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We study the eigenenergies and optical properties of both direct excitons in a phosphorene mono-
layer in different dielectric environments, and indirect excitons in heterostructures of phosphorene
with hexagonal boron nitride. For these systems, we solve the 2D Schrödinger equation using the
Rytova-Keldysh (RK) potential for direct, and both the RK and Coulomb potentials for indirect
excitons. The results show that excitons formed from charge carriers with anisotropic effective mass
exhibit enhanced (suppressed) optical absorption, compared to their 2D isotropic counterparts, un-
der linearly polarized excitations along the crystal axis with relatively smaller (larger) effective
carrier masses. This anisotropy leads to dramatically different excited states than the isotropic ex-
citon. The direct exciton binding energy depends strongly on the dielectric environment, and shows
good agreement with previously published data. For indirect excitons, the oscillator strength and
absorption coefficient increase as the interlayer separation increases. The choice of RK or Coulomb
potential does not significantly change the indirect exciton optical properties, but leads to significant
differences in the binding energy for small interlayer separation.

I. INTRODUCTION

The experimental discovery of graphene in 20041 was a fascinating first glimpse into the world of two-dimensional
(2D) materials – its exceptional mechanical, thermal, and electrical properties suggested a new paradigm of flexible,
durable, and highly efficient 2D electronic devices. In 2010, when monolayers of both insulating hexagonal boron
nitride (h-BN)2 and semiconducting transition metal dichalcogenides (TMDCs)3 were first exfoliated, research ef-
forts towards the development of next-generation 2D devices accelerated. The discovery of monolayer (ML) black
phosphorus, referred to as phosphorene, came a full decade after the advent of graphene when a flurry of publications
in 2014 heralded the arrival of a new addition to the 2D materials universe4–9. Within the first year of its discovery,
the number of publications on phosphorene grew tenfold10, an unprecedented rate of growth even within the rapidly
expanding field of 2D materials research. The sudden shift in intense research focus towards phosphorene is clearly
justified, due to phosphorene’s unique properties which make it a promising candidate for a variety of applications
unsuited to its 2D relatives.

Perhaps the primary distinguishing feature of phosphorene is its highly corrugated crystal structure, where a
single monolayer appears to be composed of two distinct planes of phosphorus atoms. Each atom bonds to three
neighbors, two of which are in the same plane and one which occupies the opposite plane11. The in-plane and
out-of-plane bonds are characterized by very different bond lengths and bond angles, which in turn leads to extreme
anisotropy in its mechanical, thermal, and electronic properties12–21. This intrinsic structural anisotropy is expressed
in nearly every property of phosphorene, manifesting itself in charge carrier effective masses22 and mobilities4,6,9,23,
DC conductivity24, Raman spectra23,25–31, optical absorption9 and photoluminescence26 spectra, and in its response
to mechanical strain16. Furthermore, the rippled structure of phosphorene leads to a larger surface area, which makes
it ideal32 for a variety of environmental33–35 and biomedical36,37 sensing applications. In addition to the already
unique and intriguing structure of black phosphorus, it was recently shown that there are four more allotropes of
ML phosphorus, each exhibiting unique crystal structures and distinct material properties38.

Unlike the TMDCs, which are indirect gap semiconductors for all but their ML forms39, phosphorene remains
a direct gap semiconductor from its bulk form (≈ 0.3 eV)40 down to a single ML (≈ 2 eV)41. In addition to
its dependence on layer number25,26,42–47, the band gap, as well as many other properties, is also sensitive to the
magnitude and direction of an applied mechanical strain12,14,48–52, giving researchers a variety of ways to tailor the
electronic properties of phosphorene to suit a particular task. Due to its broadly tunable band gap, phosphorene has
also been identified as a promising material for converting solar energy to chemical energy53.

Characterizing the optical properties of phosphorene is not only important in the context of phosphorene’s poten-
tial applications to optoelectronic devices, but is an essential tool in understanding its fundamental properties, e.g.
its electronic band structure. Indeed, some of the first experimental studies of phosphorene measured its photolu-
minescence (PL)6,54, optical absorption9, and Raman7 spectra, as well as photocurrent generation27. In particular,
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one group observed an “extraordinary” PL peak in a phosphorene bilayer sample54, and another found a similarly
strong PL signal in ML phosphorene, centered at 1.45 eV6. It was quickly realized that these remarkable optical
properties were due to strongly bound and optically active excitons within the phosphorene ML.

Exciton binding energies in bulk semiconductors tend to be on the order of a few tens of meV due to strong
dielectric screening, adversely affecting their stability at room temperature and restricting the energy ranges in
which they are optically active. By contrast, excitons in 2D semiconductors exhibit dramatically increased binding
energies compared to their bulk counterparts, due on the one hand to quantum confinement effects reducing the
degrees of freedom and therefore the average kinetic energy of the system55, while on the other hand experiencing
weaker electrostatic screening.

Around the same time that experimentalists first observed evidence of strongly bound and optically active excitons
in mono- and few-layer phosphorene, a number of ab-initio studies of the electronic band structure and excitonic
properties of phosphorene were published. Using a variety of theoretical approaches and numerical methods, the
binding energy of the direct exciton in a phosphorene ML was calculated to be between 0.7-0.8 eV13,25,30,52,56–58,
while the exciton binding energy of ML phosphorene on an Si/SiO2 substrate was calcuated13 and measured59 to be
around 0.3 eV. Another ab-initio study25 predicted that the exciton-forming optical transition centered at 1.45 eV in
a freestanding phosphorene monolayer could absorb a staggering 15% of incident light, but only if the excitation was
linearly polarized along the armchair crystal direction – the extreme anisotropy of phosphorene left the transition
almost completely dark for light polarized perpendicular to the armchair crystal axis.

While research on excitons in phosphorene has largely focused on direct excitons in ML phosphorene, the field
has recently expanded to consider spatially separated excitons formed in heterostructures (HS) consisting of two
phosphorene monolayers separated by few-layer insulating h-BN, abbreviated as PHP HS. In this configuration,
the electron and hole occupy different parallel phosphorene monolayers and their recombination is suppressed by
the tunneling barrier created by the dielectric separating the phosphorene. As a result, indirect excitons exhibit
much longer lifetimes than their direct counterparts. Indirect excitons (also called dipolar excitons due to their
intrinsic dipole moment) exhibit many of the same properties as direct excitons, but importantly, this intrinsic
dipole moment creates a weak, repulsive exciton-exciton interaction. As a result of their enhanced binding energy,
the typically small effective mass of charge carriers in semiconductors, and weakly repulsive inter-particle interactions,
indirect excitons in e.g. the TMDCs have been identified by theorists as promising candidates for high-temperature
Bose-Einstein condensation (BEC) and superfluidity60–62. By extension, indirect excitons in phosphorene recently
attracted interest when it was proposed that they could exhibit directionally-dependent BEC and superfluidity63,64.

In this work, we calculate the eigenfunctions and eigenenergies of (i) direct excitons in ML phosphorene and (ii)
indirect excitons in a PHP HS. First, the Schrödinger equation for an interacting electron and hole with anisotropic
effective masses is solved numerically, yielding the eigenenergies and corresponding eigenfunctions of the excitonic
ground and excited states. We then use well-established methods65–68 for analyzing intraexcitonic optical transitions
to study the anisotropic exciton eigensystem, obtaining the optical transition energies, oscillator strengths and
absorption coefficients of the transitions.

This paper is organized as follows. In Sec. II, we summarize the theoretical approach for solving the 2D Schrödinger
equation of the electron-hole system with anisotropic effective masses. In Sec. III, we present the theoretical frame-
work for calculating the optical properties of excitons. We describe our computational approach and discuss the
choice of input parameters in Sec. IV. The results of our calculations for direct and indirect excitons follow in Sec. V.
We compare the calculated properties of excitons in phosphorene to the properties of excitons in other 2D materials
in Sec. VI. Our conclusions follow in Sec. VII.

II. EXCITONS WITH ANISOTROPIC EFFECTIVE MASS

In order to analyze the optical properties of excitons in phosphorene, we must first calculate the eigenenergies and
eigenfunctions of the exciton by solving the Schrödinger equation describing an interacting electron and hole with
anisotropic effective masses. This in turn requires providing the material properties of phosphorene as input parame-
ters to the Schrödinger equation, in particular the anisotropic effective carrier masses, the dielectric screening length
of ML phosphorene, and the dielectric constant of the environment. Significant effort has already been dedicated to
characterizing the electronic structure of phosphorene both experimentally43,54 and using theoretical22 and ab-initio
techniques17,21,30,41,42,49,69. Importantly, these analyses have yielded, among other things, the anisotropic effective
masses of both electrons and holes. Both the static dielectric constant40 and ML thickness of phosphorene70 are
also known, which is important for characterizing the electrostatic interaction between the electron and hole. These
parameters can be inserted directly into the Schrödinger equation describing the electron-hole system, enabling a
straightforward solution of the anisotropic exciton eigensystem. We therefore present the quantum mechanical de-
scription of the electron and hole using the 2D Schrödinger equation in such a way that it can be applied to either
direct or indirect excitons – further discussion on the formal differences between the two systems will be given as
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necessary. Finally, we note that the orthogonal crystal axes of phosphorene are referred to as the armchair and
zigzag directions16,18,71–75 – following the convention in the literature13,25,30, we associate the x- and y-axes with the
armchair and zigzag directions, respectively.

