply doubles the
obtained result.

When the Fermi level only intersects the upper (+)
band we have

δEWl′l =
Wk′k

2
eE ·

(
Ω+k′

∆k
− Ω+k

∆k′

)
ẑ×

(
k′ − k

)
, (26)

where l = +k, l′ = +k′, Wk′k = Wl′l/|〈ul|ul′〉|2, Ω+k is
the Berry curvature of the upper band, and ∆k = ε+k−ε

−
k .

To compare with other contributions obtained analyti-
cally for this model, we also assume weak anisotropy t�
v and take [29, 31] 1/τ = niV

2
0

(
ε2F + 3∆2

)
/
(
4~v2εF

)
in the presence of pointlike impurities of density ni, for
which Wk′k = niV

2
0 . It follows that

Ξayxx = − e3

2π~
t∆

niV 2
0

3v2
(
ε2F −∆2

)2
ε3F
(
ε2F + 3∆2

)2 (27)

up to the first order of t. As shown in Fig. 2, Ξayxx is of
the similar magnitude to the previously identified contri-
butions [3, 26, 29] that are also beyond the conventional
Boltzmann recipe [37].

IV. BOLTZMANN TRANSPORT EMERGING
FROM QUANTUM KINETICS

In this section we place the intuitive Boltzmann frame-
work on the foundation of quantum kinetics, by extend-
ing the density-matrix equation of motion approach of
Kohn and Luttinger [23, 38] to nonlinear responses.

A. Basic formulations

In the single-electron Hamiltonian ĤT = Ĥ0 + V̂ +
ĤE , Ĥ0 is the equilibrium disorder-free one, V̂ is the
potential produced by randomly distributed impurities,
and the E-field term ĤE = −eE · rest is switched on
adiabatically from the remote past t = −∞. The physical
situation is obtained by taking the limit s → 0+ [38].
In the case of a weak E-field, the single-particle density
matrix is decomposed into ρ̂T =

∑
n≥0 ρ̂n, where ρ̂0 is

its equilibrium value, ρ̂n ∝ En satisfies ρ̂n (t→ −∞) = 0
for n ≥ 1. Then the quantum Liouville equation reduces
to [Ĥ0 + V̂ , ρ̂0] = 0 and

i~
∂ρ̂n
∂t

= [ĤE , ρ̂n−1] + [Ĥ0 + V̂ , ρ̂n], (n ≥ 1) , (28)

where [ĤE , ρ̂n−1] enables the recursion from ρ̂n−1 to ρ̂n.

Utilizing the ansatz [38] ρ̂n = f̂ne
nst, where f̂ =

∑
n≥0 f̂n

is the single-particle density matrix at the time of interest
t = 0, in the Bloch representation of Ĥ0 we have (n ≥ 1)

(εl − εl′ − i~ns) fn,ll′ =
∑
l′′

(
fn,ll′′Vl′′l′ − Vll′′fn,l′′l′

)
+ eE · [r, f̂n−1]ll′ . (29)

When l = l′ the equation of motion (29) reduces to (more
details in Refs. [25, 38, 39])

0 = Cn,l +

′∑
l′

(
fn,ll′Vl′l − Vll′fn,l′l

)
, (30)

otherwise we have (fn,l ≡ fn,ll)

fn,ll′ =
Cn,ll′

εl − εl′ − i~ns
+

fn,l − fn,l′
εl − εl′ − i~ns

Vll′

+

′∑
l′′

fn,ll′′Vl′′l′ − Vll′′fn,l′′l′
εl − εl′ − i~ns

, (l 6= l′), (31)

where Vll is absorbed into H0 and then Vll = 0 [38]. Here

Cn,l = eE · {i∂kfn−1,l + [A, f̂n−1]ll}, (32)

and

Cn,ll′ = eE · {i (∂k + ∂k′) fn−1,ll′ + [A, f̂n−1]ll′}. (33)

According to Eq. (31), in the case of weak disor-
der potential fn,ll′ is generally one order of V higher
than fn,l. Thereby, Eq. (31) can be solved by an it-
erative procedure, which yields the expression for fn,ll′

in terms of fn,l [23, 38]. Substituting this solution into
Eq. (30) leads to an equation only concerning the di-
agonal element fn,l for n ≥ 1. The disorder average of
this latter equation yields a Boltzmann-type equation for
〈fn,l〉c, provided that one assumes fn,l is self-averaged,
i.e., 〈fn,lV V 〉c = 〈fn,l〉c〈V V 〉c. This assumption plays
the similar role to that of the assumption of molecu-
lar chaos in deriving the classical Boltzmann equation
from the classical Liouville equation [40]. One can then
identify 〈fn,l〉c with the occupation function used in the
Boltzmann framework

Fn,l ≡ 〈fn,l〉c, Fl ≡ 〈fl〉c =
∑
n≥0

〈fn,l〉c. (34)

On the other hand, the nth-order charge current in the
density-matrix formulation is given by

jn = jdn + jodn , (35)

where jdn = e
∑
l

〈
fn,l
〉
c
v0
l and jodn = e

∑′

ll′ 〈fn,ll′ 〉cv0
l′ l

are the band-diagonal and band-off-diagonal (the ma-
trix element of velocity operator v0

l′l is diagonal in k)
responses, respectively.

