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We study the Anderson orthogonality catastrophe, and the corresponding X-ray edge problem, in
systems that are at a localization transition driven by a deterministic quasiperiodic potential. Specif-
ically, we address how the ground state of the Aubry-Andre model, at its critical point, responds
to an instantaneous local quench. At this critical point, both the single-particle wavefunctions and
the density of states are fractal. We find, numerically, that the overlap between post-quench and
pre-quench wavefunctions, as well as the “core-hole” Green function, evolve in a complex, non-
monotonic way with system size and time respectively. We interpret our results in terms of the
fractal density of states at this critical point. In a given sample, as the post-quench time increases,
the system resolves increasingly finely spaced minibands, leading to a series of alternating tempo-
ral regimes in which the response is flat or algebraically decaying. In addition, the fractal critical
wavefunctions give rise to a quench response that varies strongly from site to site across the sample,
which produces broad distributions of many-body observables. Upon averaging this broad distri-
bution over samples, we recover coarse-grained power laws and dynamical exponents characterizing
the X-ray edge singularity. We discuss how these features can be probed in ultra-cold atomic gases
using radio-frequency spectroscopy and Ramsey interference.

I. INTRODUCTION

Significant advances in our understanding of strongly
correlated phenomena have resulted from studying prob-
lems that retain inherently non-perturbative many-body
effects despite being theoretically tractable. One famous
example is the so-called X-ray edge problem, that de-
scribes the interaction of a single immobile hole with an
electron gas that is introduced instantaneously at some
time t, Ref. 1. The solution of this problem2–4, which is
inherently linked to Anderson’s “orthogonality catastro-
phe”5, was a key step in understanding the Kondo effect,
which in turn underlies our intuitions about a variety
of strong-correlation effects, e.g. through the dynamical
mean field theory6.

Many standard theoretical approaches to correlated
systems begin by modeling electrons in a regular lattice
and linearizing the electronic dispersion about the Fermi
surface. In one dimension, the Fermi surface consists of
two points, so the natural electronic degrees of freedom
are essentially left- and right-moving plane waves with
an approximately linear dispersion. This is the starting
point, e.g., for the powerful bosonization method7. How-
ever, many physically relevant systems are far enough
from regular crystalline lattices that this plane-wave as-
sumption is inapplicable. In the limit of strong disorder,
a different (and incompatible) toolbox based on the real-
space renormalization group becomes controlled8; the
most challenging regime is when the single particle wave-
functions are “critical” or multifractal, i.e. due to the en-
ergy (or coupling constant) being tuned to an Anderson
localization quantum phase transition9. In disordered
systems, the density of states (DOS) evolves smoothly
across the Anderson transition; however, in quasicrys-

tals, the DOS also becomes fractal10, with parametrically
flat bands in which correlation effects are presumably
strongly enhanced11,12 .

The nature of correlation effects in quasicrystals13 is of
direct experimental relevance, e.g., to the heavy fermion
quasicrystal Au51Al34Yb15, which appears to host a
quantum-critical ground state without fine-tuning14.
While, single Kondo impurities have been investigated for
a Penrose tiling15, the fundamental nature of the Kondo
effect in these systems remains poorly understood. A
“mean field” picture16–18 would reduce the problem to
a Kondo temperature that is set by the local density of
states of the impurity site evaluated at the Fermi en-
ergy15. This theory compares well to numerical renor-
malization group calculations for disordered systems19;
however, quasicrystals can produce an energy spectrum
that is not continuous but is instead fractal20,21, so it
is inappropriate in general to linearize the band struc-
ture about the Fermi energy22. In this work we take a
different perspective and treat the fractal energy spec-
trum exactly. With this in mind, a natural theoretical
starting point is to break down the Kondo effect into the
“Coulomb gas” framework23, which represents the parti-
tion function as an infinite series of spin flips that are cou-
pled (in imaginary time) through the conduction band.
A single spin-flip process interacting with the Fermi sea
is precisely captured by the solution of the X-ray edge
problem, which itself needs to be reformulated to cap-
ture the fractal spectrum and critical wavefunctions.

While the effects of disorder on the orthogonality
catastrophe and X-ray edge singularity has been consid-
ered previously24–26, recent theoretical work has consid-
ered Anderson and many-body localized27 phases and fo-
cused on its statistical nature. As a result, it was found
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that there is a non-zero probability that the wavefunction
following a local quench has an exponentially vanishing
overlap with the initial state28–30. In contrast, much less
is currently known about the nature of the X-ray edge
problem and the orthogonality catastrophe when the sin-
gle particle wavefunctions are critical31. With recent
developments in ultracold atomic gases, the X-ray edge
spectra can be directly measured using radio-frequency
spectroscopy and Ramsey interference32. Moreover, ul-
tracold atom setups have demonstrated the ability to
emulate the Aubry-Andre model33,34 by generating one-
dimensional quasiperiodic potentials35, thus the X-ray
edge spectra composed of multifractal eigenstates can be
directly probed experimentally.

