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Recent experiments with silicon qubits demonstrated strong coupling of a microwave resonator to
the spin of a single electron in a double quantum dot, opening up the possibility of long-range spin-
spin interactions. We present our theoretical calculation of effective interactions between distant
quantum dot spins coupled by a resonator, and propose a protocol for fast, high-fidelity two-qubit
gates consistent with experimentally demonstrated capabilities. Our simulations show that, in the
presence of noise, spin-spin entangling gates significantly outperform cavity-mediated gates on charge
qubits.

Solid-state electronic spins are promising candidates
for quantum information processing [1]. Electronic spins
in isotopically-purified silicon have been shown to ex-
hibit long coherence times [2], and mature silicon fab-
rication technologies improve prospects of scalable, low-
cost silicon-based quantum computing technologies [3].
Much research on quantum computing with spins has fo-
cused on achieving entanglement with fermionic exchange
or dipole-dipole interactions [4, 5]. These interactions
are short-range, creating significant challenges toward
achieving long-range entanglement necessary for scalable
quantum processors [6].

One proposed solution is the introduction of a super-
conducting microwave resonator, as in circuit QED. Cou-
pling between resonator modes and the electronic spins
gives rise to a long-distance, effective spin-spin coupling
mediated by cavity photons [7, 8]. Unfortunately, such
approaches suffer from the very weak (< 1 kHz) mag-
netic dipole coupling between electronic spins and radi-
ation modes, making realization of strong spin-photon
coupling challenging [9–11].

Recent breakthrough experimental work has demon-
strated a coherent interface between electronic spins in
semiconductors and microwave-frequency photons in a
superconducting resonator [12–15]. In the scheme of
Refs. [13, 14], a single excess electron is trapped in a
gate-defined silicon double quantum dot (DQD) near a
cobalt micromagnet (see Fig. 1). The large, inhomoge-
neous magnetic field produced by the micromagnet cre-
ates a large coupling between the electron’s spin and or-
bital degrees of freedom [16]. A plunger gate above one
dot is connected to a probe in a high-Q superconducting
microwave resonator. The large electric dipole moment
of the electron in the DQD system leads to strong cou-
pling between resonator photons and the electron’s or-
bital state [17–19]. The combination of spin-orbital and
orbital-photon couplings can result in a large (≈ 10MHz)
effective spin-photon coupling [20, 21], nearly five orders
of magnitude larger than typical magnetic dipole cou-
plings [13]. This coupling strength improvement, along
with a significant reduction in charge noise from careful
gate design [17], places this spin-photon system firmly
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FIG. 1. Diagram of a DQD system. An electron in a Si/SiGe
heterostructure is trapped in the double-well potential and
allowed to tunnel between the two dots. The double-well po-
tential is defined by aluminum gates on top of the heterostruc-
ture, shown in red and gold. The plunger gate PR above the
right dot is capcitatively coupled to a probe in the microwave
resonator. Nearby Co micromagnets create different magnetic
fields ~BL and ~BR at the left and right dots, respectively.

into the strong coupling regime, with the effective cou-
pling greater than both the spin decoherence rate and
photon loss rate.
In addition to a greatly enhanced spin-photon coupling

and reduced charge noise susceptibility, this architecture
allows for dispersive spin readout and coherent spin con-
trol via driven electric dipole spin resonance (EDSR)
techniques [7, 13, 22]. These single-spin EDSR rotations
along with phase gates and an entangling two-qubit op-
eration compose a universal set of quantum gates [23]. It
is natural, therefore, to ask what multi-spin operations
can be achieved when these DQD systems are connected
to a common resonator in a quantum bus topology [19].
We address this timely topic by designing a fast, elec-

trically controllable, high-fidelity entangling gate acting
on silicon spin qubits. We start by presenting the effec-
tive cavity-mediated spin-spin interactions which occur
in the low-energy limit of such a system. We then present
numerical results supporting these theoretical findings in
the case of two electronic spins and demonstrate robust
electrical generation of entangling gates. For compar-
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ison, we also simulate entangling gates between qubits
based on the electrons’ orbital degrees of freedom. We
find that spin-spin gates perform substantially better in
the presence of charge noise.