Within the effective mass approximation, the Hamiltonian for an interacting electron and hole with anisotropic
effective mass, constrained to move in the plane of their respective monolayers, is given by:
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where the mj
i , j = x, y, i = e, h correspond to the effective mass of the electron or hole in the x or y direction,

respectively, the positions of the electron and hole are given by ri = (xi, yi, zi), and V (re − rh) describes the
electrostatic interaction between the electron and hole. Eq. (1) can be used to treat both direct excitons (ze−zh = 0)
and indirect excitons (ze− zh ≡ D), where the interlayer separation D = lphos +NBNlBN is the distance between the
middle of the phosphorene monolayers, lphos and lBN are the thicknesses of ML phosphorene and h-BN, respectively,
and NBN is the number of h-BN monolayers separating the phosphorene. For indirect excitons in a PHP HS, we
consider the average z-position of the electron and hole to be in the middle of their respective phosphorene monolayers.
Therefore, the electron-hole separation D must account for (i) the thickness of one phosphorene ML, which can be
pictured as being “split” between the upper half of the lower ML and the lower half of the upper ML, as well as (ii)
the vertical distance between the phosphorene monolayers themselves due to the intervening h-BN.

Applying the standard procedure for separation of variables in the two-body problem76 to the anisotropic
Hamiltonian (1), we define the center-of-mass coordinate as R = (X,Y ), X = (mx

exe + mx
hxh)/(mx

e + mx
h),

Y = (my
eye+my

hyh)/(my
e +my

h), and the relative separation between the electron and hole as r = re−rh = (x, y,D),
x = xe − xh, y = ye − yh, D = ze − zh. After separation of variables in (1), the Schrödinger equation for the relative
motion of the electron-hole system is given by:
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where µj = (mj
em

j
h)/(mj

e + mj
h), j = x, y, is the reduced mass of the exciton in the x and y directions and E and

ψ (r) are the eigenenergies and eigenfunctions of the exciton, respectively.
For the direct exciton, the electron-hole interaction V (r) is described by the Rytova-Keldysh (RK) potential77,78,

VRK (r) ≡ VRK (r) = −πke
2
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In Eq. (3), k = 9 × 109 N·m2/C2, r ≡ |r| =
√
x2 + y2 (for the direct exciton in a phosphorene ML) or r =√

x2 + y2 +D2 (for the indirect exciton in a PHP HS) is the magnitude of the relative electron-hole separation,
κ = (ε1 + ε2)/2 describes the surrounding dielectric environment, where ε1 and ε2 correspond to the dielectric
constants of the materials a) above and below the ML for the direct exciton, or b) between and surrounding the
phosphorene monolayers for the indirect exciton in a PHP HS, H0 and Y0 are the Struve and Bessel functions of the
second kind, respectively, and ρ0 is the screening length, given by79,80:

ρ0 =
2πχ2D

κ
, (4)

where χ2D is the 2D polarizability, which can be calculated via ab-initio methods.
The asymptotic behavior of the RK potential with respect to the interparticle separation r is given by:
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2
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where γ is Euler’s constant.
It was determined theoretically40 that the static dielectric constant of phosphorene is anisotropic, εx = 12.5, εy =

10.2, and a more recent ab-initio study13 likewise found that the 2D polarizability χ2D was anisotropic, χx2D = 0.42
nm, χy2D = 0.397 nm. However, the authors of Ref. 13 found that if χx2D ≈ χy2D, one can approximate the 2D
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polarizability as isotropic by taking the average χ2D = (χx2D +χy2D)/2 without changing the results significantly, and
we will employ the same approach here. Let us also mention that in Ref. 7, the authors instead used the geometric

average of the components of the anisotropic dielectric constant, i.e. ε ≈ (εxεyεz)
1/3

.
We must note here that the RK potential was originally formulated as an explicitly 2D description of the electro-

static interaction in thin films. Nevertheless, there have been recent studies applying the RK potential to spatially
indirect excitons in van der Waals (vdW) heterostructures of 2D materials such as the TMDCs60,62,63,67 and Xenes68.
The logic behind applying the RK potential to spatially indirect excitons follows from two considerations: (i) the
dielectric environment is still inhomogeneous, just as in the case of the direct exciton, so the electron-hole interaction
potential should account for both the phosphorene monolayers and the interlayer dielectric, and (ii) as the interlayer

separation D becomes larger than ρ0, the total separation, r =
√
ρ2 +D2, between the electron and hole necessarily

becomes much larger than ρ0, and therefore the RK potential converges towards the Coulomb potential in any case.
Despite the recent aforementioned efforts to use the RK potential to study indirect excitons in vdW HS, it is still

quite common to use the Coulomb potential to study these systems. Therefore, for indirect excitons, we solve the 2D
Schrödinger equation using both the RK and Coulomb potentials and compare the results. The Coulomb potential
describing the interaction between spatially separated electrons and holes in a PHP HS can be written as:

VC (r) ≡ VC (r) = − ke2

ε′
√
x2 + y2 +D2

, (6)

where the dielectric constant ε′ takes the value of the environment, i.e. ε′ = κ.
Now, the eigenenergies E and corresponding eigenfunctions ψ(r) of the exciton are obtained by solving the

Schrödinger equation (2) with the RK potential (3) and D = 0 for direct excitons, or for indirect excitons with
either the RK (3) or Coulomb (6) potentials and D = lphos +NBNlBN.

While studying the optical properties of indirect excitons in a PHP HS, we use both the Coulomb and RK
potentials as a means of comparing and contrasting our results, while acknowledging that neither interaction potential
is a completely accurate description of the electron-hole interaction in a PHP HS. Therefore, let us mention here
some recent approaches to more accurately describe the electrostatic interaction in van der Waals heterostructures
composed of arbitrary combinations of 2D materials.

In Ref. 81, the authors discuss and compare two established methods of determining the effective electron-hole
interaction potential before presenting their own methodology based on a transfer matrix approach. In particular,
the authors first describe a classical electrostatic approach focused on obtaining an analytical solution of the Poisson
equation, the same approach used by Rytova and Keldysh to independently derive the RK potential, but the authors
note that this approach may be inadequate to describe atomically thin materials. On the other hand, a more
recently developed method, known as the quantum electrostatic heterostructure (QEH) model82–84, takes the opposite
approach, using ab initio calculations to incorporate quantum mechanical effects – the authors of Ref. 81 note that
QEH yielded more accurate results than the classical approach for at least one set of experimental data85. For their
part, the authors of Ref. 81 expand upon the classical Poisson equation method to consider the effective electron-hole
interaction in an N -layer vdW stack by self-consistently solving the Poisson equation in each layer of interest using
the transfer matrix method. Using transfer matrices to unify the description of the layers in the vdW HS allows for
a computationally fast and efficient means of obtaining accurate results which are highly competitive with the more
sophisticated and computationally demanding QEH model.

Later in the same year, in Ref. 86, another approach was developed focused specifically on the electron-hole
interaction in the TMDCs. Here, the authors effectively expand upon the dielectric slab concept upon which the RK
potential is based by recognizing that the ML TMDCs are best described not as one uniform layer, but rather as
three dielectric slabs, i.e. a central slab of Mo/W surrounded on the top and bottom by layers of S/Se/Te, which are
then placed in an arbitrary dielectric environment. This insightful modification of the theory results in significantly
more accurate predictions of quasiparticle eigenenergies in the TMDCs, especially trion binding energies and the
relationship between the ground and excited states of the neutral exciton.

Noting finally that the methods developed in Refs. 81 and 86 reduce to the RK potential under appropriate
circumstances, it is clear that these methods represent, at the very least, a promising step towards the development
of a theoretically comprehensive, physically accurate, and computationally efficient means of calculating quasiparticle
properties in arbitrary stacks of vdW materials. As the authors of both studies note, these new approaches exhibit
varying degrees of improvement over the RK potential depending on the situation, and further study is necessary to
determine the optimal circumstances under which to employ their respective methods. Application of these methods
towards the PHP HS studied in this work would be a more than welcome addition to the field, and a comparison of
the results obtained here using the RK and Coulomb potentials to these aforementioned newer methods would be a
fascinating and highly informative benchmark moving forward.
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III. EXCITON OPTICAL ABSORPTION

Our calculations of the optical properties of excitons in phosphorene employ well-established methods65 for mod-
eling the response of atomic-like systems to an incident electromagnetic (EM) wave of frequency ω and polarization.
This approach was successfully used to study optical transitions in excitons in semiconductor quantum wells66, and
has recently been applied to excitons in 2D materials67,68. The optical transition energy Etr corresponds to the
difference in energy between the initial state, ψi, and the final state, ψf , and must coincide with the energy of the
incident EM wave, i.e. Etr = Ef − Ei = ~ω.

The oscillator strength, f0, is a dimensionless quantity which gives the relative strength of a particular optical
transition. For the isotropic 2D exciton, f0 is proportional to the exciton reduced mass µ and does not depend on
the in-plane orientation of the linearly polarized EM wave65. Modifying the standard expression for f0 to account
for anisotropy, we consider and calculate two distinct oscillator strengths, f j0 , which correspond to the oscillator
strengths of optical transitions induced by linearly polarized light oriented along the x and y axes, respectively. The
polarization-dependent oscillator strength is thus given by:

f j0 =
2µj(Ef − Ei)|〈ψf |ê|ψi〉|2

~2
, (7)

In Eq. (7), |ψi〉 and |ψf 〉 are the wavefunctions of the initial and final states, respectively, and ê is the polarization
operator. The allowed and forbidden optical transitions for a particular polarization can be determined by calculating
f j0 , or more specifically by computing the dipole transition matrix element, |〈ψf |ê|ψi〉|2, which represents the overlap
integral between the initial and final wavefunctions when the initial state interacts with an external electric dipole
moment. The dipole transition matrix element is zero for forbidden transitions and non-zero if the transition is
allowed. For allowed transitions, the oscillator strength is positive under photon absorption (Ef − Ei > 0) and
negative under photon emission (Ef − Ei < 0).