In this manuscript, we consider the X-ray edge prob-
lem, and the corresponding orthogonality catastrophe,
when the spectrum is fractal and the single-particle eigen-
states that make up the many-body wavefunction are
critical. Here, the single particle states are taken from the
critical point of the one-dimensional Aubry-Andre model.
We find that, on average, the overlap between pre- and
post-quench ground state wavefunctions vanishes with
increasing system size, while acquiring a great deal of
structure due to the fractal spectrum. In addition, the
distribution of overlaps becomes maximally broad at the
critical point. We also study the temporal decay of the
core-hole Green function, which captures the dynamics of
the X-ray edge singularity. We find that the fractal gap
structure gives rise to a behavior that alternates between
an insulating and metallic response in both the wave-
function overlap and the core-hole Green function. We
therefore define “coarse grained” power-law exponents to
estimate an “average” dynamical exponent at the Aubry-
Andre critical point. The response at late times is very
sensitive to the filling: the quasiperiodic potential has
hard band gaps at all scales, and our results are dramat-
ically different depending on whether the Fermi energy
lies in one of the large band gaps that are resolvable at
early times. When the Fermi energy is away from any
such band gap, we find a dynamical exponent z ≈ 2. For
a Fermi energy that is near a band gap we find dramati-
cally different behavior: when the Fermi level is in a band
gap, there is no orthogonality catastrophe; meanwhile,
when the Fermi energy is very near a band edge, the
wavefunction overlap is anomalously strongly suppressed
because the impurity can create mid-gap localized states,
which act effectively as if they were bound states in the
standard orthogonality catastrophe36.

Broad distributions are thus a central feature of this
unusual orthogonality catastrophe. To understand how
these distributions arise, it is helpful to think of the in-
commensurate Aubry-Andre potential as a limiting case
of a series of periodic rational approximants, with ratio
p/q (for instance the ratio Fk−1/Fk where Fk is the kth
Fibonacci number). The band structure of an approxi-
mant consists of q bands, each of bandwidth ∼ 1/q2 at
the critical point10. We now imagine increasing q while
keeping the filling (not the chemical potential) fixed. The

chemical potential then moves through a series of increas-
ingly small band gaps and minibands, so the wavefunc-
tion overlap fluctuates between 0 and 1. (The value of
the overlap is also highly sensitive to where in the q-
site unit cell the impurity is located.) One can picture
the temporal dynamics analogously: the system resolves
a band-gap at scale q on a timescale ∼ q2; thus, one
can model the core-hole Green function at time t as be-
ing captured by the orthogonality catastrophe for an ap-
proximant with q(t) ∼

√
t, at a chemical potential that is

known only to the same resolution. As t increases, both
the band structure and the Fermi level are resolved to
increasing precision, and as the Fermi level moves rela-
tive to the band structure, the behavior of the core-hole
Green function switches between that of an insulator and
a metal. This is clearly borne out of our numerical calcu-
lations presented in this manuscript, which demonstrates
this alternating behavior between plateaus (representa-
tive of an insulator) and a power-law decay (indicative of
a metal). In the following, we develop an understanding
of this structure by connecting it to the fractal spectrum.

The remainder of the paper is organized as follows: in
Sec. II we discuss the model we consider and the methods
we use to numerically solve the problem. In Sec. III, we
discuss our results on the wavefunction overlap as well as
the core-hole Green function and in Sec. IV we conclude
and discuss the implications of our results.

II. MODEL AND APPROACH

We will focus on how the single particle eigenstates
of the Aubry-Andre model33,34,37 are affected by a local
quench. The model Hamiltonian can be written as

HAA = −
∑
i

J(c†i ci+1 +H.c.)+λ cos(2πQi+φ)c†i ci, (1)

where J is the hopping strength (in the following we take
J = 1 as the unit of energy), λ represents the strength of

the quasiperiodic potential, c†i and ci are creation and an-
nihilation operators of a spinless fermion at site i. Here,
Q is an irrational wave number, e.g., Q = 2/(

√
5 + 1),

and φ is a randomly chosen phase between 0 and 2π
that is the same for all sites. We have considered open
boundary conditions, periodic boundary conditions, and
twisted boundary conditions. We present results for open
boundary conditions, as we find this provides the widest
range of acceptable system sizes, while reducing finite size
effects. For periodic and twisted boundary conditions we
take Q from a rational approximant given by the ratio
of Fibonacci numbers, Q = Fk−1/Fk and we take the
system size to be L = Fk.

It is known that all the eigenstates of HAA are local-
ized when λ > 2 and extended when λ < 2 (Ref. 34).
The critical eigenstates (λ = λc = 2) are multifractal38.
Thus, we can vary λ to compare the results for ballis-
tic plane waves (λ < λc) to the case with multifractal
wavefunctions at the critical point. The absence of a
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FIG. 1. Properties of the energy spectrum of the Aubry-Andre model. (a) The energy spectrum of the AA model in different
phases (set hopping strength J = 1), the black vertical dashed lines mark representative fillings n = 0.309 and 0.382 for a
system size L = 10946. At filling n = 0.309 and this scale, the Fermi energy sits in a metallic band of the spectrum while filling
n = 0.3820 = limk→∞ Fk−2/Fk is right at a large band gap. Small steps in each plateau are gaps in the spectrum. (b) The
evolution of energy spectrum as the system size L increases. The filling n = 0.309, that is marked by the black vertical dashed
line, develops several minibands as L increases to 10946. (c) The density of states (DOS) as a function of energy E at the
critical point λc = 2 demonstrates the existence of various bands and how our choice of filling appears (the red dashed line).
(d) The DOS for energies very close to the Fermi energy corresponding to the filling of n = 0.309, which displays the fractal
gap structure. This fine resolution shows our choice of filling (the red dashed line) is in a metallic band at this scale. However,
due to the fractal spectrum of the problem, more minibands separated by gaps will appear if we zoom in to a much finer energy
resolution with larger L. (e) Mean energy difference between the Fermi energy and the first excited state 〈δE〉, for a filling
n = 0.309, as a function of system size L, and for coupling constants λ in each phase and at the AA critical point (λc = 2).
In each phase 〈δE〉 has a simple power-law scaling, δE ∼ L−z, z = 1 as shown by the solid blue and dashed green curves. In
contrast at the critical point, the fractal spectrum is resolved as a function of L: the average δE develops structure that crosses
gaps (“noisy” parts) and bands (smooth parts marked by black vertical dotted lines). The critical power laws in band parts
are z = 0.88 ± 0.07 in the small L regime and z = 0.93 ± 0.06 in the large L regime. (f) Typical mean δEtyp ≡ exp〈log δE〉
for n = 0.309 as a function of system size L. The critical power laws in band parts are z = 1.05 ± 0.10 for small L part and
z = 1.17± 0.05 for large L part, respectively.