To investigate multi-spin interactions, we begin with
a single electron in a single DQD system coupled to the
microwave resonator, as shown in Fig. 1. We assume ex-
cited single dot states are sufficiently high in energy that
they can be ignored. The orbital Hilbert space is then
spanned by the |L〉 and |R〉 orbital states, localized to the
left and right quantum dots, respectively. Following Ref.
[17], we further assume that the quantized resonator field
affects only the average energy of the |R〉 orbital state,
and that only one resonator mode, with frequency ωr,
appreciably affects DQD dynamics.

Because the DQD sits in the micromagnet’s large, in-
homogeneous magnetic field, the spin feels different fields
in the left and right dots. We take the average magnetic
field ~B = ( ~BL + ~BR)/2 to be along the z-axis and the

difference in magnetic fields ∆ ~B = ~BL − ~BR to be in
the xz-plane. ~BL and ~BR include both magnetic fields
generated by the micromagnet and any externally ap-
plied field. The Hamiltonian for N DQDs coupled to a
resonator is [24]

HN = Hr +

N
∑

i=1

(HDQDi +Hzi +HSOi +HROi), (1)

Hr = ~ωra
†a,

HDQDi =
1

2
(ǫiτzi +Ωiτxi),

Hzi =
1

2
g∗µB

~Bi · ~σi =
1

2
~ωziσzi,

HSOi =
1

4
g∗µB∆ ~Bi · ~σiτzi = (gxiσxi + gziσzi)τzi,

HROi = eVr |R〉〈R|i = gACi

(

a† + a
)

(1− τzi),

where we have introduced the DQD detunings ǫi and tun-
neling constants Ωi [25], the Zeeman splitting frequen-
cies ωzi, the transverse and longitudinal spin-orbit cou-
pling strengths gxi and gzi, and the photon-orbit coupling
strengths gACi which are related to the resonator voltage
Vr. We also introduce photonic creation and annihila-
tion operators a† and a, the usual Pauli spin operators
~σi =

(

σxi σyi σzi

)

, as well as the orbital Pauli operators
τzi = |L〉〈L|i − |R〉〈R|i and τxi = |L〉〈R|i + |R〉〈L|i.
At this point, we note that it is convenient to work

in an orbital basis in which the HDQDi are diagonal,
rather than the {|L〉i , |R〉i} basis. We introduce the
mixing angles θi = arctan Ωi

ǫi
and move to the DQD

eigenbasis |+〉i = cos θi
2
|L〉i + sin θi

2
|R〉i and |−〉i =

cos θi
2
|R〉i − sin θi

2
|L〉i. In this orbital basis, HDQDi =

1

2
~ωaiτzi where ωai =

√

ǫ2i +Ω2
i /~. We label states of

the complete system |{s1, s2, ..., sN}, {d1, d2, ..., dN}, n〉,
where for each spin si ∈ {↑, ↓}, each electron orbital

state di ∈ {+,−}, and the photon number state is la-
beled n ∈ {0, 1, 2, ...}.
We desire an effective Hamiltonian which describes the

low-energy dynamics of the system, where we take low
energy to mean the orbital degree of freedom is in its
ground state (all di = −) and the cavity is unpopulated
(n = 0). To derive such a Hamiltonian, we treat all HSOi

and HROi as perturbations, small relative to the remain-
ing terms. We employ Schrieffer-Wolff transformations to
eliminate to leading order all terms in HN which couple
high- and low-energy states [26]. This requires us to as-
sume a separation in energy scales, e.g. ωai > ωr > ωzi.
We then project onto the low-energy subspace spanned
by |{s1, s2, ..., sN}, {−, ...,−}, 0〉 to obtain the effective
multi-spin Hamiltonian

H ′′
N =

N
∑

i=1

1

2
~ω′′

ziσzi (2)

−
∑

i6=j

ω′
r

~

(

g′xj
ω′2
r − ω

′2
zj

σxj +
g′zj
ω′2
r

σzj

)

(g′xiσxi + g′ziσzi).

