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The magnetotransport properties of disordered ferromagnetic Kagome layers are investigated
numerically. We show that a large domain-wall magnetoresistance or negative magnetoresistance
can be realized in Kagome layered materials (e.g. Fe3Sn2, Co3Sn2S2, and Mn3Sn), which show the
quantum anomalous Hall effect. The Kagome layers show a strong magnetic anisotropy and a large
magnetoresistance depending on their magnetic texture. These domain-wall magnetoresistances are
expected to be robust against disorder and observed irrespective of the domain-wall thickness, in
contrast to conventional domain-wall magnetoresistance in ferromagnetic metals.

Introduction. Racetrack memory1 has been expected
to be a new generation spintronics memory device, which
consists of a ferromagnetic wire with magnetic domains
corresponding to ‘0’ and ‘1’. Those domains can be
driven by electric current and be read out rapidly with-
out mechanical heads. The most prominent advantage of
spin memories is that the device does not need electricity
to keep information as conventional random access mem-
ories. That is, the racetrack memory can become a low-
power-consumption device. However, this ferromagnetic
metal spintronics device is not practically realized yet, in
contrast with magnetic tunnel junction devices using gi-
ant magnetoresistance effect2, which have achieved great
success. The problem is that a current driven device of
ferromagnetic metals suffers from Joule heating. In this
paper, we propose that we may overcome this difficulty
by using quantum anomalous Hall (QAH) insulator3,4 or
Weyl semimetal5,6 states of Kagome layered materials.
In those topological states, domain walls can be driven
by electric field7–10. Therefore a large electric current
that causes Joule heating is not necessary. We show,
via numerical simulation of transport, that the current
is strongly suppressed by domain walls in QAH Kagome
layers.

In ferromagnetic metals, domain-wall magnetoresis-
tance (DWMR) effect originates from the spin mis-
tracking of the conduction electrons11,12. Therefore the
DWMR is fragile against gradual change of magnetiza-
tion (thick domain walls) or disorder, and is a weak ef-
fect compared with the widely-utilized giant magnetore-
sistance effect13. Nevertheless, the DWMR in magnetic
Weyl semimetals14–16 has been found to become huge
in thick domain walls and robust against disorder17,18.
Recently, it was proposed that the QAH state can
be realized in Kagome layered materials: Fe3Sn2

19,20,
Co3Sn2S2

21–25, Mn3Sn26–28. In order to utilize these ma-
terials for novel topological spintronics devices, we reveal
the mechanism and robustness of the DWMR in Kagome
layers.

In this paper, we propose a huge DWMR effect in fer-
romagnetic Kagome layers under disorder. We first study
the transport property with in-plane or out-of-plane mag-
netizations. Next we show the magnetization angle in-
duced topological phase transition. Then we investigate
the DWMR for various types of domain wall. We show
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FIG. 1. (Color online) Schematic figure of two-terminal ge-
ometry of the straight-edged Kagome ribbon (red sites). One-
dimensional ideal leads (gray sites) are attached on both
zigzag ends. The cyan and pink bonds represent the nearest-
and next-nearest-neighbor hopping, respectively.

that the DWMR is robust against disorder and hardly
suppressed by thick domain walls. These results imply
that the DWMR comes from the topological transport in
Kagome layers.
Model. We employ a single-layer Kagome lattice (see

Fig. 1) model with ferromagnetic order. The tight-
binding Hamiltonian is,

H = t
∑
〈i,j〉

c†iσ0cj + iλSO

∑
〈〈i,j〉〉

c†iνi,jσzcj

+ J
∑
i

c†iMi · σci +
∑
i

c†iViσ0ci . (1)

The first term is the nearest-neighbor hopping. The
second term is the spin-orbit coupling conserving z-
component of electron spin29,30, where νij = 2√