mobility edge is beneficial for our purposes, since it al-
lows us to form a many-body wavefunction only out of
critical eigenstates.

We take the initial Hamiltonian to be given by Eq. (1),
HI = HAA with N particles for time t < 0. To con-
struct the initial wavefunction, we fill up N single par-
ticle states. We will use the fact that the Hamiltonian
can be written as HI =

∑N
k=1 hk, where hk is the sin-

gle particle Hamiltonian of the kth particle. We denote
eigenstates of h as χi(r) = 〈r|χi〉 and energies as E0

i . At
time t = 0, we quench the system by introducing a po-
tential scattering term at one arbitrary site (due to the
random phase (φ) it does not matter where we put the
quench site), and for convenience we put it at the center
of the lattice, i.e. at position i = L/2 for a system size
L. The final Hamiltonian for t > 0 is given by

HF = HAA + V0c
†
L/2cL/2, (2)

and we take V0 = 5 as a representative quench. We will

also discuss the value of V0 = 10 to test the generality
of our results, which we present in the Appendix. The

final Hamiltonian can also be written as HF =
∑N
k=1 h̄k,

where h̄k is the final single-particle Hamiltonian of the
kth particle. The single-particle eigenstates of h̄ are de-
noted as ψj(r) = 〈r|ψj〉 with energy Ej . Note that we
will not discuss the case for V0 < 0, which introduces
an additional bound state in the spectrum36. While this
is an interesting effect it will obscure the features that
are solely due to a many-body state of multifractal wave-
functions and therefore is not considered here.

A. Choice of filling

The quasiperiodic potential introduces numerous gaps
in the energy spectrum, and at the critical point this
gap structure becomes fractal with a rich mathematical
description21,38. For example, fixing periodic boundary
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conditions with Q = Fk−1/Fk and a system size L = Fk,
the spectrum splits into Nb bands and the number of
bands scales like Nb ∼ [(

√
5 + 1)/2]k (Ref. 38). So when

we increase L, these Nb bands split up even further. If we
fix the filling based on data at size L, this will eventually
land in a “gap” at some larger system size L′. Therefore,
the nature of choosing the filling in this problem is both
subtle and important.

Firstly, we only work at fixed filling – if we instead fix
the chemical potential, the system will always lie in a gap
at sufficiently large system size due to the fractal spec-
trum. In other words, for each fixed chemical potential
there is a distinct cross over length scale where the sin-
gular continuous spectrum goes from “looking” gapless
to gapped. By working with a fixed filling, on the other
hand, we always fill up states to some Fermi energy, the
distinction now being whether this Fermi energy lies next
to a gap at this L or falls within a miniband.

Away from the critical point, as the potential strength
λ is varied, some of these gaps can become large while
others remain quite small, see Fig. 1. To mimic the X-
ray edge problem in a metal, and to study the generic
features of the model, our focus is on constructing a gas
of particles with multifractal wavefunctions and thus our
focus is on λ = λc. For this to still resemble a metallic
setting, we must ensure that this corresponds to filling
up the single particle states so that the Fermi energy
does not lie near any large gap that appears near λc for
the accessible system sizes considered here. Thus, based
on Fig. 1 we choose a filling n = N/L = 0.309 (with a
Fermi energy EF ≈ −1.923). We will also briefly discuss
behavior of the specific case of a Fermi energy lying near
a large band gap with n = 0.382.

Despite choosing n = 0.309 based on the above crite-
rion, we can still see the effects of fractal gap structure,
even though this filling has the advantage that we never
reach a large fractal gap up to system sizes of L = 10000.
To see this clearly, we examine the energy difference of
the first excited state above the Fermi energy, which is
defined as δE = Ei+1 − Ei where Ei = EF is the Fermi
energy for a given filling n and we average over 10000
samples. If we are in a regime where the spectrum looks
continuous, then 〈δE〉 will vanish in the large L limit
(where 〈. . . 〉 denote an average over the random phases
in the quasiperiodic potential). Whereas, if we fill up to
the edge of a gap then 〈δE〉 will be L-independent and
saturate to a non-zero constant (which does not occur
for n = 0.309 for the system sizes we can reach here).
As we can see in Fig. 1 in either localized or delocal-
ized phase away from the critical point, there is a clear
power-law scaling with L, that goes like 〈δE〉 ∼ 1/L.
On the other hand, at the critical point the fractal spec-
trum gives rise to a much richer structure, with a decay
in L that is no longer a clear power law. As shown in
Fig. 1, for 〈δE〉 with n = 0.309, we find different decay re-
gions with different oscillation amplitudes. We attribute
regimes of large oscillation in δE to probing the fractal
gaps, whereas the regimes where the oscillations are sub-