A theoretical study13 of the eigenstates of excitons in phosphorene with the RK potential using both Gaussian
and sinudoidal basis functions provides crucial insight into the allowed optical transitions of the anisotropic exciton.
It is well known that for 2D-hydrogen-like systems with either the Coulomb (isotropic dielectric environment) or RK
(thin semiconducting film in an inhomogeneous dielectric environment) potentials, the allowed optical transitions of
linearly polarized light are strictly limited to those in which the angular momentum quantum number differs by 1
between the initial and final eigenstates13,76. For the anisotropic exciton, on the other hand, the authors of Ref. 13
found that linearly polarized light can induce a transition between any two states in which the symmetry of the
eigenfunction along the polarization axis changes from even to odd, or vice versa. For example, the ground state
eigenfunction is even along both the x and y axes, nx = ny = 0. Therefore, linearly polarized light along the y
direction can induce a transition to any state which is odd with respect to y, that is, n′y = ny + 1, 3, 5, . . . ; n′x = nx,
while x-polarized light can likewise induce a transition from the ground state to the eigenstates characterized by
n′x = nx + 1, 3, 5, . . . ; n′y = ny. When referring to the excitonic eigenstates in terms of the quantum numbers nx and
ny, we use the notation (nx, ny), and denote the excitonic ground state by (0, 0). Similarly, the pairs (1, 0) and (0, 1)
refer to the eigenstates where the exciton has absorbed one quantum of energy in the x- or y-directions, respectively
– we colloquially refer to these states as the “first excited state in (x or y)”. Further analysis of the eigenstates of
the anisotropic exciton is given in Appendix B.

While the oscillator strength gives us insight into the relationship between the eigenstates of the system and their
response to an external EM force, there is a related quantity, the absorption coefficient α(ω), which describes how

strongly a particular material absorbs light of a given frequency due to an optical transition specified by f j0 . Let us
consider the attenuation of an EM wave propagating through a homogeneous material. The intensity I of an EM
wave of frequency ω is a function of the propagation distance z, given by:

I(z, ω) = I0e
−α(ω)z, (8)

where I0 is the initial intensity of the wave. Eq. (8) illustrates the physical meaning of the absorption coefficient
α(ω), i.e. it is the reciprocal of the propagation distance z over which the intensity of the EM wave of frequency ω
decreases by a factor e. The absorption coefficient of optical transitions in isotropic atomic systems is given by65

α(ω) =

(
ω

ω0c

πe2

2ε0
√
κµ

nX
leff

f0

)(
(Γ/2)

(ω2
0 − ω2)2 + (Γ/2)2

)
, (9)

where ω0 = (Ef −Ei)/~ is the Bohr angular frequency of the optical transition, c is the speed of light, nX is the 2D
concentration of excitons in the system, leff is the effective vertical spatial extent of the exciton wavefunction, and
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Γ is the full width at half maximum of the optical transition, often referred to as the broadening, line broadening,
or damping.

The fraction nX/leff physically represents the 3D exciton denisty, which for direct excitons in ML phosphorene
can be straightforwardly written as the 2D concentration divided by the ML thickness, leff = lphos. Considering
indirect excitons in a PHP HS with the same 2D concentration nX , it follows that the 3D exciton density must be
reduced compared to direct excitons, i.e., leff > lphos. In this case we consider the electron and hole to be bound
to their respective phosphorene monolayers, and that the wavefunctions of the electron and hole do not penetrate
far into the surrounding h-BN, so that the indirect excitons are effective contained within the two phosphorene
monolayers. As the EM wave passes through the PHP HS, it only interacts with the exciton in regions where the
exciton wavefunction is appreciably non-zero, i.e. the interaction only occurs within the phosphorene monolayers
themselves. Therefore, we use leff = 2lphos for indirect excitons.

Summing Eq. (9) over all possible optically induced transitions in a given material (that is, not restricted to
excitonic transitions) yields the absorption spectrum, a thorough description of how strongly the material absorbs
light of frequency ω. Since we only consider a very limited subset of all possible optical transitions in phosphorene,
let us focus on the scenario where the energy of the incident excitation is equal to the energy of the transition given
by f j0 , ~ω = Ef − Ei, which corresponds to a local maximum in the absorption spectrum α(ω):

αj(ω = ω0) ≡ αj =

(
πe2

2cε0
√
κµj

nX
leff

f j0

)(
2

Γ

)
. (10)

Eq. (10) can be used to characterize how strongly a particular optical transition absorbs the incident excitation.
Additionally, the value of αj can be used to conveniently compare the relative strengths of different excitonic tran-
sitions.

As previously stated, the anisotropic absorption coefficient, αj , describes the attenuation of an EM wave of
frequency ω and polarization as a propagates an arbitrary distance z through a dielectric. 2D materials, however,
do not have arbitrary thickness – indeed, 2D materials are noteworthy precisely because each monolayer has a
well-defined thickness. Therefore, it would be instructive to consider how the intensity of the incoming EM wave
is reduced due to the wave propagating a distance which corresponds exactly to the thickness of the phosphorene
ML(s) occupied by the excitons. Recalling Eq. (8), we now define the polarization-dependent absorption factor as
Aj ≡ 1− (I(z = leff , ω = ω0)/I0), or:

Aj = 1− exp
[
−αj leff

]
= 1− exp

[
−
(

πe2nX
2cε0
√
κµj

f j0

)(
2

Γ

)]
. (11)

Eq. (11) therefore gives the fractional decrease in the intensity of the EM wave as it propagates through one exciton
layer (that is, one ML for direct excitons, or one PHP HS for indirect excitons), i.e. A = 0.01 means that each
exciton layer absorbs 1% of the incident EM wave. The absorption factor is particularly convenient when comparing
absorption between direct and indirect excitons, or between excitons in 2D materials with different thicknesses.

Simplified forms of Eqs. (10) and (11) are given by Eqs. (A6)- (A10) in Appendix A.

IV. COMPUTATIONAL APPROACH

A. Discussion of input parameters used in numerical calculations

Calculating the optical properties of the exciton using Eqs. (7), (10), and (11) requires the excitonic eigenener-
gies En and eigenfunctions |ψn〉, which are obtained by solving the Schrödinger equation (2) with either the RK
potential (3) (for both direct and indirect excitons) or the Coulomb potential (6) (for indirect excitons only). The
Schrödinger equation takes as input parameters the anisotropic exciton reduced masses µx and µy and either the
uniform dielectric constant ε′ for the indirect exciton with the Coulomb potential, or the average environmental
dielectric constant κ and 2D polarizability χ2D for either direct or indirect excitons with the RK potential.

Numerical solution of the Schrödinger equation using the aforementioned interaction potentials and input param-
eters is performed using the finite element method (FEM), which yields N pairs of eigenenergies and eigenfunctions
which are solutions to the Schrödinger equation, corresponding to the N most-strongly-bound states. The eigenen-
ergies En and eigenfunctions ψn, along with the appropriate anisotropic reduced mass µj , are then used as input
parameters to calculate the oscillator strength, f j0 according to Eq. (7). The corresponding polarization-dependent
absorption coefficients αj and absorption factors Aj can then be calculated using as inputs the oscillator strength,
f j0 , the anisotropic exciton reduced mass µj , the 2D exciton concentration nX , the phosphorene ML thickness l,
environmental dielectric constant κ (or ε′ for the Coulomb potential), and the excitonic optical broadening Γ.
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TABLE I: All input parameters used in numerical calculations. Each set of masses, denoted µi, i = a, b, c, d, was taken from
the corresponding reference. The anisotropic exciton reduced masses µj , calculated using the corresponding effective charge
carrier masses mj

i , are printed in bold to aid the eye. The next three columns denote the following quantities: the phosphorene
ML thickness, lphos; the 2D polarizability, χ2D; and the 2D exciton concentration, nX . The column titled “Env.” denotes
the four dielectric environments for which we calculate the properties of direct excitons in ML phosphorene: freestanding, i.e.
suspended in vacuum (FS); supported on either an SiO2 substrate (SS) or h-BN substrate (HS) with the top of the ML exposed
to air or vacuum (“uncapped”); and encapsulated by h-BN on the top and bottom (HE). Each of the four environments are
associated with a particular value for κ and Γ, given in the following two columns, respectively. The value of Γ for FS, SS,
and HS was chosen based on Refs. 6,26,59, while the value for HE is based on Refs. 87–89. Additional discussion of these
quantities are given in the text below.

mx
e mx

h µx my
e my

h µy lphos [nm]70 χ2D [nm]13 nX [m−2]90 Env. κ Γ [s−1]

µa
75 0.16 0.15 0.0630 1.24 4.92 0.968

0.541 0.41 5× 1015

FS 1 1014

µb
91 0.1 0.2 0.0667 1.3 2.8 0.888 SS 2.4 1014

µc
92 0.199 0.1678 0.0910 0.7527 5.35 0.660 HS 2.945 1014

µd
42 0.17 0.15 0.0797 1.12 6.35 0.952 HE 4.89 1013

The standard values of these input parameters are given in Table I – unless otherwise noted, all subsequent results
were obtained using these values. Whereas the sets of carrier masses µi, i = a, b, c, d, were straightforwardly taken
from the corresponding references, some additional discussion of the other input parameters is necessary.

The phosphorene ML thickness, lphos, obtained via ab-initio calculations in Ref. 70, agrees well with theoretical
results from other works, namely 0.53 nm26 and 0.6 nm6 – we note that these last two references also measured
the ML thickness using atomic force microscopy (AFM), obtaining values of 0.85 and 0.7 nm, respectively, but
the authors themselves note that AFM measurements tend to over-estimate ML thickness. The 2D polarizability,
χ2D, was calculated from first-principles in Ref. 13 and agrees well with the value of 0.38 nm, also obtained from
first-principles in Ref. 58.

