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In the study of the anomalous Hall effect, the scaling relations between the anomalous Hall and
longitudinal resistivities play the central role. The scaling parameters by definition are fixed as
the scaling variable (longitudinal resistivity) changes. Contrary to this paradigm, we unveil that
the electron-phonon scattering can result in apparent temperature-dependence of scaling param-
eters when the longitudinal resistivity is tuned through temperature. An experimental approach
is proposed to observe this hitherto unexpected temperature-dependence. We further show that
this phenomenon also exists in the nonlinear Hall effect in nonmagnetic inversion-breaking mate-
rials and may help identify experimentally the presence of the side-jump contribution besides the
Berry-curvature dipole.

The anomalous Hall effect [1] has been a fruitful
topic of condensed matter physics, providing a paradigm
widely-employed to understand related nonequilibrium
phenomena such as spin and valley Hall effects [2, 3]
and spin-orbit torque [4]. In time-reversal broken multi-
band electronic systems with strong spin-orbit coupling,
the anomalous Hall effect originates from both the
momentum-space Berry curvature and scattering off dis-
order [5–7]. In experiments the scaling relations linking
the anomalous Hall resistivity ρAH to the longitudinal
resistivity ρ play the central role in identifying various
contributions [8–21].

The well-established theory taking into account a given
type of weak-potential static impurities [1, 6, 22, 23] re-
sults in the scaling relation

− ρAH,0 = α0ρ0 + (c+ c0 + c00) ρ20. (1)

Henceforth the subscripts “0” and “1” represent con-
tributions from electron-impurity and electron-phonon
scattering, respectively. In this scaling α0 arises from the
skew scattering [24], c is the Berry-curvature contribu-
tion, and c0 results from scattering-induced coordinate-
shift [25], namely the side-jump [5, 26]. c00 incorporates
scattering-induced contributions that are not related to
coordinate-shift but share the same scaling behavior as
the side-jump one [5, 23, 27], and thereby is referred to as
the side-jump-like contribution [28]. α0, c, c0 and c00 do
not depend on the density of scatterers thus serve as scal-
ing parameters, and ρ0 tuned via changing the density of
scatterers plays the role of a scaling variable.

On the other hand, in many experiments the resistivity
is tuned through temperature (T ) in a wide range where
the electron-phonon scattering is important [8, 9, 11–13,
16–19]. For this scattering, most previous theoretical and
experimental researches suggest the scaling relation [8, 9,
17, 26, 29, 30]

− ρAH,1 = (c+ c1 + c11) ρ21, (2)

where the scaling parameters c1 and c11 are thought, ac-
cording to the aforementioned characteristic of side-jump
and side-jump-like contributions, to be independent of
the density of phonons and thus of T [17, 26, 30].

In the presence of both impurities and phonons, when
assuming the Matthiessen’s rule ρ =

∑
i=0,1 ρi, a two-

variable scaling based on the above two scalings reads
[17] (ρ� ρAH, σAH ' −ρAH/ρ

2)

σAH = α0ρ0/ρ
2+c+

∑
i=0,1

ciρi/ρ+
∑

i,j=0,1

cijρiρj/ρ
2. (3a)

Here c10 + c01 represents the combined effect of scatter-
ings off impurities and phonons, and is also regarded to
remain constant as T changes in previous studies [17–21].

In this Rapid Communication we uncover that the
above widely-accepted paradigm misses the physics that
c1, c11 and c10 + c01 can be strongly T dependent as
T drops below the high-T classical equipartition regime
where ρ1 ∝ T [31]. In the minimal model of the anoma-
lous Hall effect, namely the two-dimensional (2D) mas-
sive Dirac model, Eq. (3a) is demonstrated with all c’s
given explicitly (detailed later) and reorganized into

σAH − α0σ
2
xx/σ0 = β + β′σxx/σ0 + β′′

(
σxx/σ0

)2
, (3b)

where σ−10 = ρ0. The T dependence of

β (T ) = c+ c1 (T ) + c11 (T ) ,

β′ (T ) = c0 − c1 (T ) + c01 (T ) + c10 (T )− 2c11 (T ) ,

β′′ (T ) = c00 + c11 (T )− c01 (T )− c10 (T ) , (4)

are shown in Fig. 1, although they are believed to be T
independent in the conventional paradigm of the anoma-
lous Hall effect. Despite that the specific T dependent
forms of β’s depend on fine details of the model, the
revealed possibility of the T dependence of c1, c11 and
c10 + c01 is ubiquitous, as shown in the Supplemental
Material [32] (see, also, references [33–36] therein).