stantially reduced with a decay that follows 〈δE〉 ∼ 1/L
closely, are attributed to the system being well described
by being in a band, and hence a ballistic metal like re-
sponse. Meanwhile, we find that the typical energy dif-
ference δEtyp ≡ exp〈log δE〉 decreases with L, with a
power law slightly larger than the average value. How-
ever, this response is very sensitive to our choice of fill-
ing and this structure changes if we deviate very slightly
away from n = 0.309 . In order to verify this, as discussed
in Sec. III E, instead of trying to increase L even further
we consider nearby fillings that reveal a rich fractal gap
structure that is strongly dependent on the filling.

This analysis demonstrates that for various ranges of
system sizes, a given filling will go from having a response
that looks like it is “in” a band to looking like it is filled
up to a “gap”. Since such gaps will always appear at
larger and larger system sizes, this process is expected to
continue indefinitely in the thermodynamic limit.

B. Evaluating wavefunction overlaps and the
core-hole Green function

We now discuss the general framework we use to nu-
merically compute the wavefunction overlap and the core-
hole Green function. While it is well known for this prob-
lem that one can write the many-body wavefunction over-
lap and core-hole Green function as determinants over
single particle eigenstates, for clarity we briefly present
this method here following Ref. 36. Since we are focusing
on the AA model in Eq. (1), we are able to use exact diag-
onalization on the single particle Hamiltonians to reach
sufficiently large system sizes.

We now discuss computing the overlap between the
pre- and post-quench many-body wavefunctions S ≡
〈ΨI |ΨF 〉. The many-body fermonic states are defined by
the Slater determinant of N single particle eigenstates:

〈r1, . . . , rN |ΨI〉 =
1√
N !

det|χk(ri)|,

〈r1, . . . , rN |ΨF 〉 =
1√
N !

det|ψk′(rj)|.
(3)

As shown in Ref. 5 the wavefunction overlap S can be
written as

S = det|Aij |, (4)

where Aij is a matrix of overlap integrals of filled elec-
tronic states:

Aij ≡
∑
r

ψi(r)χ
∗
j (r), Ei, E

0
j < EF . (5)

We now come to computing the core-hole Green function
G(t) following Ref. 36. This is defined as

G(t) ≡ −〈ΨI | eiĤF te−iĤIt |ΨI〉 = −e−iE0t 〈ΨI | eiĤF t |ΨI〉 ,
(6)
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where the initial and final states |ΨI〉 and |ΨF 〉 are
given by Eq. (3), and E0 is the ground state energy
E0 =

∑
i≤N E

0
i . In the following we focus on |G(t)|

and therefore, do not need to worry about the phase
exp(−iE0t). Expanding the wavefunctions into Slater
determinants, we have

〈Ψ0| eiĤF t |Ψ0〉 = det|Λij |,

Λij = 〈χi| eih̄t |χj〉 ,
(7)

Λij is a one electron matrix element, and h̄ is the single
particle Hamiltonian after the quench.

We have now transformed the many-body calcula-
tion into one that only involves single-particle matrix
elements36, which we can evaluate numerically on system
sizes up to L = 10946 and thus capture the multifractal
nature of the wavefunctions non-perturbatively.

C. Expectations from the plane-wave case

We conclude this section by briefly reviewing estab-
lished results for the plane-wave case39, to which we will
be comparing our new fractal results. The canonical or-
thogonality catastrophe (or X-ray edge) problem involves
a Fermi energy far from the band edge and the core hole
produces a scattering phase shift δ. In this case, we have

that G(t) ∼ t−2(δ/π)2 ; the overlap decays with a sim-

ilar exponent S(L) ∼ L−(δ/π)2 . The relation between
these two exponents comes from the dynamical critical
exponent z = 1 for a Fermi liquid, in which space and
time are related by the Fermi velocity vF . In a finite-size
system, the temporal decay of the Green function stops
when t ∼ L; past this time, the Green function satu-
rates to S(L)2 (corresponding to the diagonal-ensemble
prediction, which applies after complete dephasing).

When the Fermi energy lies in a large band gap, the
overlap is size-independent, and the Green function sat-
urates on a timescale of order unity. For small band-
gaps, one expects on physical grounds that this timescale
should be proportional to the band gap, and the over-
lap should correspondingly decrease; however, we are not
aware of previous systematic studies of this dependence.
In one dimension, if one adds attractive interactions and
the Fermi level is near the bottom of a band (or repul-
sive interactions when the Fermi level is near the top of
the band), the impurity potential creates a bound state,
which leads to a strong suppression of the overlap (since,
at the one-particle level, the overlap between a plane
wave and a bound state is ∼ 1/

√
L).

III. RESULTS

We now come to our findings on the wavefunction over-
lap and the core-hole Green function. As our analysis of
the fractal gap’s influence on the Fermi energy implies,

the wavefunction overlap will go from a metal-like re-
sponse to that of insulator depending on the system size.
Since the metallic regime is well understood and previ-
ously outlined in Sec. II C, we begin by discussing the
effects of choosing a filling close to a band gap.