3
(dim ×

dmj) · ez = ±1 and dim is the unit vector connecting
the sites i and m, with m the site in between next-
nearest sites i and j. The third term is the spin-
exchange coupling with local magnetization Mi. The
magnetization comes from localized spins for high-spin
systems (e.g. Fe3Sn2

19,20,31) and from the mean-field of
itinerant spins for low-spin systems (e.g. Co3Sn2S2

21,24).
The fourth term is the on-site random potential (non-
magnetic disorder), which is uniformly distributed in
[−W

2 ,
W
2 ]. Pauli matrices σ represent the spin degree of

freedom. We take the hopping parameter t as the energy
unit and the distance a between the nearest-neighbor
sites as the length unit. The strength of the spin-orbit
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FIG. 2. (Color online) (a) Band structure of non-magnetic
Kagome ribbon. Green bands correspond to the helical edge
states. Conductance maps for clean Kagome nanoribbons
with (b) out-of-plane and (c) in-plane magnetizations. The
vertical axis is the Fermi energy E, and the horizontal axis is
the strength of the spin-exchange coupling JM . The light-
green regions correspond to the quantum spin Hall phase
(near JM = 0) or the QAH phase with Chern number 2.
The dark-green regions in (b) are QAH phase with Chern
number ±1.

coupling is set to λSO = 0.5t in the following.

We consider straight-edged nano-ribbons of Kagome
layer (Fig. 1), with length Lx = (5N − 1)a, and width

Ly =
√

3
2 (N − 1)a. We calculate the two-terminal con-

ductance between the terminals attached on the ends of
the ribbon, x = 0 and x = Lx, by using the recursive
Green’s function method32. Since we found that the sys-
tem size dependence is not important for the qualitative
behavior of DWMR, we show only the data for N = 31
here.

Two-terminal conductance. We first study the trans-
port with uniform magnetization. Without magnetiza-
tion, the Kagome lattice system shows quantum spin
Hall state30, similarly to the honeycomb lattice with spin-
orbit coupling. Under a strong spin-exchange coupling,
qualitatively different behavior arises depending on the
magnetization direction [Figs. 2(b) and 2(c)]. For out-
of-plane (z) magnetizations, the system shows the QAH
states, where quantized conductance arises due to the
chiral edge states. (Note that the quantum spin Hall
state survives for a small Mz because σz term does not
break the symmetry of the Hamiltonian.) In contrast,
for in-plane (x or y) magnetizations, the system tends to
be ‘diffusive’: metallic in the clean limit and insulating
in the presence of disorder, due to the Anderson localiza-
tion (see Fig. 3). We can switch the type of transport,
QAH and diffusive, by tilting the magnetization33,34, and
the difference is significantly contrasted in the presence
of disorder.

Next we show the magnetization angle θ dependence
of conductance (Fig. 4). For a small θ, where the magne-
tization is almost in out-of-plane direction, the conduc-
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FIG. 3. (Color online) Conductance maps for disordered (with
disorder strength W/t = 2) Kagome nanoribbons with (a)
out-of-plane and (b) in-plane magnetizations. The metallic
(yellow) regions in Fig. 2 becomes insulating (purple) in the
presence of disorder. We took disorder realization average
over 103 samples.
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FIG. 4. (Color online) Conductance as a function of the angle
θ of magnetization M = M(sin θ, 0, cos θ) at W/t = 0 (dot-
ted), 1 (dashed), and 2 (solid). The parameters are set to
JM/t = 1 and E/t = −0.4, which is around the center of
QAH region with Chern number two in Fig. 2(b). Averages
are taken over up to 104 samples, so that the error bars are
smaller than 0.005e2/h.

tance is quantized even in the presence of disorder. This
implies that the system is in the QAH state and shows
the edge transport. For a large θ, where the in-plane
component of the magnetization Mx becomes large, the
system shows conducting or insulating behavior depend-
ing on the disorder strength and system size. This is
the feature of the diffusive transport. The QAH-diffusive
crossover occurs when the bulk band touches the Fermi
energy. This crossover is understood as the competition
of the spin-orbit term λSO and in-plane component of
the magnetization JMx, which opens and narrows the
bulk band gap, respectively. This magnetization-angle
induced change of transport property leads to an un-
conventional type of magnetoresistance effect by spatial
modulation of magnetic texture: domain walls.