The 2D exciton concentration, nX , differs from the previous quantities in that it is not a material property
that can be definitively measured or calculated – instead, nX depends mainly on the excitation intensity, that
is, a high-intensity laser will excite a higher concentration of excitons than a low-intensity laser. Therefore, it is
reasonable to expect that nX can and will vary significantly between experimental configurations, and even from
one trial to the next. Instead of exhaustively considering a wide range of possible values of nX , we instead choose
one value of nX which is representative of a typical experiment to use throughout our calculations. One recent
study93 of exciton-exciton annihilation rates in a phosphorene ML found that exciton-exciton annhiliation becomes
the dominant recombination mechanism (as opposed to e.g. thermal decomposition or radiative recombination) at
an exciton concentration of about 6.1 × 1016 m−2. While this value is not representative of a typical experiment,
it may still be helpful to consider as an upper bound. Lacking an appropriate result from experimental studies in
phosphorene, we turn instead to excitons in TMDCs, where we find a reasonable value of nX in Ref. 90, which
studied excitons in a WSe2 ML.

Based on previous optical studies of excitons in 2D materials, we will use two values of Γ. It is important
to note that the Γ obtained from experimental measurements is, like nX , dependent on several external factors,
including but not limited to: the sample temperature; the presence of structural defects within the sample; and/or
surface contaminants at either the substrate/monolayer interface or the monolayer/air interface. These confounding
variables can significantly alter the observed optical properties of the material, especially the presence of defects and
contaminants which may be difficult to identify, characterize, isolate, and prevent.

In choosing a value for Γ, we therefore adopt a similar approach to our choice of a value for nX – we will choose
a value for Γ which is generally appropriate for the system in question, but need not correspond exactly to one
particular observed value. Many experimental PL/absorption studies of excitons in phosphorene are conducted
with the phosphorene ML placed on a substrate (typically SiO2), while the opposite side of the ML is left exposed
to the atmosphere. These studies all observed significant broadening of the excitonic emission/absorption peak,
with reported values of 70 meV59, 100 meV6, and 150 meV26. Therefore, when calculating α and A for FS or
uncapped phosphorene (that is, on an SiO2 or h-BN substrate), we will use the value Γ = (70 meV)/~ ≈ 1014

s−1. For phosphorene encapsulated by h-BN, we again turn to similar studies on the TMDCs, where large excitonic
broadening was observed in uncapped TMDC samples at room temperature3,94,95, but encapsulating the TMDC with
h-BN was found to drastically reduce the excitonic linewidths to their cryogenic limit87–89, Γ = (11 meV)/~ ≈ 1013

s−1. Results for α and A for direct excitons will therefore be presented using two different values of Γ, depending on
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the dielectric environment, while for indirect excitons only Γ = 1013 s−1 will be used since only h-BN encapsulation
of the PHP HS is considered.

V. RESULTS OF CALCULATIONS

A. Direct Excitons

In this Section we present the results of our calculations of the eigenenergies and optical properties of the direct
exciton using the input parameters listed in Table I, focusing in particular on how our results change depending on
the four sets of masses µi and the four dielectric environments denoted by FS, SS, HS, and HE. The notation X[i, k]
will be used as a shorthand for “the value of the quantity X calculated using the set µi in the dielectric environment
k ∈ [FS, SS, HS, HE]”, i.e. fy0 [a,FS] means “the value of fy0 in FS phosphorene calculated using µa.” For the input
parameters that produce the minimum or maximum value of a particular quantity, a min or max subscript will be
added to the corresponding parameter, i.e. Eb[dmax, k] means that µd yields the maximum value of Eb for the given
k. The percent difference between the maximum and minimum values, with respect to e.g. the µi, of a particular
quantity will be denoted with a % subscript on the parameter, i.e. Eb[i%, k]. Averaging a quantity over a set of
parameters will be denoted by the subscript avg., as in Eb[iavg., k]. If i or k have been previously established in
context, either index may be omitted from the notation X[i, k].

In Table II, the eigenenergies of the direct exciton in a phosphorene ML are calculated for four different dielectric
environments and for each of the four sets of µi from Table I. The binding energies follow the relation Eb[d, k] >
Eb[c, k] > Eb[b, k] > Eb[a, k] for all dielectric environments k. The choice of the µi does not change Eb significantly,
though the difference between the minimum and maximum Eb increases with κ, e.g. we find Eb[i%,FS] ≈ 5%, while
Eb[i%,HE] ≈ 8.5%. This percent difference also increases for higher excited states. Of course, the parameter which
most significantly changes Eb is κ, where Eb[i,FS] ≈ 2Eb[i, (SS,HS)] and Eb[i,SS] ≈ 2Eb[i,HE].

In addition, our results for the binding energy of the direct exciton shown in Table II agree very well with previously
reported results in a variety of different dielectric environments. The binding energy of the direct exciton in a FS
phosphorene ML has been calculated via ab-initio methods on several occasions – prior calculations vary between
700-850 meV13,25,30,52,56,57, which agrees quite well with our average value of about 740 meV, considering the previous
results were obtained using a variety of methods and, therefore, a variety of input parameters. Regarding phosphorene
on an SiO2 substrate, the direct exciton binding energy was theoretically calculated to be about 400 meV13, which is
within the range shown in Table II. Another experimental study of phosphorene on an SiO2 substrate59 determined
the binding energy to be about 300 meV, while a separate experimental investigation performed around the same
time26 obtained a surprisingly high value of 900 meV. Finally, in Ref. 13, where the electron-hole interaction was also
modeled using the RK potential, the direct exciton binding energy was calculated to be about 200 meV for κ = 5,
which falls within our calculated range for HE (κ = 4.89).

The oscillator strengths of the first allowed optical transitions for x- and y-polarized light are shown for all four
dielectric environments in Fig. 1. In particular, fy0 (shown with the open markers) refers to the (nx = 0, ny = 0)→
(nx = 0, ny = 1) transition and fx0 (shown by the solid markers) refers to the (0, 0) → (1, 0) transition. Since both

TABLE II: Eigenenergies of the direct exciton in four dielectric environments: freestanding (FS), supported on an SiO2 (SS)
or h-BN (HS) substrate, and encapsulated by h-BN (HE).

En[FS], [meV] En[SS], [meV] En[HS], [meV] En[HE], [meV]

|n〉 Min Max Min Max Min Max Min Max

|1〉 718.7 753.3 381.7 407.5 317.8 341.1 187.9 204.7

|2〉 478.6 508.1 202.2 221.9 156.3 173.2 74.32 84.61

|3〉 377.6 408.7 144.7 162.2 109.5 123.7 50.31 57.78

|4〉 310.9 330.3 105.6 117.7 76.97 87.22 31.97 37.94

|5〉 272.4 300.0 88.40 101.3 63.60 74.25 26.96 31.62

|6〉 250.4 281.3 80.36 94.27 58.38 69.04 24.70 29.61
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FIG. 1: Relationship between f j
0 and Ej

tr for the first allowed optical transition (i.e. the x or y transition with the smallest
transition energy) under x- and y-polarized excitations, shown by solid and open markers, respectively. The plot marker
denotes the values of Ej

tr and f j
0 averaged over the four µi, while the axes of the ellipses around each data point correspond

to the minimum and maximum values of Ej
tr and f j

0 .

Ejtr and f j0 depend on µi, both quantities are averaged across the four µi and the average value is denoted by the
plot marker. The major and minor axes of the ellipses encircling each data point mark the minimum and maximum
values of Ejtr and f j0 .

From Fig. 1, we see that both f j0 and Ejtr are decreasing functions of κ. The effect of anisotropy is also evident in
the relative magnitudes of fx0 and fy0 , where fy0 [i, k]� fx0 [i, k] for all k, and furthermore, fy0 [i,HE] > fx0 [i,FS]

TABLE III: Calculated ratios f̃ j
0 [i, k] ≡ f j

0/µ
j
i , averaged over the four µi, as well as the absorption coefficient scale factor, C̃D,

from Eq. (A6). For tabulated values of the f̃ j
0 for each µi, see Appendix A, Table V. The units of f̃ j

0 are [m−1
0 ].

Env. f̃x
0 [iavg.] f̃

y
0 [iavg.] C̃D [×106 m−1]

FS 8.812 1.056 3.082

SS 6.543 0.991 1.990

HS 5.834 0.965 1.796

HE 4.05 0.874 13.93

Table III shows the ratios f̃ j0 [iavg., k] along with the corresponding C̃D[k]. Following the procedure outlined in
Appendix A, the average absorption coefficient with respect to the µi can be easily calculated as αj [iavg., k] =

C̃D[iavg., k]f̃ j0 [iavg., k].
Interestingly, whereas fy0 [i, k] > fx0 [i, k] for all i and k, we find that the opposite is true for αx and αy. The reason

for this can be seen from Tables I and III – although fy0 can exceed fx0 by anywhere between about 30% (in FS) and

over 100% (in HE), µyi can be more than an order of magnitude larger than µxi , so that the ratio f̃x0 is always greater

than f̃y0 , and hence αx will always be larger than αy.
A prior study9 of the optical absorption and PL properties of ML phosphorene found that interband excitations

were much more strongly absorbed if the excitation was polarized along x than along y. While the underlying theory
of exciton-forming transitions differs substantially from the treatment of intra-excitonic transitions, it is plausible
that in both cases, the fact that µx is much smaller than µy leads to enhanced absorption of x-polarized light. In
other words, the amplitude of the oscillatory response of the exciton to an x-polarized driving force is much larger
than the amplitude of oscillations induced by a y-polarized excitation, due to the fact that µy � µx.
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From Eqs. (10) and (11), we see that αj and Aj are inversely proportional to
√
κ. At the same time, we find

that f̃y0 [i,FS] ≈ 1.25f̃y0 [i,HE], while f̃x0 [i,FS] > 2f̃x0 [i,HE]. Combining these two trends and assuming for the
moment that Γ remains the same in all dielectric environments, we would expect a significant change in both αx

and αy, approximately αx[i,FS] ≈ 5αx[i,HE] and αy[i,FS] ≈ 3αy[i,HE]. Assuming instead that h-BN encapsula-
tion significantly reduces Γ, we find that αx[HE] is about twice as large as αx[FS], while αy[HE] is greater than
αy[FS] by nearly a factor of four. The aborption factor Aj reveals the significant difference in excitonic optical
activity between the two polarization directions and the four dielectric environments, where we obtain Ax[iavg., k]
as 1.36%, 0.68%, 0.55%, 3.0% and Ay[iavg., k] as 0.017%, 0.011%, 0.009%, 0.066%, for k = FS, SS, HS, HE,
respectively.