A. Filling near a large band gap, n ≈ 0.382

As shown in Fig. 1, a large band gap arises in the
quasiperiodic band structure for filling n = f0 where
f0 = limk→∞ Fk/Fk+2 ≈ 0.382. This band gap exists
when λ & 1. As one tunes the filling through this band
gap, the overlap first becomes anomalously small (when

N - N0
-3 -2 -1 0 1 2

0.0 0.2 0.4 0.6 0.8 1.0
0

2

4

6

8

Overlap |S| 
P
(|S

|)

N - N0
-1
0
1

0 50 100 150 200
0.0

0.1

0.2

0.3

0.4

0.5

0.6

position j

|ψ
j|
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Eq. (1). When the band is fully filled N = N0 the overlap is
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the impurity creates an unoccupied (i.e. hole) mid-gap state.
When N = N0 − 1 the pre- and post-quench wavefunctions
both have one hole in the miniband, but the hole is localized
in the unquenched case due to the bound state and delocalized
otherwise. As a result, for N = N0 − 1, the overlap scales as
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√
L and is therefore greatly suppressed. To make the con-

trast between localized and delocalized states clear, the lower
panel shows data for λ = 1.75, slightly in the delocalized
phase.



6

102 103 104

L

0.3

0.4

0.5

0.6

0.7

0.8

0.9
|S

|

102 104

t

0.7

0.72

0.74

0.76

0.78

0.8

0.82

0.84

0.86

FIG. 3. Results for a filling at the edge of a large band gap,
n = 0.382. Left panel: The mean overlap does not exhibit
clear decay here, instead it is oscillating and has a clear upper
bound due to the large band gap. Right panel: The core-hole
Green function saturates to a non-zero value in the long-time
limit for a system size L = 1597.

the band is nearly filled) and then anomalously large
(when the band is fully filled); see Fig. 2. A large over-
lap for a filled band is expected (see Sec. II C), consistent
with what we find in Fig. 3. The anomalous suppression
comes about because the impurity potential introduces
a mid-gap bound state. When the band is nearly filled,
one can think of the problem as containing a low density
of holes. One of these holes occupies the impurity-bound
state when there is an impurity, but a delocalized state
otherwise, as Fig. 2 displays. The many-body overlap
is dominated in this regime by the single-particle overlap
between the bound and delocalized states, and thus scales
as 1/

√
N , which decreases much faster with N than the

usual orthogonality exponent. This leads to anomalous
suppression when the filling is just below the band edge,
but not when it is just above, as shown in Fig. 2. This
asymmetry is because the impurity potential is repulsive:
if it were attractive, the bound state would be particle-
like rather than hole-like and the anomalous suppression
would be for fillings slightly above a band-edge. In ei-
ther case, the rest of our discussion would go through as
before. In Fig. 3 we show representative results for the
average overlap and the core-hole Green function for the
filling n = 0.382. We find that filling up to a band gap
produces an overlap that is large and oscillating about a
mean value, while the core-hole Green function saturates
to a non-zero value at long times.

We will argue in what follows that the essential physics
of the orthogonality catastrophe at the Aubry-Andre crit-
ical point arises from this rapid fluctuation of overlaps
with the position of the Fermi level relative to a band
gap, together with the proliferation of band gaps on all
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Overlap in the Anderson localized phase with bin size 0.01.
The distribution is no longer broad and develops two peaks
centered about 0 and 1, which reflects the existence of the
statistical orthogonality catastrophe.

scales.

B. Wavefunction overlap S

We begin by discussing the distribution of wavefunc-
tion overlaps as a function of λ starting in the plane-wave
limit (λ = 0). For a finite system size the overlap at
λ = 0 will be non-zero (taking values between zero and
one), therefore we find it convenient to mark it as a ver-
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tical dashed line. As shown in Fig. 4, as λ increases from
zero, the distribution of wavefunction overlaps P [S] de-
velops two peaks towards large and small overlap, while
centering around the λ = 0 value. As λ approaches the
critical value (λ = 2), P [S] continues to broaden, and
the two peaks separately approach zero and one. Impor-
tantly, at the critical point P [S] has become maximally
broad with weight at all values stretching from zero to
one. Upon entering the localized phase (λ > 2), the sta-
tistical orthogonality catastrophe leads to peaks in P [S]
about zero and one with the vanishing weights at inter-
mediate overlap values.

To probe the distribution at the critical point and the
broad nature of P [S] we turn to the finite size dependence
as shown in Fig. 5. As S → 0, we find P [S] develops more
weight towards zero and a significant tail towards van-
ishing overlap that becomes remarkably broad at large

0 0.2 0.4 0.6 0.8 1
Overlap |S|

10-1

100

10

P(
|S

|) 

L=403
L=1096
L=1998
L=5431
L=9897

-6 -5 -4 -3 -2 -1 0
log |S|

10-3

10-2

10-1

100

P(
lo

g|
S|

) 

a

b

FIG. 5. Distribution of the wavefunction overlap |S| and
log |S| for five different system sizes, focusing on the critical
point λ = 2. (a) The distribution of |S| spread over 0 to
1. The general shape is similar across different sizes. (b) The
distribution of log |S| displaying a clear tail towards vanishing
overlap that develops for large L and a decrease around |S| =
1.

