
This is the accepted manuscript made available via CHORUS. The article has been
published as:

Field-induced quantum spin liquid in the Kitaev-Heisenberg
model and its relation to α-RuCl_{3}

Yi-Fan Jiang, Thomas P. Devereaux, and Hong-Chen Jiang
Phys. Rev. B 100, 165123 — Published 15 October 2019

DOI: 10.1103/PhysRevB.100.165123

http://dx.doi.org/10.1103/PhysRevB.100.165123


Field-induced quantum spin liquid in the Kitaev-Heisenberg model and its relation to
α-RuCl3

Yi-Fan Jiang,1 Thomas P. Devereaux,1, 2 and Hong-Chen Jiang1, ∗

1Stanford Institute for Materials and Energy Sciences,
SLAC National Accelerator Laboratory and Stanford University, Menlo Park, CA 94025, USA

2Department of Materials Science and Engineering, Stanford University, Stanford, CA 94305, USA
(Dated: October 3, 2019)

Recently considerable excitement has arisen due to the experimental observation of a field-induced
spin liquid phase in the compound α-RuCl3. However, the nature of this putative spin liquid phase
and the relevant microscopic model Hamiltonian remain still unclear. In this work, we address these
questions by performing large-scale numerical simulations of a generalized Kitaev-Heisenberg model
proposed to describe the physics of α-RuCl3. While an intermediate phase does not appear for
in-plane magnetic fields, our results strongly suggest that a stable intermediate spin liquid phase,
sandwiched between a magnetically ordered phase at low fields and a high-field polarized phase, can
be induced by out-of-plane magnetic fields. Moreover, we show that this field-induced spin liquid
phase can be smoothly connected to a spin liquid possessing a spinon Fermi surface as proposed
recently for the Kitaev model. The relevance of our results to α-RuCl3 is also discussed.

The search for quantum spin liquids (QSLs) in frus-
trated quantum magnets has enjoyed a surge of inter-
est in modern condensed matter physics[1, 2]. The Ki-
taev model on the honeycomb lattice is exact solvable
and known to exhibit a gapless spin liquid ground state
(for equal coupling along the links) that can be gapped
out into a topological phase with non-Abelian quasiparti-
cle excitations by certain time-reversal symmetry break-
ing perturbations such as magnetic fields[3–12], which
is an important ingredient for fault-tolerant quantum
computation[13]. Consequently, there has been enormous
interest in exploring the possible realization of Kitaev
physics in a large family of layered Mott insulators with
strong spin-orbit couplings such as α-RuCl3[14–22]. Al-
though, the material exhibits a “zigzag” long-range mag-
netic order below TN = 7 ∼ 14 K, recent experiments
show that a moderate external magnetic field, around
8T, can suppress the order and drive α-RuCl3 into a
paramagnetic phase, which is a plausible candidate for
field-induced QSLs[29–36]. However, the nature of this
putative spin liquid phase, either gapless or gapped is still
under intense debate. Meanwhile, the details of the larger
phase diagram under magnetic field remains largely un-
known as well.

Theoretically, distinct models in the context of Eq.(1)
(given below) were proposed to understand the exper-
imental results[27, 28, 37–47]. In addition to the Ki-
taev interaction, a variety of other interactions, includ-
ing the Heisenberg and off-diagonal spin-orbit coupling
Γ-term, are proposed to be necessary to understand the
experimental results of α-RuCl3. However, which one
is correct is still unclear. For instance, neutron scatter-
ing measurements[27, 37] suggest that an antiferromag-
netic (AFM) Kitaev coupling is necessary, which is in
sharp contrast to some other studies[43–45] which sug-
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gest that a ferromagnetic (FM) Kitaev coupling is nec-
essary. Moreover, the relative strength of various inter-
actions varies greatly from study to study, raising addi-
tional difficulties in understanding the experimental re-
sults of α-RuCl3.