Furthermore, analysis of Eqs. (7) and (10) reveals that the difference in magnitude between αx and αy is due to

the product of the optical transition energy, Ejtr, and the dipole transition matrix element, |〈ψf |ê|ψi〉|2. As shown

in Fig. 1, the difference between the Ejtr is roughly a factor of two in most cases, whereas αx can exceed αy by at
least a factor of five, indicating that the dipole transition matrix element differs greatly between x- and y-polarized
transitions. Indeed, further consideration of the excitonic eigenfunctions underpinning the dipole transition matrix
element illuminates the root cause of the observed phenomena. Qualitatively speaking, a smaller effective mass
results in a wavefunction with a broader spatial distribution, such that in phosphorene the eigenfunctions are much
more spread out along the x-axis than along the y-axis. We see that the polarization operator ê, which is substituted
in the integral as the coordinate variables x or y (as appropriate), is responsible for the dramatic difference between
the value of the integrals corresponding to x- or y-polarized excitations, since the eigenfunctions decay more quickly
along the y-axis than they do along the x-axis.

In other words, the dipole transition matrix element is evaluated as the integral of the product of three functions,
two of which (i.e. ψi and ψf ) decay exponentially at large |r|, while the third function is simply linear with respect to
the coordinate axis corresponding to the polarization operator. If the functions ψi and ψf exponentially decay much
more slowly along the x-axis than the y-axis, specifically because µy � µx, then the integrand for ê → x remains
non-vanishingly small farther away from the origin than when ê→ y.

Comparing the optical quantities Ejtr, f
j
0 , αj , and Aj for all µi and across all dielectric environments, we observe

some general trends. Let us first address the quantities related to the y-transitions, followed by the x-related
quantities.

The optical transition energies follow the relation Eytr[c, k] > Eytr[d, k] > Eytr[b, k] > Eytr[a, k] in all k. Curiously, the
oscillator strengths in FS phosphorene are reversed compared to the transition energies, i.e. fy0 [a,FS] > fy0 [b,FS] >
fy0 [d,FS] > fy0 [c,FS], though we instead obtain fy0 [a, k′] > fy0 [d, k′] > fy0 [b, k′] > fy0 [c, k′] for k′ = (SS, HS, HE).

The ordering with respect to the µi is reversed again for the f̃y0 , and therefore for αy and Ay as well, i.e. f̃ j0 [c, k] >

f̃ j0 [b, k] > f̃ j0 [d, k] > f̃ j0 [a, k], for all k. Recalling from Table I that µya > µyd > µyb > µyc , it appears that f j0 is an

increasing function of µj , while Ejtr is a decreasing function of µj .
In contrast to the y-polarized quantities, whose relative magnitudes were constant across the four dielectric en-

vironments for Eytr and f̃y0 but were inconsistent in fy0 , we find that the ordering of the Extr[i, k] is different for

each k, while the relative magnitudes of both fx0 and f̃x0 are consistent for all k. The transition energies Extr
show significant variation between different environments, with the only constant being that Extr[d] is always the
largest value. Whereas Extr[d,FS] > Extr[a,FS] > Extr[b,FS] > Extr[c,FS], we find that the relative magnitude of
Extr[c] increases as the dielectric screening increases, while Extr[a] decreases relative to the other values, such that
Extr[d,HE] > Extr[c,HE] > Extr[b,HE] > Extr[a,HE]. The oscillator strengths, on the other hand, follow the same order
as the µxi themselves, i.e. µxc > µxd > µxb > µxa, for all dielectric environments k. Additionally, for all k, the ordering

of the f̃x0 , αx, and Ax is reversed with respect to the µxi .
These observations suggest that while the optical properties corresponding to a particular excitation polarization

are primarily determined by the corresponding µj , these quantities also exhibit some dependence on the opposite
µj

′ 6=j , stemming from the dependence of the optical properties on the excitonic ground state, whose properties must
represent both µx and µy. Considering the uniquely strong response of the material properties of phosphorene, e.g.
the anisotropic effective charge carrier masses, to external stimuli such as mechanical strain26,52, the preceeding
analysis should prove useful in guiding future efforts to engineer phosphorene MLs with specific optical properties.

B. Indirect Excitons

In this Section we present and analyze the same calculated quantities as for the direct exciton, now for the indirect
exciton in a PHP HS. All quantities were calculated by solving the Schrödinger equation with both the RK and
Coulomb potentials, for different interlayer separations corresponding to NBN = 1, 2, 3, . . . , 8. We will adapt the
notation X[i, k] used in the previous section to accomodate the different input parameters for the indirect exciton.
Here, the notation X[i, p,NBN] will denote “the quantity X calculated using µi, the potential p = (RK, C), and
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interlayer separation NBN.”
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FIG. 2: Comparison of the eigenstates |1〉, |2〉, |3〉, and |6〉 for the indirect exciton, calculated using both the RK (solid markers)
and Coulomb (open markers), as a function of the number of h-BN monolayers separating the phosphorene monolayers, NBN .
The states |4〉 and |5〉 are not shown due to overlap with the |3〉 and |6〉 states. Calculations were performed for all four µi,
where the average value of En from the four µi is denoted by the plot marker and the boundaries of the shaded regions denote
the minimum and maximum values of En.

In Fig. 2, we plot the dependence of the indirect exciton eigenenergies En, n = 1, 2, 3, 6, on the interlayer separa-
tion, NBN, where all En were calculated for both the RK (solid markers) and Coulomb (open markers) interaction
potentials.

The difference between the RK and Coulomb potentials is significant only for the first couple eigenstates at small
interlayer separations. We find that the percent difference between the RK and Coulomb potentials decreases as
NBN increases, that is, Eb[i, p%, NBN ] ≈ 11%, 7.7%, 5.5%, . . . , 2% for NBN = 1, 2, 3, . . . , 8. The excited state
energies follow a similar trend, where we find E2[i, p%, (1, 8)] ≈ (7.5%, 1.5%). As shown in Eq. (5) when the relative
separation |r| exceeds the screening length, ρ0 = (2πχ2D)/κ, the RK potential converges to the Coulomb potential.
For a PHP HS with κ = 4.89 and χ2D = 0.41 nm, we calculate ρ0 = 0.526 nm. Therefore, one would expect the
RK and Coulomb potentials to converge as the total electron-hole separation exceeds 0.526 nm. Considering that
lBN = 0.333 nm, it is unsurprising that the indirect exciton binding energies for the RK and Coulomb potentials
start to overlap as NBN > 2. The convergence of the excited state eigenenergies is also the result of increasing
electron-hole separation, since the average separation of a two-particle bound state increases as progressively higher
excited states are accessed.

As with the direct exciton, the choice of µi does not significantly change the indirect exciton binding energy –
for example, we calculate Eb[i%, p, 1] ≈ 6%, decreasing to about Eb[i%, p, 8] ≈ 4%. Although the value of κ is the
same, the indirect exciton binding energy is reduced by about 40% compared to the direct exciton in HE due to the
increased electron-hole separation in the PHP HS, from Eb[i,HE] ≈ 200 meV to Eb[i, p, 1] ≈ 120 meV.

In Fig. 3, we present our calculations of f j0 for both the RK and Coulomb potentials for NBN = 1− 6. The f j0 are
shown in separate plots for each value of NBN. Our calculations show that increasing NBN leads to an increase in
f j0 and a decrease in Ejtr. Similar numerical studies of the indirect exciton in Xene68 and TMDC67 heterostructures

with interlayer h-BN also indicated that f j0 is an increasing function of NBN.
In general, fy0 does not change much as NBN increases because fy0 was already quite large for the direct exciton.

On the other hand, since fx0 was small in the case of the direct exciton, we observe a significant increase in fx0 as NBN

is incrementally increased. We also find that Etr[i,C, NBN] > Etr[i,RK, NBN], while f j0 [i,RK, NBN] > f j0 [i,C, NBN ],
for any i and NBN.

Let us also mention an unusual trend in the range of calculated fx0 [i, p,NBN] with respect to increasing NBN
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– whereas the fx0 [i] become more tightly clustered as NBN increases from 1 to 5, the values become more spread
out as NBN continues to increase from 5 to 8. The relative magnitudes of the fx0 [i] do not change with NBN

nor with p – they are always related by fx0 [c] > fx0 [d] > fx0 [b] > fx0 [a], as is the case with the direct ex-
citon for k = (SS, HS, HE). Considering instead the incremental increase in fx0 [i] with NBN provides insight
into the observed behavior. For example, the calculated values of fx0 [a] increase nearly linearly at small NBN

before their growth is suddenly and strongly suppressed around NBN = 6, i.e. fx0 [a,RK, (1, 2, 3, 4, 5, 6, 7, 8)] =



13

(0.523, 0.603, 0.671, 0.728, 0.773, 0.804, 0.820, 0.821). By contrast, fx0 [c] increases nearly linearly for all NBN, i.e.
fx0 [c,RK, 2] − fx0 [c,RK, 1] = 0.067, while fx0 [c,RK, 8] − fx0 [c,RK, 7] = 0.057. For comparison, the change in fx0 [b],
which in general is only slightly larger than fx0 [a], starts to taper off between NBN = 7 and NBN = 8, suggesting that
it is also approaching some kind of asymptotic limit, while fx0 [d], only slightly smaller than fx0 [c], also shows nearly
linear growth throughout the range of NBN calculated here.