L, stretching across 5 decades. On the other hand, for
S → 1, P [S] also decreases with increasing L. These re-
sults suggest that the average wavefunction overlap will
vanish with increasing L. This contrasts with the local-
ized phase that has a non-vanishing average overlap, de-
spite the typical overlap vanishing in the large L limit29.
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0.6

0.7

0.8

=0
=1.0
=2.0

102 103

L

0.2

0.3

0.4

0.5

0.6

0.7

0.8

FIG. 6. System size dependence of the average and typical
overlap |S| for various values of λ averaged over 104 realiza-
tions with open boundary conditions and filling n = 0.309.
The lines are the linear fit corresponding to each power-law
decay. Left panel: The power-law decays extracted from the
fits are γ = 0.08±0.006 for λ = 0, γ = 0.07±0.004 for λ = 1,
γ = 0.11 ± 0.03 for λ = 2 in the first power-law regime, and
γ = 0.11±0.03 in the second. Right panel: For the power-law
decay in the typical overlap (note that λ = 0 is equivalent to
the left panel as there is no quasiperiodic potential) we find
γtyp = 0.08 ± 0.005 for λ = 1, γtyp = 0.17 ± 0.04 for λ = 2,
in the first power-law regime, and γtyp = 0.18 ± 0.02 in the
second. In the localized phase (λ > 2), the typical overlap
Styp decays exponentially29.

To see how these results modify the conventional or-
thogonality catastrophe we consider the system size (L)
dependence of the average and typical overlap, defined as
Savg = 〈|S|〉 and Styp = exp 〈log |S|〉 respectively, where
〈. . . 〉 denotes an average over the random phases in the
Aubry-Andre model. As displayed in Fig. 6, in the metal-
lic phase (λ < 2) we find a clear power law decay in the
average and typical overlap. Whereas at the critical point
(λ = 2) we find that the average wavefunction overlap de-
cays but develops an oscillatory behavior as well. As we
increase L, we go from regimes in 〈δE〉 (see Fig. 1) that
are highly oscillatory (due to the fractal spectrum) to a
regime that looks like it is in a band and hence metallic.
Thus, to correctly extract the power-law decay we have
to restrict the system sizes to those that have a metallic
like response in 〈δE〉, which provides us with the ver-
tical dashed lines in Fig. 6. In addition, we also find
that the typical overlap, which probes the weight of the
tail towards vanishing overlap, vanishes with a power law
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FIG. 7. Distribution of the time-dependent core-hole
Green function at the critical point λ = 2 and at the fill-
ing n = 0.309. We show the time-dependent overlap function
in system size L = 1597. Initially centering at 1, the distri-
bution of the Green function evolves into broad structure and
saturates in the long-time limit due to finite size effect. The
saturated distribution resembles the distribution of ground
state overlap.

different from the average, namely

Savg ∼ L−γ , Styp ∼ L−γtyp , (8)

where the power-law exponents are not expected to be
universal but depend on the value of the local potential
V0 and filling n. For V0 = 5 and n = 0.309, we find in
the first power-law regime γ ≈ 0.11 and γtyp ≈ 0.17 and
in the second power-law regime we find γ ≈ 0.11 and
γtyp ≈ 0.18, which implies that the exponents governing
each metallic regime are the same within our numerical
accuracy. This typical value is somewhat larger than
what we find for the same potential strength away from
the critical point, and is close to the unitary limit (as one
would expect, since the vanishing bandwidth at criticality
implies that any scattering potential is in effect a strong
one).

Eventually for larger L, in a regime where 〈δE〉 will
have a plateau in L, the power-law behavior of S changes.
For these larger sizes we expect the results will instead
resemble that of a gapped regime. Here, the overlap os-
cillates but is no-longer clearly vanishing with L (akin to
the results in Fig. 3). Thus, we expect that for L increas-
ing arbitrarily, the overlap will continuously go back and
forth between these regimes, i.e., a regime where the over-
lap decreases algebraically with L and another in which
it does not decay but oscillates strongly about a “mean”
value. This is consistent with results at nearby fillings (as
opposed to trying to increase L any further) that have
a very different plateau-decay structure, as discussed in
Sec. III E.

C. Core-hole Green function G(t)

We now turn to the time dependence of the wavefunc-
tion overlap, which is captured by computing the core-
hole Green function G(t). In the following, we focus on
|G(t)| = |〈Ψ0(t)|Ψ0〉|, which is defined in Eq. (6). Similar
to S, we focus on the distribution of the core-hole Green
function P [G(t)] and study how it evolves dynamically as
a function of time.

We find that P [G] develops a broad distribution in the
long-time limit. This is shown clearly in Fig. 7, where
the weight in the distribution at short times is concen-
trated near G = 1 and vanishes towards small G. For
increasing t, the small G tail fills in and P [G] becomes
almost uniformly distributed as t → ∞. At long times
we find that the distribution becomes t-independent, the
time scale at which this occurs is set by the finite system
size.
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FIG. 8. Average and typical |G| at filling n = 0.309 for
a system size L = 1597 and the representative behavior in
each phase. The mean 〈|G(t)|〉 and typical Gtyp(t) and their
error bars are calculated over 104 samples with open boundary
conditions. The blue, red and yellow curves are at λ = 1, 2,
and 3, respectively. The dashed black lines mark different
decay and plateau regions and the straight lines are fits to a
power law form for λ = 1 and 2. In the delocalized phase
we find a clear power-law decay, whereas in the Anderson
insulating phase the core-hole Green function saturates to a
time independent non-zero value, reminiscent of a filling up
to a band edge (see Fig. 3). Left panel: Power-law decays
in 〈|G(t)|〉 extracted from the fits over the appropriate time
regimes are β = 0.13±0.01 for λ = 1, β = 0.12±0.01 for λ = 2
in the first regime of decay, and β = 0.11 ± 0.01 for λ = 2
in the second decay regime. Right panel: Power-law decays
in G(t)typ extracted from the fits are βtyp = 0.13 ± 0.02 for
λ = 1, βtyp = 0.17 ± 0.02 for λ = 2 in the first decay regime
and βtyp = 0.16±0.02 for λ = 2 in the second regime of decay.