To answer these questions, we determine the phase di-
agram of the model in Eq.(1) under magnetic fields using
exact diagonalization (ED) and density matrix renormal-
ization group (DMRG)[48] and search for the appropriate
set of parameters for α-RuCl3. To be consistent with ex-
periments, we start with an appropriate set of couplings
so that the ground state of the model in the absence of
magnetic field hosts zigzag long-range magnetic order.
Subsequently, we explore the entire phase diagram of the
model with either in-plane or out-of-plane magnetic fields
to search for signatures of putative field-induced param-
agnetic phases, before entering a fully polarized state for
sufficiently strong magnetic fields. Our study indicates
that for most sets of parameters extracted from previ-
ous studies, a field-induced spin liquid or an intermedi-
ate phase between a zigzag ordered phase at low magnetic
field and a fully polarized phase at high magnetic field,
is absent. However, for the set of parameters with AFM
Kitaev coupling and out-of-plane magnetic fields, we find
strong evidence of an intermediate field-induced param-
agnetic phase consistent with a gapless spin liquid with
a spinon Fermi surface as proposed recently[9–12].
Model Hamiltonian: We study the following gen-

eralized Kitaev-Heisenberg model proposed in previous
studies [27, 37–40, 42–46], which is defined by the Hamil-
tonian

H =
∑
〈ij〉

J1~Si · ~Sj +K1S
γ
i S

γ
j + Γ(Sαi S

β
j + Sβi S

α
j )

+ J2
∑
〈〈ij〉〉

~Si · ~Sj +
∑
〈〈〈ij〉〉〉

J3~Si · ~Sj +K3S
γ
i S

γ
j .(1)

Here K1 and K3 are the nearest-neighbor (NN) and
third-neighbor Kitaev interactions, respectively, and Γ
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Set K1 Γ J1 J2 J3 K3 Pattern NIP Ref
hb hc∗

1 7 -4.6 Zigzag 0 1 [37]
2 -5 2.5 -0.5 0.5 Zigzag 0 0 [38]
3 -10.6 3.8 -1.8 1.25 0.65 Zigzag 0 0 [41]
4 -6.8 9.5 ID 0 0 [40]
5 -5.5 7.6 ID 0 0 [45]
6 -8 4 -1 ID 0 0 [43]
7 -6.6 6.6 -1.7 2.7 Zigzag 0 0 [44]
8 17 12 -12 1200 1 0 [42]
9 -5.6 -1 1.2 0.3 0.3 1200 1 0 [46]

TABLE I: Summary of numerical results for finite magnetic
fields hb and hc∗ for various sets of parameter extracted from
Ref.[37–46]. “Pattern” labels the pattern of magnetic order-
ing in the ground state at low magnetic fields, and “NIP”
denotes the number of intermediate phases between low-field
and high-field polarized phases. Note that for parameter set 9
we have considered the parameter set simpler than that used
in Ref.[46].

is the NN off-diagonal spin-orbit coupling. J1, J2 and
J3 are the NN, second and third-neighbor Heisenberg in-
teractions, respectively. {α, β, γ} determine the bond-
dependent Kitaev and Γ interaction. On the z bond
{α, β, γ} = {x, y, z}, and the form of x and y bonds are
obtained by cyclic permutation. In this paper, we will
systematically investigate the ground state properties of
this model by employing ED and DMRG methods.

The lattice geometry used in our simulations is de-

picted in Fig. 1, where e1=(
√

3,0) and e2=(
√
3
2 ,

3
2 ) denote

the two basis vectors. We consider honeycomb cylinders
with periodic (open) boundary conditions in the e2 (e1)
direction. Here, we focus on cylinders with width Ly and
length Lx, where Ly and Lx are the number of unit cells
(2Ly and 2Lx are the number of sites) along the e2 and
e1 directions, respectively. The total number of sites is
N = 2 × Lx × Ly. In this paper, we focus primarily
on cylinders with width Ly=3 and Ly=4, and have also
checked our results using different lattice geometries such
as the C6 rotationally symmetric N = 24-site cluster il-
lustrated in Supplemental Material (SM)[49].