This finding indicates that, the conventionally identi-
fied “scaling parameters” in Eqs. (2) – (3b) are in fact al-
lowed to vary with temperature when fitting data. From
a viewpoint of basic understanding, scaling parameters
by definition ought to be fixed as the scaling variable
changes, thereby Eqs. (2) – (3b) can not be termed as
“scaling relations” when ρ is tuned through temperature.
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FIG. 1. Temperature-dependence of β’s of Eq. (3b) in the
2D massive Dirac model (5) in the presence of both zero-
range scalar impurities and acoustic phonons. TBG is the
Bloch-Gruneisen temperature [42] which plays the basic role
instead of the Debye temperature in 2D metallic systems and
marks qualitatively the lower boundary of the high-T classical
equipartition regime (T > TBG) where the resistivity is linear
in T . When T downs below the equipartition regime the β’s
become T dependent.

On the practical side, since β, β′ and β′′ do not depend
on the density of impurities ni, and thus still serve as
scaling parameters when ρ is tuned by changing the den-
sity of impurities, we propose an experimental procedure
to observe the T dependence of β’s.

Now we begin the concrete analysis of the 2D massive
Dirac model [5]

Ĥ0 = v
(
σ̂xkx + σ̂yky

)
+ ∆0σ̂z, (5)

where σ̂x,y,z are the Pauli matrices, k =
(
kx, ky

)
is the

wave-vector, v > 0 and ∆0 > 0 are model parameters.
We consider the electron-doped case with Fermi energy
εF > ∆0. For the purpose of revealing the fact that the
β’s depend on T , the quasi-static treatment for acous-
tic phonons is adequate. This approximation, in which
the electron-phonon scattering is treated as an elastic
process, produces the correct low-T Bloch-Gruneisen law
ρ1 ∼ T 5 for three-dimensional (3D) metals [31, 37, 38].
When applied to the side-jump anomalous Hall effect, the
high-T and low-T asymptotic behaviors derived within
this approximation are the same as those obtained with-
out this approximation [39]. Quantitative deviations only
appear in the intermediate regime and are not essentially
important.

To proceed, we employ the Boltzmann transport the-
ory involving not only on-shell (on the Fermi surface)
but also off-shell (away from the Fermi surface) Bloch
states [1, 5, 6, 22]. In the presence of scalar quasi-static
disorder, the side-jump (sj) and side-jump-like (sjl) con-
tributions to the anomalous Hall conductivity of model
(5) are obtained as [32]

σsj
AH =

e2

4π~
sin2 θF cos θF

(
τ−10 − τ−11

)
τtr (6)

and

σsjl
AH =

e2

64π~
sin4 θF cos θF

(
τ−10 − τ−12

)
(7)

×
(

3τ−10 − 4τ−11 + τ−12

)
τ2tr,

respectively. Here cos θF = ∆0/εF , sin θF = vkF /εF .
τ−1tr is the value of the inverse transport relaxation time

τ−1tr (k) =
Dk

~

∫
dφk′k

∣∣〈uk′ |uk〉
∣∣2Wk′k (1− cosφk′k)

(8)
on the Fermi surface, and

τ−1n (k) =
Dk

~

∫
dφk′kWk′k cos (nφk′k) , n = 0, 1, 2...,

(9)
where Dk is the density of states, φk′k is angle between k
and k′, |uk〉 is the spinor eigenstate in the positive band,
and Wk′k is the plane-wave part of the lowest-Born-order

scattering rate
∣∣〈uk′ |uk〉

∣∣2Wk′k.
For quasi-static electron-phonon scattering one has

W ep
k′k =

2Nq

V

∣∣Uo
k′k

∣∣2, where Uo
k′k is the plane-wave part

of the electron-phonon matrix element, V is the volume
(area in 2D) of the system, Nq is the Bose occupation
function for the phonon model with wave-vector q and
energy ~ωq, and the factor 2 accounts for the absorption
and emission of phonons [31]. To simplify the analy-
sis we neglect the Umklapp process, thus q = k′ − k.