A full derivation of the effective Hamiltonian from Eq.
(1) is given in the supplemental material [27]. Higher
order terms can be safely ignored, assuming the gxi, gzi,
and gACi are sufficiently small relative to the differences
in energy scales.
To demonstrate how Eq. (2) can be used to generate

entangling operations, we focus on a system composed
of N = 2 DQDs with a purely transverse coupling (all
gzi = 0). The effective two-spin Hamiltonian becomes

H ′′
2 =

1

2
~ω′′

z1σz1 +
1

2
~ω′′

z2σz2 − Jσx1σx2, (3)

J =
ω′
rg

′
x1g

′
x2

~

(

1

ω′2
r − ω

′2
z1

+
1

ω′2
r − ω

′2
z2

)

.

If we now transform into the rotating frame defined by
ω′′
z1 and ω′′

z2 and drop counter-rotating terms, we are left
with

H̃ = −J
(

σ−1σ+2e
i∆t + σ−2σ+1e

−i∆t
)

, (4)

where σ±i are the spin raising/lowering operators, and
we have defined the spin-spin detuning ∆ = ω′′

z2 − ω′′
z1.

If the resonance condition ∆ = 0 is met, exponentia-
tion yields the rotating frame time evolution operator

Ũ(t) =









1 0 0 0
0 cos

(

Jt
~

)

i sin
(

Jt
~

)

0
0 i sin

(

Jt
~

)

cos
(

Jt
~

)

0
0 0 0 1









. (5)

Time evolution under the Hamiltonian in Eq. (4) gen-
erates the maximally entangling iSWAP gate when
Jt/~ = π/2, or the perfectly entangling

√
iSWAP gate

in half the time [28–30]. When the spins are detuned,
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FIG. 2. A plot of the analytically (solid lines) and numerically
(markers) calculated spin splitting ω′′

z1 as ǫ1 is adjusted for
various fixed values of Ω1. Here we have set ωr/2π = 6GHz,
ωz1/2π = ωz2/2π = 5.85GHz, Ω2/h = 7.5GHz, gx1/h =
gx2/h = 200MHz, gAC1/h = gAC2/h = 40MHz, and θ2 =
π/2.

however (|~∆| >> |J |), the terms in Eq. (4) oscillate so
quickly that they become negligible, and spin evolution
in the rotating frame becomes trivial.
Crucially, both ∆ and J depend on the ǫi and Ωi. This

means both dressed spin energy splittings and effective
spin-spin couplings are electrically controllable. Though
Eq. (2) was derived assuming no time dependence for
HN , it remains a useful approximation in cases where the
ǫi are time-dependent, so long as the time dependence is
sufficiently small as to avoid Landau-Zener transitions to
the higher-energy subspace [31]. As DQD gate voltages
can be manipulated on very short time scales [25, 32], this
suggests the possibility of fast, on-demand entanglement
generation by simply adjusting the ǫi, moving distant
spins into and out of resonance with one another.
In order to test the validity of the effective Hamiltonian

in Eq. (2), we compare it to numerical simulations that
use the original Hamiltonian in Eq. (1). Our simulations
include leakage to higher-energy states. We truncate to
ten photonic states, which is more than sufficient to ac-
curately obtain the system’s low-energy dynamics. We
focus on two DQD systems with physically realistic pa-
rameters taken from Ref. [13].
To investigate the low-energy dressed spin splittings,

we diagonalize the multi-DQD Hamiltonian in Eq. (1)
and look at eigenvalues whose eigenstates strongly over-
lap with the unperturbed low-energy subspace states
(di = −, n = 0). So long as our energy scale separation
assumptions hold, each unperturbed low-energy state will
have a large overlap with exactly one eigenstate of the
Hamiltonian [33]. Fig. 2 compares numerically calcu-
lated spin energy splittings against analytic predictions
as the DQD detuning ǫ1 is varied with other parameters
held constant. For large Ω1 relative to ωr and ωz1, agree-
ment between numerical results and analytic predictions
is very good. As Ω1 is decreased, however, our energy
scale assumptions become less sound. The approxima-
tion begins to break down, and neglected terms in Eq.

 0

 0.5

 1

 1.5

 2

 2.5

 5.8  5.85  5.9  5.95  6  6.05  6.1  6.15  6.2

|J
|/
h
 (

M
H

z
)

�/2� (GHz)

Analytic
Numerical

FIG. 3. Plot of effective coupling strength J vs the spin split-
tings ωz1 = ωz2 = ω. Here we have set ωr/2π = 6GHz,
Ω1/h = Ω2/h = 7.5GHz, gx1/h = gx2/h = 200MHz,
gAC1/h = gAC2/h = 40MHz, and θ1 = θ2 = π/2. Near
ω/2π = 6.02GHz, the spins are brought into resonance with
the cavity, and our approximations break down.