Principal results: We have investigated the ground
state properties of the model Hamiltonian in Eq.(1) us-
ing the proposed sets of parameters summarized in Table
I. The parameter sets 1-4 denote the sets of interactions
extracted from neutron scattering experiments[27, 37–
41], and sets 5-8 are determined from density functional
theory (DFT) [42–45], while set 9 is estimated by fit-
ting the magnetization curve using quantum chemistry
techniques[46]. The column “Pattern” denotes the pat-
tern of the magnetic order in the ground state for corre-
sponding set of parameters, which is determined by cal-
culating the spin-spin correlation function and spin struc-
ture factor defined in Eq.(3). As illustrated in Fig.1, the
“zigzag” order is featured by sharp peaks in the structure
factor at the M points, while “1200” order is peaked at
K or K ′ points in the Brillouin zone of the honeycomb
lattice.
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FIG. 1: (a) Honeycomb cylinder with periodic and open
boundary conditions along the directions specified by the lat-
tice basis vectors, e2 and e1, respectively. Lx and Ly are the
number of unit cells in the e1 and e2 directions. Bond di-
rections γ = x, y, z are labeled by different colors. (b) The
first and second Brillouin zone and high symmetry points. (c)
Directions of the external magnetic field in spin space.

Among all sets of parameters in Table I, our results
suggest that only parameter sets 1, 2, 3 and 7 exhibit
zigzag ordered ground states where the structure factor
S(~q) is peaked at M points in the Brillouin zone, consis-
tent experiments. On the contrary, the structure factor
S(~q) for parameter sets 8 and 9 show sharp peaks at K
points which imply a 1200 order instead of a zigzag order.
For parameter sets 4, 5 and 6, S(~q) only has very broad
peaks which are not located at any high symmetry points
such as M or K points, so we refer them to as possible
incommensurate or disordered (ID) phases. More details
of the results are given in the Supplemental Material.

To make a direct connection to experiment, we have
also studied the ground-state properties of the model in
Eq.(1) under external uniform magnetic field h given by

Hh = −h ·
∑
i

Si . (2)

As shown in Fig. 1, axes of external magnetic field a, b
and c∗ of α-RuCl3 correspond to [112̄], [1̄10] and [111]
respectively, which are labeled by spin directions [xyz].
In the following, we consider both hc∗‖[111] and hb‖[1̄10]
cases. For each set of parameters, the field-induced phase
diagrams are determined using ED on N = 24-site cluster
and DMRG on Ly = 3 ∼ 4 cylinder.

We have calculated both the ground state energy and
magnetization as well as their derivatives to search for
possible field-induced intermediate phases between the
low-field phase and the fully polarized phase in high mag-
netic fields. The number of intermediate phases (NIP)
for each set of parameters under magnetic field hc∗‖[111]
and hb‖[1̄10] is listed in column “NIP” in Table I. More
details of the simulation and results are provided in the
SM. Surprisingly, for all the sets of parameters which host
a zigzag magnetic order in low fields, we find that only
parameter set 1 establishes a field-induced intermediate
phase, which is absent for all the other sets of param-
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FIG. 2: Ground state phase diagram of the Kitaev-Heisenberg
model on Ly = 4 cylinder under magnetic field hc∗ . Z2 and
U(1) SL denote the Z2 gapped spin liquid and U(1) gapless
spin liquid with spinon Fermi surface, respectively. Insets:
zoomed-in phase diagram with small J1 (left) and derivative
of magnetization at hc∗ = 0.343 (right). Dashed line de-
notes the set of parameter extracted from neutron scattering
experiments[37]. Here K1 = 1 is the energy unit.

eters. Since the parameter set 1 only has AFM Kitaev
coupling K1 > 0 and FM Heisenberg interaction J1 < 0,
our results suggest that they are crucial for stabilizing
a hc∗ -field-induced intermediate phase. In the following,
we will focus on this so-called Kitaev-Heisenberg model
with special attention to its phase diagram and the field-
induced intermediate phase.