In comparison, for static impurities W ei
k′k = ni

∣∣V o
k′k

∣∣2,
with V o

k′k the plane-wave part of the matrix element of
the impurity potential. Hereafter the superscript “ei/ep”
means that the quantity is contributed by the electron-
impurity/-phonon scattering alone.

To obtain analytic results, we assume zero-range scalar

impurities (
∣∣V o

k′k

∣∣2 = V 2
i is a constant), isotropic De-

bye phonons, and the deformation-potential coupling
for which a so-called electron-phonon coupling constant

λ2 = 2V−1
∣∣Uo

k′k

∣∣2 /~ωq exists [40, 41]. Then

Wk′k = W ei
k′k +W ep

k′k = niV
2
i + λ2kBT

z

ez − 1
, (10)

where z = ~ωq/kBT = q
2kF

TBG

T , and TBG = ~cs2kF /kB
(cs is the sound velocity) is the Bloch-Gruneisen tem-

perature [42]. Model results of σSJ
AH ≡ σsj

AH + σsjl
AH are

obtained [32] according to

τ−1n τtr =

(
τ ein
)−1

+ (τ epn )
−1(

τ eptr
)−1

+
(
τ eptr
)−1 , n = 0, 1, 2... (11)

Next we take into account the skew scattering (sk)
from the third-order non-Gaussian impurity correlator
niV

3
i of zero-range scalar impurities [5, 43]:

σsk
AH =

e2

16π~
sin4 θF

(
τtr
τ ei0

)2

DFVi
∆0τ

ei
0

~
, (12)
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where DF is the density of states on the Fermi surface.
The model result thus takes the form of

σAH−c−σsk
AH =

∑
n

asjnτ
−1
n τtr+

∑
nn′

bsjlnn′τ
−1
n τ−1n′ τ

2
tr, (13)

where asjn and bsjlnn′ are readable from Eqs. (6) and (7).

By noting that ρ0(1)/ρ = τtr/τ
ei(ep)
tr and σsk

AH = α0ρ0/ρ
2,

the above equation can be cast into Eq. (3a), where the
impurity-determined coefficients

c0 = σsj,ei
AH =

∑
n

asjn
τ eitr
τ ein
, c00 = σsjl,ei

AH =
∑
nn′

bsjlnn′

(
τ eitr
)2

τ ein τ
ei
n′
,

(14)
and α0 ∼ DFViτ

ei
tr/τ

ei
0 are independent of the density

of impurities, while the phonon-determined coefficients,
namely

c1 = σsj,ep
AH =

∑
n

asjn
τ eptr
τ epn

, c11 = σsjl,ep
AH =

∑
nn′

bsjlnn′

(
τ eptr
)2

τ epn τ epn′
,

(15)
are T dependent at low temperatures below the high-T
equipartition regime as shown in Fig. 2(a). This implies
that Eq. (2) can not be theoretically viewed as a scal-
ing relation, since the conventionally identified “scaling
paramter” c1 + c11 in fact changes as ρ1 varies with tem-
perature. Equations (3a) and (3b) suffer from the same
situation. Meanwhile, the combined contribution from
the impurity and phonon scatterings to the side-jump-
like anomalous Hall conductivity

c01 + c10 =
∑
nn′

bsjlnn′

(
τ eitr
τ ein

τ eptr
τ epn′

+
τ eptr
τ epn

τ eitr
τ ein′

)
(16)

also depends on T below the equipartition regime. The
T dependence of c1, c11 and c01 + c10 yields that of the
β’s shown in Fig. 1.

The qualitative picture for the appearance of the T
dependence is simple: the side-jump and side-jump-
like contributions are conventionally viewed as indepen-
dent of scattering time for a given source of scattering
[7, 26, 44], but in general they are just zeroth-order ho-
mogeneous terms of scattering time [43], as is apparent
in Eqs. (6) and (7). In the equipartition regime the T
dependence of electron-phonon scattering times in the
denominator and numerator of these zeroth-order homo-
geneous terms are the same (T−1), and thereby drop out
of β’s. While at lower temperatures below the equipar-
tition regime the bosonic nature of phonon occupation
number makes the T dependence irreducible even in the
zeroth-order homogeneous terms.