(2) become significant, leading to a relatively large error
near θ1 = π/2.

The effective coupling J is most easily extracted by
numerically computing the |↑↓〉 ↔ |↓↑〉 transition prob-
ability once the spins have been brought into resonance.
From Eq. (5), this transition probability is clearly pro-
portional to sin2(Jt/~). By looking at the frequency of
transition probability oscillations, therefore, we obtain
an estimate of J . These numerically-determined effective
couplings are plotted against analytic predictions in Fig.
3. Again, agreement is quite good when our assumptions
about energy separation hold.

We now turn to simulations of on-demand, electrically
generated entangling gates. As stated above, entangle-
ment generation can essentially be turned on or off by
bringing the spins into or out of resonance with one an-
other. We use the effective Hamiltonian of Eq. 2 to
choose parameters such that spin-spin resonance can be
achieved by changing gate voltages alone. We aim to
achieve resonance close to θ1 = θ2 = π/2 to maximize
J . When the spins are detuned from one another, time
evolution in the rotating frame becomes trivial. It is con-
venient, then, to work in this rotating frame rather than
the lab frame where spin evolution is always nontrivial.

We numerically solve the Schrödinger equation for the
Hamiltonian in Eq. (1) where the ǫi are now time-
dependent. At each time step, we calculate the time evo-
lution of low-energy spin states, compute corresponding
density operators, and then trace out the resonator and
orbital degrees of freedom. Our gate fidelities are com-
puted according to the definition given in [34]: F̄ (E , U) =
1

5
+ 1

80

∑

j,k=1,x,y,z tr
(

Uσj1σk2U
†E(σj1σk2)

)

where U is
our target gate and E(ρ) is the quantum process rep-
resenting the spin time evolution described above. We
choose asymmetric parameter values for the DQD sys-
tems (see Fig. 4 caption) to illustrate the robustness of
the electrical control provided by the architecture.
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FIG. 4. For this simulation, we set ωr/2π = 6GHz, ωz1/2π =
ωz2/2π = 5.86GHz, Ω1/h = 7.3GHz, Ω2/h = 7.5GHz,
gAC1/h = 45MHz, gAC2/h = 40MHz, gx1 = 200MHz, and
gx2 = 230MHz. Here we plot the ǫi used to generate an
entangling gate, along with the average gate fidelity of the
spins’ time evolution relative to a

√

iSWAP , maximized at
each time step over local operations. Beginning at t = 100 ns,
we smoothly decrease both detunings to bring the spins into
resonance. Then, starting at t = 550 ns, we smoothly transi-
tion back. Total leakage does not exceed 3% after t = 600 ns.

We start our simulation with the spins well-detuned
from one another, θ1 = 1.1 and θ2 = 1.2. After 100ns,
we vary the ǫi to bring the spins into resonance near
θ1 = π/2 and θ2 = 1.3983. To avoid Landau-Zener tran-
sitions, we must avoid modulating system parameters too
rapidly. We transition between non-resonant and reso-
nant configurations slowly, over 50 ns, interpolating with

the smooth transition function g(x) = e−1/x

e−1/x+e−1/(1−x) .

We maintain resonance for 400 ns before transitioning
back over 50 ns to the original detuned parameters. The
full control sequence is shown in Fig. 4, along with the
fidelity as a function of time. After the 500ns pulse se-
quence, we have generated a gate locally equivalent to a√
iSWAP with between 97.5% and 99.5% fidelity, with

leakage to higher-energy states oscillating under 3%. We
choose a local equivalent rather than the

√
iSWAP it-

self because the change in spin splitting associated with
tuning to resonance generates local z-rotations in the ro-
tating frame. This can be used to generate phase gates by
momentarily changing DQD detunings without bringing
the spins into resonance. In principle we could use this
mechanism to eliminate local phases and generate the√
iSWAP itself, rather than a locally equivalent gate.