B. Band-diagonal response

We first illustrate the aforementioned iterative proce-
dure in its lowest order, where Cn,l = ieE ·∂kfn−1,l, and
fn,ll′ is given by the second term on the right-hand-side
of Eq. (31). Plugging them into Eq. (30) leads to, af-
ter disorder average, the most conventional Boltzmann
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equation (16). Then, up to the third-order iteration the
Boltzmann equations (17) and (18) also emerge after the
disorder average, thus

jdn = e
∑
l

FL
n,lv

0
l + e

∑
l

F csk
n,l v

0
l

+ e
∑
l

FGsk
n,l v0

l + e
∑
l

F a1
n,lv

0
l + e

∑
l

F a2
n,lv

0
l . (36)

Most details of the iteration procedure have in fact al-
ready been presented in previous papers [23, 25, 38, 39],
and are also provided in the Supplemental Material [32]
for the convenience of the interested readers.

It is apparent that in the higher orders of the itera-
tion Cn,l contains the combination effect of the electric
field and disorder, which leads finally to the additional

driving term related to δEω
(2)
l′l . In the linear anomalous

Hall effect, only the coordinate-shift-related component,

namely δE1 ω
(2)
l′l , survives in the resulting Boltzmann equa-

tion, as has been elaborated in Refs. [23, 25, 39]. On the
other hand, in nonlinear responses the additional driving

term related to δE2 ω
(2)
l′l is derived from the quantum ki-

netics for the first time, as is detailed in the Supplemental
Material [32].

Lastly, we emphasize that the equilibrium density ma-
trix deserves separate discussions. It should be obtained
from the definition of the single-particle density matrix
[32], and the leading value is f0,ll′ = δll′f0,l, with f0,l
the Fermi distribution. Note that the equilibrium den-
sity matrix is also altered by disorder and thus does not
coincide with f0,l. Through the C1,ll′ term, the disorder-
induced corrections to f0,ll′ incorporate the effect of the
E-field during scattering into linear response. The ne-
glect of this fact would lead to the absence of the eE ·δrl′l
contribution to f1,l. In fact this is one of the main differ-
ences between the Kohn-Luttinger approach and another
quantum kinetic approach employed recently to study the
linear and nonlinear anomalous Hall effects [31, 41]. More
detailed discussions on this issue are presented later.

C. Band-off-diagonal response

The leading nonzero contribution to the off-diagonal
response jodn is of O(V −2n+2), given by the second-order
iteration of Eq. (31):

〈
fn,ll′

〉
c

=
eE · All′(FL

n−1,l′ − FL
n−1,l)

εl − εl′ − i~ns
(37)

+

′∑
l′′

〈Vll′′Vl′′l′〉c
εl − εl′ − i~ns

[
FL
n,l − FL

n,l′′

εl − εl′′ − i~ns
−

FL
n,l′′ − FL

n,l′

εl′′ − εl′ − i~ns
],

and can be readily cast into [32]

jodn = e
∑
l

FL
n−1,lv

bc
l + e

∑
l

FL
n,lv

sj
l . (38)

TABLE I. Correspondence of Boltzmann transport to the
band-off-diagonal (od) and band-diagonal (d) responses of

density matrix. vbc
l and vsj

l are the Berry-curvature and side-

jump velocities, respectively. δEω
(2)

l′l is the E-field corrected

scattering rate. ω
(3)as

ll′ and ω
(4)as

ll′ yield the skew scattering.

semiclassical ingredients density matrix response

vbc
l jod

n

vsj
l jod

n

δEω
(2)

l′l = δE1 ω
(2)

l′l + δE2 ω
(2)

l′l jd
n

ω
(3)as

ll′ , ω
(4)as

ll′ jd
n

Here vbc
l and vsj

l coincide respectively with the Berry-
curvature anomalous velocity and side-jump velocity [35].

Summing up, our quantum kinetic theory shows that
arbitrary nth-order response retains the same form of
Eqs. (35), (36) and (38), namely the semiclassical Boltz-
mann result Eq. (22), up to the first three leading-order
contributions in the weak disorder potential. The cor-
respondence of the basic ingredients in the Boltzmann
theory to the density matrix response is summarized in
Table I. It is worthwhile to remind here that interband
virtual processes play the essential role also in the band-
diagonal response of the density matrix.