Domain-wall magnetoresistance. Then we study the
transport in systems with domain walls. We consider
three types of domain walls: Néel, head-to-head, and
in-plane. Note that a Bloch type wall gives the same
results as Néel type because in-plane magnetizations, σx
and σy, are equivalent in our model. The domain walls of
thickness ξ can be implemented by position x dependent



3

magnetizations,

M(x)=M

(
sech

x−Lx/2

ξ
, 0,− tanh

x−Lx/2

ξ

)
, (2)

for a Néel wall,

M(x)=M

(
− tanh

x−Lx/2

ξ
, 0, sech

x−Lx/2

ξ

)
, (3)

for a head-to-head wall, and

M(x)=M

(
sech

x−Lx/2

ξ
,− tanh

x−Lx/2

ξ
, 0

)
, (4)

for an in-plane wall.
Figure 5(a) shows the averaged conductance with uni-

form magnetizations or domain walls under disorder.
The conductance for the out-of-plane uniform magne-
tization shows that the QAH state (quantized plateau)
breaks down around W/t = 2.8 in the case of JM/t = 1
and E/t = −0.4. Under the in-plane magnetization (ei-
ther uniform or domain wall), where the disordered sys-
tem shows diffusive transport, the conductance quickly
decays as disorder strength increases. On the other hand,
the conductance with a Néel or head-to-head domain wall
shows an intermediate behavior against disorder.

The DWMR effect is characterized by magnetoresis-
tance ratio (MR), which is defined by the ratio of the
conductance in uniform magnetization Guni to that in a
domain wall GDW as

MR =
〈Guni〉
〈GDW〉

− 1, (5)

where 〈· · ·〉 represents the average over disorder realiza-
tions. Figure 5(b) shows the domain-wall MR as func-
tions of disorder strength W . The MR for Néel wall,
where Guni = Gout-of-plane and GDW = GNéel, is signifi-
cantly large (about 100%) at a weak disorder. It shows
a maximum (about 200%) at an intermediate disorder
strength. The position of the maxima (W/t ' 2.8) corre-
sponds to the point where disorder-driven QAH-diffusive
crossover occurs. After the transition, the system shows
diffusive transport in both the in-plane and out-of-plane
magnetizations, and the MR vanishes. This large MR in
the Néel wall arises because the diffusive region located
around the domain wall works as a resistor in the dis-
order tolerant QAH states. The MR for head-to-head
wall, where Guni = Gin-plane and GDW = Ghead-to-head,
becomes negative at a strong disorder, while it is posi-
tive and large for a weak disorder. The sign change of
the MR occurs when the conductance in diffusive state
becomes comparable with that in QAH state. Although
the MR keeps negative value for a strong disorder, the
difference Ghead-to-head − Gin-plane is maximized around
the phase transition point W/t ' 2.8. For an in-plane
wall, the conductance shows almost the same behavior
as the case of uniform magnetization. Thus the MR is
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FIG. 5. (Color online) (a) Averaged conductance 〈G〉 for
(green) out-of-plane magnetization, (yellow) in-plane magne-
tization, (red) Néel, and (blue) head-to-head walls with the
domain-wall thickness ξ/a = 30. The parameters are set to
JM/t = 1 and E/t = −0.4. (b) Magnetoresistance ratio
MR for (red) Néel, (blue) head-to-head, and (yellow) in-plane
walls with ξ/a = 0.5. The black line shows the MR in a con-
ventional half-metal state (at JM/t = 1 and E/t = 4) for
Néel wall with ξ/a = 0.5.

vanishing in disordered systems, as in conventional half-
metals. In materials with an in-plane easy axis, the in-
plane type wall is more favored than the head-to-head
type that has the out-of-plane magnetization near the
center of the wall, and the huge negative magnetoresis-
tance may be difficult to observe. Therefore, it should
be easier to obtain the huge positive magnetoresistance
of Néel/Bloch walls in the Kagome materials with out-
of-plane easy axis, such as thin film of Co3Sn2S2.