So far we have discussed only noiseless systems, but
fidelities achievable in real solid-state spin systems are
limited by charge noise, phonon interactions, and cav-
ity loss [13]. The effects of low-frequency, quasistatic
charge noise can be modeled by making the substitu-
tions Ωi → Ωi+δΩi and ǫi → ǫi+δǫi, where the δΩi and
δǫi are Gaussian-distributed random variables with stan-
dard deviation σǫ. For the purposes of two-qubit gate
generation, the primary effect of this quasistatic noise
is to change the spin-spin detuning ∆ and the effective

spin-spin coupling J .

We plot average
√
iSWAP gate fidelities achievable

for various values of σǫ in Fig. 5(a). For comparison,
we also plot

√
iSWAP gate fidelities achievable using

the orbital degrees of freedom as our qubits in Fig. 5(b).
Previous experimental work measured charge noise levels
at around 35MHz [13] and as low as 2.6MHz [17]. We
note that at these levels of quasistatic charge noise, the
spin qubits’ gate performance is not significantly worse
than the noiseless case, and at all nonzero σǫ, spin qubits
achieve higher fidelities than charge qubits for a given set
of orbital parameters.

For smaller Ωi, closer to ωr and the ωzi, the average
gate fidelity for spin qubits is more sensitive to qua-

sistatic charge noise fluctuations, as
∣

∣

∣

∂∆
∂ωai

∣

∣

∣ and
∣

∣

∣

∂J
∂ωai

∣

∣

∣

become larger. This regime is also where we expect high-
frequency charge noise and phonon-induced dephasing to
have the largest effect [13]. As the Ωi are increased, the
spin qubits become less sensitive to changes in orbital pa-
rameters, and the fidelities converge towards the noiseless
value. The remaining infidelity at σǫ = 0 is due to leak-

age. For smaller values of Ωi, where
∣

∣

∣

gxi

ωai−ωzi

∣

∣

∣ is relatively

large, leakage to the excited orbital subspace dominates,
whereas for larger values of Ωi, leakage to excited cavity
states becomes the dominant source of infidelity.

Although increasing the Ωi has the effect of decreas-
ing orbital leakage and charge noise sensitivity, it also
decreases J , increasing two-qubit gate times. As gate
time increases, cavity loss will become a greater source
of infidelity, as qubits must remain strongly coupled to
the cavity for longer in order to generate entanglement.
The competing nature of these sources of infidelity should
give rise to an optimal Ω at which gate performance is
maximal. This is investigated further in [35].

Our two-qubit gate time is less than spin coherence
lifetimes reported in Ref. [13], suggesting the possibility
of experimental realization in the near future. Addition-
ally, the full effective Hamiltonian in Eq. (2) indicates the
possibility of generating other multi-qubit gates, e.g. by
making use of longitudinal couplings, by coupling more
DQD systems to the same resonator, or by using more
complicated driving fields [30]. These entangling gates,
along with local phase gates and already experimentally
realized EDSR rotations, would compose a set of uni-
versal quantum gates, all of which could be generated
purely via electrical manipulation. These gate genera-
tion mechanisms and our ability to utilize long-range ef-
fective spin-spin interactions greatly enhance prospects
of using solid-state DQD electronic spins for quantum
information processing.

Acknowledgments: this work is supported by the Army
Research Office (W911NF-17-0287).
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FIG. 5. Average infidelity of
√

iSWAP gates for various val-
ues of σǫ. For each noise instance, at each time step we
compute the average gate fidelity maximized over local op-
erations. We then average over noise instances the minimum
of the gate infidelity as a function of time. Here, we have
set ωr/2π = 6GHz, Ω1 = Ω2 = Ω, gAC1/h = gAC2/h =
40MHz, and θ1 = θ2 = π/2. (a) A plot of the infidelity
for the spin qubit, where we have set ωz1 = ωz2 = ω and
gx1/h = gx2/h = 200MHz. To ensure that spins remain dis-
persively coupled to the resonator, at each Ω, we choose ω
such that ω′

r − ω′

zi = 30g′xi (definitions given in supplemen-
tal material [27]). Average gate times increase from 830 ns at
Ω/h = 8GHz to 4.3 µs at Ω/h = 20GHz (b) A plot of the in-
fidelity for the charge qubit, where we have set gx1 = gx2 = 0.
Average gate times for the charge qubit are shorter than for
the spin qubit, ranging from 180 ns at Ω/h = 8GHz to 2.4 µs
at Ω/h = 20GHz.
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