The model analysis also offers a perspective to under-
stand why the conventional idea of T independent scaling
parameters works practically in tuning-T experiments.
Because in the high-T regime W ep = λ2kBT drops out
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FIG. 2. Temperature-dependence of (a) σSJ,ei
AH and σSJ,ep

AH , and

of (b) σSJ
AH +σsk

AH = σAH−c for εF /∆0 = 2 in model (5) in the
presence of zero-range scalar impurities and acoustic phonons.
Larger values of the parameter η correspond to smaller im-
purity density. The dashed curves in (b) are obtained by as-
suming the scaling relation (17) in the presence of both scat-
tering sources. In the weak scattering regime DF |Vi| � 1
and ∆0τ

ei
0 /~ � 1. Thus in the calculation of σsk

AH we take
DFVi = 10−3, ∆0τ

ei
0 /~ = 10j+2 for η = 3 × 10j (j = 0, 1, 2),

and ∆0τ
ei
0 /~ = 5× 104 for η = 1500 (ni is tuned).

of τtr/τn, the value of σSJ
AH contributed by phonons co-

incides with that contributed by zero-range scalar impu-
rities. This value also applies in the presence of both
scattering sources since W = niV

2
i +λ2kBT for this case

also drops out of τtr/τn. Therefore, in the high-T regime
the scalar zero-range impurities and acoustic phonons are
indistinguishable in inducing σSJ

AH, namely, c1 = c0 and
cij = c00. Then, if the electron-phonon scattering related
c’s took T independent values, just following the conven-
tional idea, the scaling relation would hold and read

σAH = α0σ
−1
0 σ2

xx + c+ c0 + c00. (17)

As is shown by the dashed curves in Fig. 2(b), this
scaling relation well describes the T dependence of the
anomalous Hall conductivity in moderately dirty sys-
tems with smaller η. Here the dimensionless parameter
η = λ2kBTBG/niV

2
i is introduced to denote the purity

of system: larger η means smaller ni. In our model case
TBG is the lower boundary TL of the equipartition regime
where ρ1 ∝ T , thus η ' τ ei0 /τ

ep
0 (TL) = τ eitr/τ

ep
tr (TL), tak-
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ing the instructive form of

η ' ρ1 (TL)

ρ0
=
ρ (TL)− ρ0

ρ0
, (18)

which can be read out conveniently from transport ex-
periments. Given the smaller η (usually < 2) of the sam-
ples used in previous tuning-T experiments, the above
argument provides a clue to understand the approximate
validity of scaling relations in these experiments.

As is shown by Fig. 2(b), the deviation of σAH caused
by assuming the scaling relation is apparent only in high-
purity systems. By contrast, it is worthwhile to empha-
size that in Eq. (3b) the β’s do not depend on ρ0, thus
their T dependence is anticipated to show up irrespective
of the sample quality.

Next we propose an experimental procedure to ob-
serve the predicted T dependence of β’s, based on the
recently developed thin film approach in the study of
the anomalous Hall effect [16–18]. In this approach the
effective impurity density can be continuously manipu-
lated by tuning the thickness of single crystalline mag-
netic thin films (the Curie temperature is assumed to
be much higher than the Debye temperature, which is
the case of Fe and Co), meanwhile the electronic band
structure does not change in the thickness range. In the
low-T limit σxx = σ0, and Eq. (3b) reduces to the lin-
ear scaling σAH = α0σ0 + c + c0 + c00, thereby α0 can
be extracted by tuning σ0 through the film thickness.
Because in Eq. (3b) the β’s are still scaling parame-
ters that remain unchanged when the film thickness is
tuned, it is reasonable to plot (σAH − α0σ

−1
0 σ2

xx) ver-
sus σ−10 σxx through tuning the film thickness for every
chosen fixed temperature. One can then extract the β’s
for different temperatures from the high-T equipartition
regime T > TL (experiments in common 3D metals often
show TL ' TD/3 as the lower boundary of the ρ1 ∝ T
regime, with TD the Debye temperature [45, 46]) down
to the low-T residual-resistivity regime. The T -variation
curves of β’s are thus obtained. The predicted T inde-
pendent values of β’s at T > TL can be determined first,
whereas their T -dependence can be observed as temper-
ature downs below TL.