To see how this behavior manifests itself in the conven-
tional X-ray edge response, we turn to the average and
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typical core-hole Green function, defined as Gavg(t) =
〈|G(t)|〉 and Gtyp(t) = exp (〈log |G(t)|〉), respectively. In
general, as discussed in the introduction, we find that
the Green function evolves through a series of alternat-
ing power-law decays and plateaus, which is clearly dis-
played in the long-time regime in Fig. 8. Similar to our
analysis of the overlap, we restrict fitting the data to
regimes that have a clear power-law decay in t. For this
filling (n = 0.309) we find two clear power-law regimes
separated by a small plateau, which in each power law
regime yields

Gavg(t) ∼ t−β , Gtyp(t) ∼ t−βtyp . (9)

Similar to S, the power-law exponents are not expected
to be universal and will depend on the value of the local
potential V0 and filling n. For V0 = 5 and n = 0.309
we find β ≈ 0.12 and βtyp ≈ 0.17 in the first power-law
regime as well as β ≈ 0.11 and βtyp ≈ 0.16 in the sec-
ond regime. Within our numerical accuracy, we find the
power laws in the two distinct power-law regimes coin-
cide. In each power-law regime, the average power-law
decay is markedly distinct from the delocalized phase.
This is expected as transport is not ballistic at the criti-
cal point, so the dynamical critical exponent z > 1, which
we turn to in the following section.

In the Appendix we compare our results for the ex-
ponents β and βtyp for two different quench potentials.
V0 = 5 and V0 = 10. Interestingly, at the critical point
(λ = 2) we find that the power-law exponents in the
core-hole Green function are unaffected by increasing the
strength of the quench potential, which implies the sys-
tem is close to the unitary limit. Whereas, in the metallic
phase (λ < 2) we find the exponents strongly depend on
the value of V0 and are therefore still far away from the
unitary scattering regime. We attribute this effect to the
vanishing bandwidth from the fractal gap structure that
enhances the strength of correlations and hence the ef-
fective strength of V0.

D. Coarse grained dynamical exponent

At conventional critical points, the dynamic critical ex-
ponent z describes the power-law scaling between energy
and length via E ∼ L−z. For the orthogonality catas-
trophe, we can extract z from our data on the scaling of
S(L) and G(t), where z = 2γ/β and ztyp = 2γtyp/βtyp,
see Sec. II C. However, as we have clearly seen through-
out this manuscript, the fractal gap structure compli-
cates any conventional power laws relating length and
energy (similar to what was found in Ref. 40). This
is demonstrated clearly in our results for δE in Figs. 1
and 9, not satisfying a simple power law across the full
range of L. In contrast, in the delocalized phase, taking
λ = 1 as a representative case we find z = 1.1± 0.1 and
ztyp = 1.2± 0.2, in good agreement with the expectation
of a ballistic metal.

Despite the fractal gap structure at the critical point,
we can provide an estimate of a coarse grained or an “av-
eraged” dynamical exponent from fitting the data across
a regime in L and a corresponding regime in t at which
the system encounters no gaps. We have done this in
Figs. 6 and 8. For the two power-law regimes that we
have accessed to, we find z = 1.8±0.3 and ztyp = 2.0±0.4
in the first power-law regime as well as z = 2.0± 0.3 and
ztyp = 2.3 ± 0.4 in the second power-law regime. Thus,
we find that the dynamical response in the metallic scal-
ing regimes (i.e. when the filling is nicely within a band)
is diffusive with z ≈ 2 and consistent across each respec-
tive power-law regime. This is consistent with the under-
standing10 that the energy-length scaling at the Aubry-
Andre critical point has z = 2.

E. Sensitivity to filling fraction

In the previous sections, we focused on a long alge-
braic segment of the decay in order to extract exponents.
However, as Fig. 9 shows, a striking feature of the frac-
tal orthogonality catastrophe is that these algebraic seg-
ments are interrupted by plateaus in 〈δE〉 signaling the
appearance of a fractal gap. In these plateaus, the Fermi
level is at the edge of a band (to within the resolution
given by system size and/or time). A plateau ends when
the resolution is increased further, to the point that the
system now no longer has a filled band. This structure of
repeated decays and plateaus is clear in the data (Fig. 9):
note that plateaus in the gap (i.e., level spacing) at the
Fermi energy, the overlap, and the core-hole Green func-
tion track each other for all the fillings considered. The
correlation between these measures points to the cen-
tral role that the fractal density of states plays in the
quasiperiodic orthogonality catastrophe. This cements
our picture of the fractal X-ray edge problem probing a
sequence of metallic and insulating regimes of response
that alternates indefinitely in the thermodynamic limit.