We are therefore led to the conclusion that the incremental increase of fx0 [c] must be strongly suppressed for
NBN ≥ 8, such that fx0 [c] approaches some constant value less than 1. On the other hand, it appears to be the
case that the fx0 [a] has already converged towards its asymptotic value, which must be close to the calculated value
of 0.821 at NBN = 8 – meanwhile, fx0 [b] has an asymptotic maximum which is probably not much greater than
fx0 [b,RK, 8] = 0.875. Recalling µxc > µxd > µxb > µxa, it appears that the magnitude of µj is directly related to this

asymptotic value of f j0 at large separations NBN, and furthermore that the NBN at which this asymptotic value is
reached also increases with µj .

Heterostructures of 2D materials exhibit a variety of interesting excitonic and optical behavior, including but not
limited to the ability to tune the excitonic optical absorption strength and the corresponding transition energies. A
more comprehensive study, one which, for example, systematically varies each input parameter individually over a
broad yet physically plausible range, is necessary. By examining in detail how the excitonic properties change with
respect to variations in the individual input parameters, we can deepen our understanding of which input parameters
determine the maximal asymptotic value of f j0 and the interlayer separation NBN at which the asymptotic value is

reached, and whether or not the asymptotic properties of f j0 can be further tuned by strain, dielectric environment,
external electromagnetic fields, etc., and if so, by how much these quantities may change when these external tuning
mechanisms are applied.

Let us now analyze in depth the effect that the choice of interaction potential has on the optical properties of the
indirect exciton.

Our calculations show that the percent differences for Ejtr and f j0 between the RK and C potentials generally

decrease as NBN increases. First, we find that Ejtr[i, p%, NBN ] > En[i, p%, NBN], for all i, j, n, and NBN, i.e. the
choice of interaction potential leads to a larger difference in the optical transition energies than in the corresponding
individual eigenenergies, though in general the Ejtr[i, p,NBN] follow the same trends with respect to increasing NBN

as the eigenenergies themselves. These differences between the RK and Coulomb potentials decrease quickly with
NBN, from Ejtr[i, p%, 1] ≈ (14.5%, 16.5%) for j = (x, y), respectively, to Ejtr[i, p%, 5] ≈ (4.2%, 4.9%).

Turning now to the oscillator strengths, we observe some unusual deviations from the consistent patterns observed
for Ejtr. First, let us discuss the general relationship between f j0 , NBN, and µi, returning later to the exceptions
mentioned earlier.

As mentioned earlier, since fy0 is already quite large for the direct exciton, it does not change significantly as
NBN increases. By the same logic, the percent difference in fy0 [p%] is similarly small and decreases sharply as
NBN increases. In particular, fy0 [p%, (1, 8)] ≈ (1%, 0.06%), and furthermore, fy0 [c, p%, NBN] > fy0 [b, p%, NBN] >
fy0 [a, p%, NBN] > fy0 [d, p%, NBN], for all NBN. By contrast, the relationship between fx0 [i] and the interaction potential
is less straightforward. Whereas fx0 [(c, a), p%, 1] ≈ (6.4%, 8.87%), corresponding to the minimum and maximum
values, we find unexpectedly that the relationship is reversed at large interlayer separations, i.e. fx0 [(c, a), p%, 7] =
(1.28%, 0.19%). Furthermore, the percent difference fx0 [a, p%] actually increases from NBN = 7 to NBN = 8, from
0.19% to 0.25%. This is the only time that we observe an increase in the RK/C percent difference of any quantity
with increasing NBN.

While these quantities may not be noteworthy on their own, they are analyzed in-depth here because of their
unusual deviation from the trends which until now have consistently held true. It is unclear why only fx0 shows this
abnormal progression, even as Extr and fy0 do not.

TABLE IV: Dependence of the ratio f̃ j
0 , averaged over the µi, on the number of h-BN monolayers, NBN, for the RK and

Coulomb potentials. The values of f̃ j
0 for each µi are tabulated in Table VI in Appendix A. The units of f̃ j

0 are [m−1
0 ].

NBN = 1 NBN = 2 NBN = 3 NBN = 4 NBN = 5 NBN = 6

f̃x
0 [iavg.]

RK 7.531 8.557 9.441 10.22 10.89 11.46

C 6.963 8.155 9.136 9.981 10.71 11.33

f̃y
0 [iavg.]

RK 1.083 1.107 1.122 1.133 1.140 1.146

C 1.072 1.101 1.119 1.131 1.139 1.145
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In Table IV, we present the calculated ratios f̃ j0 , averaged over the four µi, for all NBN. We find that Ax[RK]
increases from about 5.5% to about 8.8% as NBN increases from 1 to 8, while Ay[RK] increases from about 0.81% to
0.87% across the same range of NBN. The results for the Coulomb potential are very similar, especially for Ay and
at larger NBN for both x and y, though we find that Ax[C, 1] ≈ 5.1%, nearly a 10% decrease compared to Ax[RK, 1].

VI. ANALYSIS AND DISCUSSION

Now let us compare the properties of excitons in phosphorene to the properties of excitons in the TMDCs67 and
the buckled 2D allotropes of silicon (Si), germanium (Ge), and tin (Sn), known as silicene, germanene, and stanene,
and collectively as the Xenes68. In Ref. 67, the properties of indirect excitons in a TMDC/h-BN heterostructure
(THT HS) were calculated using a similar method to the one used in this work.

For indirect excitons in a THT HS, the binding energies were calculated to be between Eb[RK, NBN = 1] =
(90 − 110, 100 − 105, 90 − 105, 90 − 110) meV in MoS2, MoSe2, WS2, and WSe2, respectively. Increasing the
separation to NBN = 5, the binding energies were reduced to between 50 − 70 meV for all materials, decreasing to
about 40−55 meV at NBN = 8. Comparing these values to the results shown in Fig. 2, we find that the binding energy
of indirect excitons in a THT HS is smaller than in a PHP HS by about 5 − 10%. The 1s → 2p optical transition
energy of the indirect exciton in a THT HS was calculated to be about Etr[RK, (1, 5, 8)] = (50 − 60, 30, 20) meV.
By comparison, Fig. 3 demonstrates that the anisotropic exciton reduced mass causes Extr (Eytr) to be significantly
larger (smaller) than the analogous optical transition energy of the isotropic exciton.

To facilitate the comparison of the optical properties of excitons in different materials, we use the absorption factor
Aj to control for the factor of l, which is different for each 2D material, in the denominator of Eq. (10). For a THT
HS, the indirect exciton absorption factor was calculated to be A[RK, 1] = 2−3.7%, while in a PHP HS, we calculate
Ax[p, 1] ≈ 5.1−5.5% and Ay[p, 1] ≈ 0.81%, with the Coulomb potential yielding slightly smaller values of A than the
RK potential. The calculated values of A in the TMDCs do not change significantly with increasing NBN, reaching
a maximum of about 2.5− 4.4% at NBN = 8, because f0 is already quite large at NBN = 1, similar to the observed
behavior of fy0 in a PHP HS. Again, we see here that the anisotropy of excitons in phosphorene leads to strongly
enhanced (suppressed) optical activity under x- (y)-polarized excitations.

Turning now to the properties of excitons in Xenes, we note that a direct comparison is complicated by the uniquely
tunable nature of excitons in the Xenes. We will restrict the discussion here to a range of E⊥ which lead to binding
energies that are comparable to excitons in phosphorene.

In Ref. 68, the properties of both direct and indirect excitons were calculated. For direct excitons, results were
obtained for freestanding (FS) Xene monolayers and for Si monolayers encapsulated by h-BN. The properties
of indirect excitons were calculated using both the RK and Coulomb potentials in Xene/h-BN heterostructures,
primarily focusing on silicene (SHS HS).

For the direct exciton in ML Xenes, it was calculated that Eb[Si,FS] ≈ 740 meV for E⊥ ≈ 1.5 V/Å, Eb[Ge,FS] ≈
740 meV at E⊥ = 2.7 V/Å, while the binding energy in FS Sn reached a maximum of about 550 meV. Compared
to Eb[HE] ≈ 200 meV in phosphorene, the direct exciton binding energy in HE Si reached a maximum of about 350
meV at the maximum electric field of E⊥ = 2.7 V/Å, while the binding energy was about 200 meV for E⊥ ≈ 0.8−1.2
V/Å.

Originally, calculations of α and A of excitons in the FS Xenes were performed for Γ = 1013 s−1, but for consistency
we will instead assume Γ = 1014 s−1 as used here. Since the tuning mechanism of excitons in Xenes involves changing
the charge carrier effective mass, the absorption coefficient and absorption factor are strongly suppressed at moderate
to high electric fields, while the oscillator strength increases with increasing electric field. In general, when the electric
field is large enough that the exciton binding energy is comparable to that of phosphorene, the value of A in the FS
Xenes is only about 1%, much weaker than Ax[FS] but comparable to Ay[FS]. On the other hand, A[Si,HE] ≈ 2%
at E⊥ = 1.0 V/Å, while Ax[HE] ≈ 3% and Ay[HE] ≈ 0.6%, comparable to A in the FS Xenes.