Finally we extend the discussion to the nonlinear Hall
effect – a second-order Hall current response to the
electric field Ex in nonmagnetic systems with inversion
breaking [47–56]: jy = χyxxExEx, with χyxx the re-
sponse coefficient. The systematic Boltzmann analysis of
χyxx, which is of the linear order of scattering time, in-
corporates the Berry-curvature dipole (bcd) mechanism
[47] and the nonlinear generalizations of the side-jump,
side-jump-like and skew scattering contributions [57–62].
Naturally, equation (3a) has been extended to the non-
linear Hall effect in the dc limit as [60]

V N
y

(V L
x )2

= C+A0
ρ0
ρ2xx

+
∑
i=0,1

Ci
ρi
ρxx

+
∑

i,j=0,1

Cij
ρiρj
ρ2xx

, (19)

where V N
y and V L

x are the nonlinear Hall and linear longi-

tudinal voltage, respectively, and V N
y /

(
V L
x

)2
= χyxxρxx.

Here the notation ρxx is used instead of ρ, considering the
low-symmetry of the materials for observing the nonlin-
ear Hall effect [49, 50]. Equivalently,

V N
y /(V L

x )2−A0σ
2
xx/σ0 = B+B′σxx/σ0 +B′′

(
σxx/σ0

)2
,

(20)
where B = C+C1+C11, B′ = C0−C1+C01+C10−2C11

and B′′ = C00 + C11 − C01 − C10. Here all C’s are
zeroth-order homogeneous terms of scattering time [60].

In particular, C = χbcd
yxxρxx, C0(1) = χ

sj,ei(ep)
yxx ρ0(1) and

C00(11) = χ
sjl,ei(ep)
yxx ρ0(1). Following the conventional

paradigm of the anomalous Hall effect [17, 18], in the
previous understanding Eq. (20) is viewed as a scaling
relation when tuning temperature, and the B’s are be-
lieved to be T independent [60].

According to our work on the anomalous Hall effect,
however, it is apparent that the B’s are in fact T depen-
dent. An experimental procedure similar to the afore-
mentioned one for the anomalous Hall effect can be ap-
plied to verify this idea. The T dependence of C resulted
from the Berry-curvature dipole can be regarded to be
weak [49], as is verified in the relaxation time approxi-
mation [60], under which C is independent of scattering
time. Thus the T dependence of the B’s arises from
that of the phonon-related side-jump and side-jump-like
zeroth-order homogeneous terms, e.g., C1 and C11. In
the high-T regime where ρ1 ∝ T , the T dependence
of electron-phonon scattering times in the denominator
and numerator of these terms are the same (1/T ), and
thereby drop out, leading to T independent B’s. While
at lower temperatures, the bosonic phonon-occupation
leaves the T dependence irreducible. Illustration of this
argument using a prototypical model of the nonlinear
Hall effect, namely the 2D tilted massive Dirac model
[47, 58, 60, 61], is presented in the Supplemental Mate-
rial [32].

In a recent experiment on the nonlinear Hall effect in
bilayer WTe2 [50], only the Berry-curvature dipole mech-
anism was claimed. Whereas in another experiment on
few-layer WTe2 [49], a scaling taking the form of (17)

(σAH → V N
y /

(
V L
x

)2
) was observed in tuning-T measure-

ments, indicating the presence of the skew scattering.
Since the experimental system is dirty (η < 1), the emer-
gence of scaling (17) in practice is reasonable. However,
the tuning-T measurement alone can not distinguish the
side-jump (-like) contribution from the Berry-curvature
dipole. In order to further investigate the relevance of
the side-jump (-like) contribution, a possible route sug-
gested by our results is to observe the T dependence of B
in Eq. (20) by using multi-step WTe2 samples through
the above described experimental approach.

In summary, we have uncovered that, the convention-
ally identified scaling parameters, which play the central
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role in the study of the anomalous Hall effect, in fact
depend on temperature below the equipartition regime.
An experimental approach has been proposed to observe
this hitherto unexpected temperature-dependence. We
also showed that the similar physics applies to the re-
cently proposed scaling relations for the nonlinear Hall
effect, and provides a possible approach to identifying
experimentally the relevance of the side-jump contribu-
tion besides the Berry-curvature dipole.
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gineering) on the model analysis in this work. C.X. and
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