IV. DISCUSSION AND CONCLUSIONS

In this work we addressed the behavior of the Anderson
orthogonality catastrophe and the X-ray edge singular-
ity at the critical point of the Aubry-Andre model. This
critical point is unusual in having not only fractal wave-
functions (which are generically present at localization
transitions) but also a fractal density of states. This lat-
ter feature, which is central to understanding our results,
does not exist in random systems but is quite generic in
quasiperiodic ones: it exists, essentially by construction,
in many common models of quasicrystals that are de-
fined by dilation rules. It is also possibly relevant to the
band structure of physical quasicrystals in higher dimen-
sions, which are of increasing experimental relevance. In
addition, following the exciting experimental discoveries
of twisted bilayer graphene41, understanding the inter-
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FIG. 9. Comparison between four representative fillings
around n = 0.309. The mean and typical energy difference
between the Fermi energy and the first excited state are shown
in (a) and (b). The corresponding results for the mean and
typical overlap S are shown in (c) and (d) as well as the mean
and typical Green function G (for L = 1597) are shown in (e)
and (f).

play of incommensurate effects on electronic structure
and strong correlations is of increasing theoretical im-
portance.

As one approaches the critical point of the Aubry-
Andre model from the delocalized side, more and more
band gaps open up; correspondingly the bandwidth of
each band decreases. There are three types of behav-
iors. (1) When the Fermi energy is in the middle of a
band, one has a fairly conventional orthogonality catas-
trophe, with a phase shift that increases toward the crit-
ical point (since the kinetic energy decreases). (2) When

the Fermi energy is in a band gap, the wavefunction over-
lap does not scale with system size, corresponding to no
orthogonality catastrophe. (3) When the Fermi energy
is very close to a band edge, the orthogonality catas-
trophe is enhanced, and the overlap decreases as L−1/2,
because of the influence of mid-gap bound states. Away
from criticality, scenario (1) is generic. However, at the
critical point, there are band gaps at all scales, so de-
pending on the impurity position and the precise filling,
essentially any value of the overlap between 0 and 1 can
arise. We found numerically that the overlap and core-
hole Green function (i.e., Loschmidt echo) have regimes
of algebraic decay, consistent with a dynamical critical
exponent z ≈ 2, as well as flat regimes, in L and t, such
that the band structure is gapped at the available spatio-
temporal resolution. The precise alternation of gaps and
decays is sensitive to the filling (Fig. 9). This depen-
dence originates in number-theoretic considerations that
are outside the scope of this work. The qualitative pat-
tern, however, can be seen by considering a series of ap-
proximants with increasingly large denominator q. At
a fixed filling n, the number of electrons in the system
is bnqc (i.e. the closest lower integer to nq). For fill-
ings where nq is close to a Fibonacci number (or the
sum of a few Fibonacci numbers) the system is gapped;
whereas when nq can only be expressed as a sum of many
(∼ log q) Fibonacci numbers, the response decays with L
algebraically. Similar results hold upon replacing system
size with time, and account for the response of the core-
hole Green function.

Note that this structure relies on working at fixed fill-
ing rather than fixed chemical potential: in the latter
case, the critical point is generically gapped, and there
is no orthogonality catastrophe. The assumption of fixed
filling is sensible for metallic quasicrystals, since the fill-
ing in these will be fixed by the chemical composition of
the compounds. On the other hand, fixed filling will
generically be difficult to achieve in ultracold atomic
gases (except in box traps), since the harmonic trap-
ping potential gives a spatially varying chemical poten-
tial, which will likely render the system locally gapped.
However, square-bottomed optical traps are increasingly
common in ultracold atomic experiments, and these allow
one to work at fixed particle number42.

The orthogonality catastrophe is perhaps the most ba-
sic manifestation of the physics of strong correlations;
as we have seen, it is profoundly modified by the frac-
tal band structure that is common in quasicrystals. A
natural extension of this work would be to study the
Kondo effect and its generalizations, as well as to derive
effective models for quantum magnetism, in fractal band
structures13. A further question, raised by the large sus-
ceptibility of these flat-band systems and their extreme
sensitivity to slight changes in filling, is how robust they
are against phase separation in the presence of even weak
interactions.
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Appendix: Dependence on V0
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FIG. 10. Average and typical |G| at filling n = 0.309 for a
system size L = 1597 comparing two different values of the
quench potential V0 in the delocalized phase and at the critical
point. Note that for λ = 1 the end of the power-law regime
is due to the finite system size. Left panel: The exponents
results for Gavg(t) with V0 = 10 are: for λ = 1, β = 0.17±0.01;
for λ = 2 in the first power-law regime β = 0.12 ± 0.01 and
in the second regime β = 0.11 ± 0.01. Right panel: The
results for typical means Gtyp(t) with V0 = 10 are: for λ = 1,
βtyp = 0.2±0.01; for λ = 2 in the first region βtyp = 0.17±0.02
and in the second region βtyp = 0.15± 0.03.

We briefly discuss the dependence of our results on
the choice of the quench potential V0. In the main text
we focused on a potential strength of V0 = 5, we now
compare this for the core-hole Green function for V0 = 10.
In the delocalized phase these values of V0 are not large
enough to be in the unitary limit, i.e. they do not reach
the largest possible value of the scattering length and
thus the exponents are distinct between V0 = 5 and V0 =
10. In contrast, at the critical point, due to the strongly
renormalized bandwidth of each miniband, correlation
effects are strongly enhanced, and we find the power-law
response in G(t) is essentially identical between V0 = 5
and V0 = 10.
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