Kitaev-Heisenberg Model: Previous studies have
shown that the Kitaev-Heisenberg model has a rich phase
diagram hosting distinct phases, including Neel, zigzag
and spin liquid phases[50–53]. In particular, zigzag order
can be induced by AFM Kitaev (K1 > 0) and FM Heisen-
berg couplings (J1 < 0). For small J1 and zero magnetic
field, it has been shown that a tiny J1/K1 ∼ −0.012
is enough to drive the system into a zigzag ordered
phase[53]. A natural question is how stable is the zigzag
order against external magnetic fields and what is the
nature of the possible subsequent phases. We will try to
answer these questions for magnetic fields hc∗‖[111] and
hb‖[1̄10] separately. For simplicity, here we set K1 = 1
as an energy unit.

hc∗‖[111]: The phase diagram of the Kitaev-
Heisenberg model under out-of-plane magnetic fields hc∗

is shown in Fig. 2. In the Kitaev limit, i.e., J1=0, the
system stays in a stable gapped spin liquid phase host-
ing non-Abelian Ising anyons until the magnetic field is
higher than hc∗ ∼ 0.20[8]. The system enters into a gap-
less spin liquid phase for higher magnetic fields, as shown
in the left inset of Fig. 2, which is consistent with the spin
liquid with spinon Fermi surfaces proposed recently[9–
12]. Finally, the system becomes fully polarized for suf-
ficiently high magnetic fields hc∗ > 0.36.

FIG. 3: Zigzag order parameter Z(M) = 1
3

∑3
i=1

√
S(Mi)/N

along the J1 = −0.786 line in Fig.2 as a function of hc∗ . Phase
transitions between distinct phases are labelled by shaded re-
gions. Inset: examples of the spin structure factor S(q) in
the zigzag and spin liquid phases on Ly = 4 cylinder of length
Lx = 6.

For small hc∗ , we find that the zigzag ordered phase
can be stabilized by J1 interactions which occupies a big
portion of the phase diagram in Fig.2. Interestingly, for
fairly high hc∗ , an intermediate phase is observed in a
large range of J1 including J1 = −4.6/7 ≈ −0.657 which
is extracted from neutron scattering experiment of α-
RuCl3[27, 37]. The phase boundaries among the zigzag,
intermediate and polarized phases are determined by the
derivatives of the ground state energy and the magneti-
zation |m| = 1

N |
∑
i 〈Si〉 | as a function of hc∗ and J1.

We have obtained consistent results on various different
lattices, including Ly = 3 and Ly = 4 cylinders, and the
C6 rotationally symmetric N = 24-site clusters which
are consistent with recent study[9]. As an example, the
derivative of magnetization at hc∗ = 0.343 is shown in
Fig. 2 as the right inset. With the increase of system
size, it is clear that the intermediate phase at large J1
is smoothly connected to the gapless spin liquid phase
of the Kitaev model under external magnetic field, indi-
cating that the intermediate state is consistent with the
gapless spin liquid with spinon Fermi surface proposed
recently[9–12]. More details are provided in the SM.

To determine the precise nature of the intermediate
phase between the zigzag and fully polarized phases, we
have calculated the spin structure factor defined as

S(q) =
1

N

∑
ij

〈(Si −m) · (Sj −m)〉 eiq·(ri−rj), (3)

As shown in the inset of Fig. 3, S(q) shows sharp peaks
at different M points in the first Brillouin zone, which is
a clear feature of zigzag order. On the contrary, S(q) is
almost featureless in the intermediate phase, indicating
the absence of any magnetic order. We further define the
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FIG. 4: (Color online) Von Neumann entanglement entropy
S on Ly = 4 cylinder of length Lx = 30 for the J1 = −1.0
model, where x′ = Lx

π
sin( πx

Lx
). The extracted central charge

c is shown in the inset where the dashed line is a guide for
eyes.

zigzag order parameter as Z(M) = 1
3

∑3
i=1

√
S(Mi)/N ,

where S(Mi) is the spin structure factor at three distinct
M points in the first Brillouin zone. The phase bound-
aries are then located by the peak positions of the deriva-
tives of the zigzag order parameter ∂Z(M)/∂h (shown in
the SM).