Lastly, we study the effect of domain-wall thickness
on the MR (see Fig. 6). The magnetoresistance effect
in Kagome layers with Néel or head-to-head walls is en-
hanced as the thickness increases. This is in good con-
trast with a conventional DWMR in half-metals, which
quickly vanishes for increasing domain-wall thickness, ir-
respective of the wall type; the spin of the conduction
electron can change gradually and the current can go
through the domain walls. At the center of domain walls,
the magnetization is π/2 rotated with respect to the
background. Therefore the transport properties in both
ends (deeply in the domains) and near the center of do-
main wall are significantly different (diffusive-/quantized
edge-transport) as shown in Fig. 4; in the presence of dis-
order, the transport is suppressed in the in-plane magne-
tized (diffusive) region and enhanced in the out-of-plane
magnetized (QAH) region. Therefore the MRs are mag-
nified as the wall (where the transport property changes)
thickness increases. We also note that the MR for a thin
Néel wall is 100%, because the edge states mixes at the
domain wall and a half of them go through the wall [see



4

-100%

0%

100%

200%

0 10 20 30

M
R

Domain wall thickness x/a

(a)

Néel

Head-to-head

Half-metal In-plane -1

0

1

0 154

M
z

x/a

(b)
Néel

(c)

FIG. 6. (Color online) (a) Magnetoresistance ratio MR as a
function of domain-wall thickness for (red) Néel, (blue) head-
to-head, and (yellow) in-plane walls. The black line shows
the conventional DWMR effect in half-metal, which vanishes
in a thick wall. The disorder strength W/t = 2. (b) Spatial
configuration of out-of-plane component of magnetization for
Néel wall with (solid) ξ/a = 30 and (dotted) ξ/a = 5. (c)
Schematic figure of chiral edge state coupled at the domain
wall.

Fig. 6(c)]. The transport in QAH systems with domain-
wall resistance is also studied by experiments35. If there
are multiple walls (like a racetrack memory), the resis-
tance additively increases and the MR becomes huge.

Conclusion. We have studied the transport in disor-
dered magnetic Kagome layers. We found a huge and
stable DWMR effect originating from the chiral edge
states of QAH system and the magnetization induced
topological phase transition. Considering Néel or Bloch
domain walls, we have shown that a huge (around 100%)
MR is achieved, irrespective of the domain-wall thickness

and weak disorder strength. We have also shown that
a negative DWMR can be realized in the head-to-head
wall. These features are contrasted with the conventional
DWMR in half-metals, which is always positive, fragile
against disorder, and vanishingly small in thick walls.
This robust magnetoresistance in QAH Kagome layers
will make an opportunity to realize the disorder-tolerant
and low-power consumption devices. For instance, the
current and Joule heating in the racetrack memory can
be suppressed by using the magnetic Kagome layers, such
as thin films of Co3Sn2S2. We also note that these topo-
logically protected DWMR effect will pave the way to
realize the single-material spintronics devices. The ab-
sence/presence of domain wall can be used as ‘0’/‘1’.
Furthermore, by simply changing the number of domain
walls, we may realize an analog-non-volatile memory,
which is now longed for neuromorphic computing and
deep learning. We expect the experimental realization of
domain walls in Kagome thin-films is not difficult, since
the Curie temperature is high enough, TC = 657K31 for
Fe3Sn2 and TC = 175K21 for Co3Sn2S2. The domains
can be engineered by using the junction of different co-
ercivity or just writing the domains35.
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