V. COMPARISON TO OTHER THEORIES

We start by noting that, the similar idea to the intu-
itive consideration leading to the E-field-influenced scat-
tering matrix element Eq. (9) also appeared in two pub-
lications by Tarasenko [42, 43]. In these two papers a
nonlinear current arises due to the E-field-induced ad-
mixture of excited conduction- and valence-band states
to the ground-subband wave function in quantum wells.
In fact one can find that our Eqs. (7), (8) and (9) are
quite similar to Eqs. (13) – (15) in Ref. [42]. The dif-
ference is that, in Refs. [42, 43] the electric-field compo-
nent Ez (in the z direction of the quantum well) mixes
the quantum-confined states, whereas in the present work
the electric field Ex mixes the Bloch states of electrons.

Next we compare our theory to the previous works
on the Boltzmann formulation of the nonlinear Hall ef-
fect [26–29]. All these works just generalized the Boltz-
mann theory for the linear anomalous Hall effect [22]
directly and phenomenologically into the nonlinear re-

sponse. First, the δE2 ω
(2)
l′l term proposed in the present

study has no counterpart in the linear response and thus
is beyond such direct generalization of the linear theory.
Second, Our quantum theory supports the form of the

coordinate-shift-related δE1 ω
(2)
l′l speculated intuitively in

Refs. [26, 27, 29], which differs from the one proposed in
Ref. [28].

Our theory is also different from the other quantum
kinetic one of the nonlinear Hall effect posted recently
[31]. This latter theory is based on the nonlinear gener-
alization of a linear-response density-matrix theory [41].
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Thus in the following we discuss first the difference be-
tween this linear-response theory and ours, and then that
between the theory of Ref. [31] and ours.

The whole second line of Eq. (36), which arises from
the band-diagonal response of the density matrix, is
missed in the linear-response theory of Ref. [41]. Firstly,
in this theory the equilibrium density matrix is identi-
fied to be just the Fermi distribution. However, as we
have stressed in the last paragraph of Sec. IV. B, the
equilibrium density matrix is not equal to the Fermi dis-
tribution and has the disorder-induced correction. It is
this correction that leads finally to the coordinate-shift-

related δE1 ω
(2)
l′l and thus to F a1

1,l [23, 25, 39]. Secondly,

the theory of Ref. [41] only considers the lowest-order
Born approximation in calculating the scattering rate,
thus FGsk

1,l is missed. The theory of Ref. [41] was shown
to work well for the linear anomalous Hall effect in the
spin-polarized Rashba model and for the spin Hall effect
in the Rashba model. However, the peculiarity of the
Rashba models in fact plays the basic role in this success:
in the spin-polarized Rashba model FGsk

n,l +F a1
n,l = 0 in the

case of scalar point-like impurities within the noncross-
ing approximation for FGsk

n,l [44], whereas in the Rashba
model the diagonal element of the spin-current operator
js in the Bloch representation is zero ((js)

0
l = 0) [45].

Therefore, when applied to another model, like the two-
dimensional gapped Dirac model, one can check that the
theory of Ref. [41] cannot reproduce the same anomalous
Hall conductivity as the previous theories [21].

Now we turn to the theory of Ref. [31]. In the case of
linear response, this theory still misses the disorder in-
duced correction to the equilibrium density matrix, thus
misses the contribution from F a1

1,l . To be more specific,
one can check that, the side-jump conductivity in the
first equation of Eq. (26) of Ref. [31] is in fact only one
half of the side-jump conductivity defined in Ref. [21].
Another half, namely the contribution from F a1

1,l , disap-
pears: it is contained in neither the first nor the second
equation of Eq. (26) of Ref. [31].

Because the linear-response density matrix is vital
in producing the nonlinear-response one, the aforemen-
tioned difference makes the nonlinear theory of Ref. [31]
also different from ours. While the band-off-diagonal re-
sponse Eq. (38) is produced in Ref. [31], the second
line of the band-diagonal response Eq. (36) is not. This
means that only the Berry-curvature dipole and side-
jump velocity contributions to the second-order nonlinear
Hall effect proposed in the previous semiclassical theory
[26–29] have been identified in the quantum kinetic the-
ory of Ref. [31]. At the present stage only our theory
establishes the consistency between the Boltzmann and
quantum kinetics in nonlinear responses.

VI. CONCLUSION

In conclusion, we have proposed a modified Boltzmann
framework for nonlinear electric-transport, and identified
an interband-coherence effect induced by dc electric fields
during scattering. This effect has no counterpart in linear
response, and thus is missed in the previous nonlinear
Boltzmann formalism for the nonlinear Hall effect which
is just the direct generalization of the linear Boltzmann
theory. The proposed Boltzmann formulation has been
confirmed by a quantum kinetic theory. This theory also
shows that arbitrary nth-order nonlinear response to a dc
electric field, up to the first three leading contributions
in the weak disorder potential, is handled by the same
few gauge-invariant semiclassical ingredients.
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