For indirect excitons in an SHS HS, the maximum binding energy at E⊥ = 2.7 V/Å was calculated to be about
Eb[Si, p, 1] ≈ 150 meV, not much bigger than the value of Eb[i, p, 1] ≈ 120 meV shown in Fig. 2. The data for A in an
SHS HS again shows that indirect excitons are more optically active than direct excitons, where A[Si, p, 1] ≈ 3− 4%
for E⊥ ≈ 1 V/Å. Also, A[Si, p,NBN] was found to depend only weakly on the choice of interaction potential p, while
the change in A with respect to NBN is again quite small in the SHS HS, comparable to Ay.

By comparing the properties of the anisotropic exciton in phosphorene to isotropic excitons in the TMDCs and
Xenes, the effects of anisotropy are clearly emphasized. Whereas binding energies were mostly comparable in all three
types of materials, the polarization-dependent optical properties of anisotropic excitons in phosphorene are drastically
different from the optical properties of isotropic excitons in the TMDCs and Xenes. In particular, the small value
of µx in phosphorene leads to a larger optical transition energy and significantly enhanced optical absorption, while
the corresponding optical quantities for y-polarized excitations are much smaller than in isotropic excitons.
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VII. CONCLUSIONS

We study the optical properties of direct excitons in ML phosphorene, and of indirect excitons in a PHP HS,
by calculating the x- or y-linear-polarization-dependent optical transition energies, oscillator strengths, absorption
coefficients, and absorption factors. To calculate these properties, the eigenenergies and eigenfunctions of the exciton
were obtained by solving the Schrödinger equation using four different sets of anisotropic exciton reduced masses
found in the literature. Additionally, we considered four different dielectric environments for the direct exciton
corresponding to four common experimental (or theoretical, in the case of FS phosphorene) configurations. For
the indirect exciton, the Schrödinger equation was solved using both the Rytova-Keldysh and Coulomb interaction
potentials, and at different interlayer separations D corresponding to an integer number NBN = 1 − 8 of h-BN
monolayers separating the ML phosphorene. Further analysis of our results for direct and indirect excitons was
performed by examining how the results changed with respect to the change in exciton reduced mass, dielectric
environment, choice of interaction potential, and change in interlayer separation.

The intrinsic anisotropy of phosphorene manifests itself most noticeably in the optical properties of both direct and
indirect excitons, where for direct excitons we predict that αx > αy by as much as a factor of 8 in FS phosphorene,
with this difference decreasing to about a factor of four for ML phosphorene encapsulated by h-BN. By combining
the calculated absorption coefficient with the known thickness of ML phosphorene, we predict that direct excitons
in a single phosphorene ML may absorb as much as 3% of incident x-polarized light, though this figure depends
strongly on the 2D exciton concentration in the ML as well as on the line broadening of the excitonic transition.
Analysis of the relationship between the absorption coefficient and the input parameters, and subsequent comparison
to the optical properties of isotropic excitons in TMDCs and Xenes, suggests that the anisotropic mass is directly
responsible for enhancing (suppressing) optical activity along the crystal axis with relatively light (heavy) exciton
reduced mass.

While exciton binding energies were comparable between the TMDCs, Xenes, and phosphorene, the excited states
of the anisotropic exciton exhibit significant deviations from those of the isotropic exciton, where we find for the
direct exciton that Extr[FS] > Eytr[FS] by nearly a factor of two, with this difference decreasing as dielectric screening
increases. The exciton binding energy also strongly depends on the dielectric environment, where we calculate direct
exciton binding energies of about 800 meV, 350 meV, and 200 meV, corresponding to FS phosphorene, uncapped
phosphorene on an SiO2 or h-BN substrate, and ML phosphorene encapsulated by h-BN. Furthermore, we find
excellent agreement between our calculated binding energies and previous theoretical and experimental results.

The increased spatial separation of the electron and hole in a PHP HS leads to a significant reduction in the indirect
exciton binding energy compared to the direct exciton in the same dielectric environment. Specifically, we obtain an
indirect exciton binding energy of about 120 meV in an PHP HS separated by only one ML of h-BN, compared to
a direct exciton binding energy of 200 meV in HE phosphorene. Whereas the binding energy of the indirect exciton
is reduced due to the increased interparticle separation, we find that the optical activity of the indirect exciton is
enhanced compared to the direct exciton, and furthermore, that the oscillator strength is an increasing function of
interlayer distance. As a result, we predict that indirect excitons in a PHP HS can absorb up to 5% of an incident
x-polarized excitation when separated by one ML of h-BN, increasing to more than 8% absorption for 8 layers of
h-BN, though we again note that the specific values of these quantities depend heavily on external factors such as
exciton concentration and exciton broadening. Our calculations of the optical absorption properties of anisotropic
excitons in phosphorene can be studied experimentally by first creating excitons in the ground state via e.g. optical
pumping, then inducing intraexcitonic transitions to the excited states.

In general, analysis of our results shows that increased dielectric screening leads to a decrease in all calculated
quantities, i.e. the eigenenergies En, oscillator strength f j0 , absorption coefficient αj , and absorption factor Aj .
The calculated binding energies are not particularly sensitive to the choice of µi, but the optical properties can
vary significantly depending on the relative magnitudes of µx and µy. In particular, our results indicate that the
optical transition energies Ejtr, absorption coefficients αj , and absorption factors Aj are decreasing functions of the

corresponding reduced mass µj , while the oscillator strength f j0 is an increasing function of µj . While the dependence
of the optical properties on the µj is not completely straightforward, it is clear that any mechanism which affects the
anisotropic charge carrier masses in phosphorene will in turn affect the optical properties of excitons in phosphorene.
Considering that phosphorene is interesting to researchers precisely because of the external tunability of its properties
via e.g. mechanical strain, an exhaustive study of the dependence of the excitonic and optical properties on parameters
such as the anisotropic reduced mass, Rytova-Keldysh screening length, and environmental dielectric constant would
be a welcome contribution to the literature.

Our results represent the first comprehensive numerical calculations of the eigenenergies and optical properties of
indirect excitons in a PHP HS with up to 8 layers of h-BN. Furthermore, our calculations support experimental
observations and theoretical studies of the direct exciton binding energy in ML phosphorene. We then expand upon
these results by analyzing the dependence of the optical properties of excitons in phosphorene on a variety of common
input parameters. Our analysis indicates that the excitonic optical properties are highly sensitive to the anisotropic
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effective carrier masses, which can be tuned experimentally. Finally, our results demonstrate that an exhaustive study
of the eigenstates and optical properties of the anisotropic exciton, in particular the dependence of these quantities
on the input parameters shown in Table I, is warranted.
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Appendix A: Convenient simplifications to the analytical expressions for the excitonic optical quantities

Examining Eqs. (7), (10), and (11), we see that f j0 depends directly on the numerically calculated eigenenergies

and eigenfunctions, while αj and Aj are given by purely analytical expressions, provided f j0 is known. In other

words, f j0 is the only optical quantity that depends directly on the numerical results – on the other hand, l and κ are
specified for a particular scenario, while nX and Γ do not have specific values. As a result, αj and Aj will exhibit
the same qualitative behavior as the corresponding f j0 and µji . By distinguishing f j0 and the associated µj from the
constants and input parameters l, κ, nX , and Γ, we aim to provide the reader with a simple way to calculate αj

and Aj using different parameters than those given in Table I. These quantities, which we call the scale factors and
denote by C for the absorption coefficient αj , and C for the absorption factor Aj , act as a sort of conversion factor
between the cumbersome but straightforward analytical expressions for αj and Aj and the values of e.g. µi and f j0
which are unique to our numerical results.

Let us begin with Eq. (10), and as a first step separate the physical constants from the input parameters:

αj = C

(
nXf

j
0√

κµj leffΓ

)
, (A1)

C =
πe2

cm0ε0
= 3.335× 10−5 m2/s, (A2)

where m0 is the rest mass of the electron.
Now, the fraction within brackets in Eq. (A1) contains all possible input parameters used in calculating αj , but

we can further refine our expression for C by recognizing that not every quantity shown in brackets in Eq. (A1) is
a free parameter. In particular, we consider only four values for κ for the direct exciton and only one value for the
indirect exciton as shown in Table I. Similarly, we use only leff = lphos and leff = 2lphos for the direct and indirect
exciton, respectively.

There are now five possible values of C which are applicable to our results:

CD =
C√
κlphos

=


6.164× 104 m/s, FS

3.980× 104 m/s, SS

3.592× 104 m/s, HS

2.788× 104 m/s, HE

(A3)

CI =
C√

κ(2lphos)
= 1.394× 104 m/s, (A4)

where the subscripts D and I denote direct and indirect excitons, respectively.
Now Eq. (A1) can be further simplified to:

αj = CD/I

(
f j0
µji

)(nX
Γ

)
. (A5)

Now, the foundation of our results, which consist of the numerically calculated eigenvalues and eigenfunctions,

are effectively contained within the fraction f j0/µ
j
i , for which we will use the notational shorthand f̃ j0 ≡ f j0/µ

j
i . On

the other hand, nX and Γ are essentially free parameters, insofar as the values given in Table I are rough estimates
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TABLE V: Tabulated values of the ratio f̃ j
0 ≡ f j

0/µ
j
i for each set of µi, as well as the absorption coefficient scale factor, C̃D,

from Eq. (A6). The units of f̃ j
0 are [m−1

0 ].

f̃x
0 [a] f̃x

0 [b] f̃x
0 [c] f̃x

0 [d] f̃y
0 [a] f̃y

0 [b] f̃y
0 [c] f̃y

0 [d] C̃D [m−1]

FS 9.96 9.56 7.51 8.21 0.93 1.01 1.33 0.94 3.082× 106

SS 7.20 7.00 5.81 6.18 0.88 0.95 1.24 0.89 1.990× 106

HS 6.36 6.20 5.25 5.53 0.86 0.93 1.21 0.87 1.796× 106

HE 4.31 4.24 3.77 3.86 0.78 0.84 1.08 0.79 1.393× 107

meant to represent typical values of these quantities. Using the default values of nX and Γ given in Table I, we define

the absorption coefficient scale factor as C̃D/I = CD/I
(
nX

Γ

)
and obtain:

C̃D =


3.082× 106 m−1, FS

1.990× 106 m−1, SS

1.796× 106 m−1, HS

1.393× 107 m−1, HE

C̃I = 6.969× 106 m−1. (A6)

We also note that C̃D/I is independent of the x- or y-polarization of the excitation. Using Eqs. (A2), (A4),
or (A6), one can easily modify parameters such as nX or Γ to match a particular scenario while still facilitating
direct comparisons with the results presented in Sec. V.