To further characterize the intermediate phase, we
have also calculated the von Neumann entropy S =
−Trρ log ρ using DMRG, where ρ is the reduce density
matrix of subsystem with length x. For a 1 + 1 dimen-
sional critical system described by a conformal field the-
ory (CFT), it is known that S(x) = c

6 ln
[
Lx

π sin( πxLx
)
]

+ c̃
on a cylinder of length Lx, where c is the central charge
of the CFT and c̃ is a model-dependent constant[54–
56]. Using this formula we extracted the central charge
c numerically for cylinders of width Ly = 4 and length
Lx = 30, as shown in Fig.4. Here we keep up to m = 1200
block states with a truncation error ε ≤ 10−8. We choose
two representative strengths of magnetic field hc∗ = 0.143
and 0.214 deep inside the intermediate and polarized
phases, respectively. The hc∗ = 0.143 data has c ∼ 1.94
suggesting that there are c = 2 gapless modes, which is
consistent with the gapless spin liquid with spinon Fermi
surfaces[9–12]. On the contrary, c ∼ 0 at hc∗ = 0.214
in the fully polarized phase, indicating a gapped ground
state. Moreover, we also calculate the central charge for
cylinders of different lengths Lx =18, 24 with magnetic
field hc∗ = 0.143. The result is shown in the inset of Fig.4
which is consistent with Lx = 30 data where finite-size
effects are negligible.

hb‖[1̄10]: To make a more thorough connection with
experiments, we have further calculated the ground state
phase diagram of the Kitaev-Heisenberg model under

FIG. 5: (Color online) Ground state phase diagram of the
Kitaev-Heisenberg model on Ly = 4 cylinder under magnetic
field hb. Here K1 = 1 is the energy unit.

magnetic fields hb in Fig. 5. For small hb, the phase
diagram is very similar with the one of hc∗ , which has
the spin liquid phase for small J1 while zigzag ordered
phase for larger J1. In the Kitaev limit, i.e., J1=0, an
intermediate spin liquid phase is also present between
the Kitaev spin liquid at low fields and the fully polar-
ized phase at high fields, with phase boundaries located
at hb ∼ 0.22 and 0.27 respectively. However, contrary to
the hc∗ case, the gapless spin liquid phase is not very sta-
ble against J1 and the system quickly enters into either a
fully polarized phase or a zigzag ordered phase depend-
ing on the strength of the magnetic field, and there is no
field-induced intermediate or spin liquid phases.

Conclusion and outlook: In this work, we have
systematically studied the ground state properties of the
model Hamiltonian which has been proposed to under-
stand the physics of α-RuCl3. Our results suggest that
among the distinct types of interactions, the AFM Ki-
tatev and FM Heisenberg interactions are crucial to de-
termining the phase diagram under external magnetic
fields hc∗ . While an intermediate phase does not appear
for in-plane magnetic fields in our simulations, our results
strongly suggest that a field-induced spin liquid phase
can be achieved by applying out-of-plane magnetic fields
hc∗ . However, this seems partially contrary to experi-
ments, which instead suggest that a putative intermedi-
ate phase can be realized under field oriented both in ab
plane[29, 30, 32–34] and 600 off ab plane[31]. This might
be partially attributed to the g-factor that we have used
in our calculation, where we have ignored the anisotropy
for simplicity. However, if we extract the critical values
of magnetic field at phase boundaries along the dashed
line in Fig.2, which corresponds to the set of parame-
ters used in neutron scattering experiments[37], we ob-
tain µ0Hc1 ∼ 25

g T and µ0Hc2 ∼ 30
g T . If we assume the

electron spin g-factor g ∼ 2, the critical magnetic field
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Hc1 will be consistent with the NMR measurement[31],
suggesting that the g-factor may not be the major reason
for this discrepancy. This raises the possibility that some
ingredients which are crucial to obtain a field-induced
paramagnetic phase under hb may be missing in the pro-
posed model Hamiltonian in Eq.(1), which will be an im-
portant question to be investigated in the future work.
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