Ultimately, the values of αj presented in Sec. V can therefore be calculated using the following expression:

αj = C̃D/I

(
f̃ j0

)
. (A7)

The calculation of the absorption factor Aj can likewise be simplified:

Aj = 1− exp
[
−C̃D/I

(
f̃ j0

)]
, (A8)

where the dimensionless quantity C̃D/I ≡ C̃D/I leff is given by,

C̃D =


1.668× 10−3, FS

1.076× 10−3, SS

9.717× 10−4, HS

7.541× 10−3, HE

C̃I = 7.541× 10−3. (A9)

Finally we note that C̃D/I � f̃ j0 , so that the exponent in Eq. (A8) is always much smaller than unity. Applying
the well-known expansion of ex for small x, ex ≈ 1 +x+ (x2)/2 + . . . , the absorption factor can be approximated by:

Aj ≈ 1−
(

1 +
(
−C̃D/I

(
f̃ j0

))
+ . . .

)
= C̃D/I

(
f̃ j0

)
. (A10)

This convenient approximation may prove useful for quickly estimating Aj from the values of C̃D/I given above,
along with the values of f j0 and µji presented in Sec. V.
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TABLE VI: Tabulated values of the ratio f̃ j
0 corresponding to each of the µi, given in terms of the number of h-BN monolayers,

NBN, for the RK and Coulomb potentials. The units of f̃ j
0 are [m−1

0 ].

f̃x
0 [a] f̃x

0 [b] f̃x
0 [c] f̃x

0 [d] f̃y
0 [a] f̃y

0 [b] f̃y
0 [c] f̃y

0 [d]

NBN = 1
RK 8.310 8.039 6.615 7.161 0.957 1.037 1.366 0.973

C 7.603 7.382 6.024 6.663 0.947 1.026 1.348 0.964

NBN = 2
RK 9.577 9.227 7.350 8.073 0.976 1.059 1.402 0.993

C 9.070 8.750 7.076 7.725 0.971 1.054 1.392 0.988

NBN = 3
RK 10.66 10.27 7.967 8.866 0.988 1.073 1.424 1.005

C 10.29 9.904 7.758 8.593 0.985 1.070 1.419 1.002

NBN = 4
RK 11.57 11.17 8.530 9.596 0.996 1.083 1.440 1.012

C 11.31 10.90 8.354 9.367 0.994 1.081 1.437 1.011

NBN = 5
RK 12.28 11.93 9.073 10.29 1.002 1.090 1.451 1.018

C 12.11 11.73 8.916 10.09 1.001 1.088 1.449 1.017

NBN = 6
RK 12.77 12.53 9.612 10.94 1.007 1.095 1.460 1.023

C 12.68 12.40 9.469 10.77 1.005 1.094 1.459 1.022

Appendix B: Analysis of calculated eigenfunctions

Since the Schrödinger equation (2) features anisotropy along the x and y axes, the calculated eigenfunctions are
most conveniently characterized by the quantum numbers nx and ny, in contrast to the isotropic case, where 2D polar
coordinates are used and the eigenfunctions are described in terms of the principal and angular momentum quantum
numbers, n and l, analogous to the 2D hydrogen atom67,96,97. The quantum numbers nx and ny corresponding
to a particular eigenstate can be deduced by inspecting the eigenfunction and counting the number of times the
eigenfunction changes sign along each axis. This is because eigenfunctions obey the empirical rule that the number
of times the eigenfunction crosses ψ(r) = 0 increases as the quantum number increases.

Discussion of the eigenstates of the anisotropic exciton is further complicated by our computational method, which
does not explicitly characterize the excitonic eigenstates in terms of the quantum numbers nx and ny, or indeed, in
terms of any set of quantum numbers. Instead, our calculations yield only the eigenvalues and eigenfunctions, sorted
by decreasing eigenenergy. In the process of analyzing and discussing our results, it may be instructive to refer to
a particular eigenstate not in terms of the quantum numbers nx and ny, but by denoting it by its “rank” amongst
all eigenstates produced by a particlar calculation. In this case we use the standard ket notation |n〉, that is, the
ground state (which of course has the largest eigenenergy) is |1〉 and its eigenenergy is E1, the first excited state (i.e.
the state with the second-largest eigenenergy) is |2〉, with corresponding eigenenergy E2, the second excited state
(corresponding to the state with the third-largest eigenenergy, E3) is |3〉, and so on.

Curiously, we find that the ordering of the eigenstates with respect to the quantum numbers nx and ny is sensitive
to the choice of µi. In other words, the anisotropic reduced masses µx and µy change the eigenenergy of the first x
excited state (1, 0) relative to the eigenenergies of the higher excited states in y, in particular the states (0, 3) and
(0, 4) as shown in Table VII and in Fig. 4. Further analysis of the eigenfunctions corresponding to |n > 6〉 confirms
that the ordering of the eigenstates in terms of (nx, ny) differs depending on the relative magnitudes of µx and µy.

Finally, let us mention that while solutions to the Schrödinger equation were obtained up to the |12〉 eigenstate,
we have restricted our discussion and presentation of the results in the text to the first 6 eigenstates. Our reasons
for this are fourfold: (i) to reduce visual clutter in the figures and emphasize the lower eigenstates which are more
experimentally relevant; (ii) the optically active state (1, 0) can appear as late as |6〉, so we do not truncate our
results before this state; (iii) the eigenenergies of states |n > 6〉 change by a very small amount, and their optical
activity is very strongly suppressed due to the presence of other allowed optical transitions to states with |n ≤ 6〉; (iv)
eigenstates beyond approximately |8〉 strain our numerical methods and can occasionaly yield physically ambiguous
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TABLE VII: Correspondence between the two notations for the calculated eigenstates: ranked in order of decreasing eigenen-
ergy (|n〉), and in terms of the quantum numbers (nx, ny). The correspondence between these notations is primarily determined
by inspecting the calculated eigenfunctions, some of which are shown in Fig. 4.

|1〉 |2〉 |3〉 |4〉 |5〉 |6〉

µa (0, 0) (0, 1) (0, 2) (0, 3) (0, 4) (1, 0)

µb (0, 0) (0, 1) (0, 2) (0, 3) (0, 4) (1, 0)

µc (0, 0) (0, 1) (0, 2) (1, 0) (0, 3) (0, 4)

µd (0, 0) (0, 1) (0, 2) (0, 3) (1, 0) (0, 4)

ψ(x) (y0=0) ψ(x) (y0=-10) ψ(x) (y0=10)

ψ(y) (x0=0) ψ(y) (x0=-10) ψ(y) (x0=10)

μa; 3 → (0,2)

E3 = 53.83 meV

μc; 3 → (0,2)

E3 = 50.31 meV

μd; 3 → (0,2)

E3 = 57.78 meV

μa; 4 → (0,3)

E4 = 35.67 meV

μc; 4 → (1,0)

E4 = 31.97 meV

μd; 4 → (0,3)

E4 = 37.94 meV

μa; 5 → (0,4)

E5 = 27.88 meV

μc; 5 → (0,3)

E5 = 31.62 meV

μd; 5 → (1,0)

E5 = 30.06 meV

μa; 6 → (1,0)

E6 = 24.79 meV

μc; 6 → (0,4)

E6 = 24.7 meV

μd; 6 → (0,4)

E6 = 29.61 meV

FIG. 4: Comparison of the eigenfunctions for different eigenstates |n〉 and different choices of µi. The red lines represent plots
along the x-axis with y constant, while the blue lines are plotted along the y-axis with different constant values for x.

or even non-sensical results.
In Fig. 4 we plot slices of the direct exciton eigenfunctions along the x- and y-axes. Also shown on the plots are

the corresponding µi, the eigenstate |n〉, and the eigenenergy of the state, En. We find that µa and µb share the same
internal structure, and so plots for µb are not shown. The associations between |n〉 and (nx, ny) shown in Table VII
were determined by first examining the eigenfunctions (some of which are shown in Fig. 4) and counting the number
of times the function changes sign along each axis, then cross-referencing those associations with the allowed and
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FIG. 5: Allowed optical absorption transitions of the direct exciton using the set µa from any initial eigenstate |ni〉 (corre-
sponding to the rows) to a final eigenstate |nf > ni〉 (corresponding to the coulmns) given a linearly polarized excitation along
either the x or y axes. Allowed transitions are shown in red for x-polarized light and blue for y-polarized light. Disallowed
transitions are colored white. Since the allowed optical transitions for radiative and absorptive processes are the same, the
plot is symmetric along the diagonal. Therefore, the bottom-left half of the plot has been colored gray to reduce visual clutter.

forbidden optical transitions of the anisotropic exciton, as determined theoretically in Ref. 13 and supported by our
numerical results in Fig. 5.

However, we note that the plots of the (0, 2) and (0, 4) states, corresponding to the states |3〉 (for all µi) and
either |5〉 (for i = a, b) or |6〉 (for i = c, d), respectively, clearly show that the eigenfunction changes sign twice
with respect to the x coordinate, suggesting that the states should have quantum number nx = 2. Considering
that these anomalous eigenstates appear before the (1, 0) eigenstate for all µi, we conclude that this behavior is an
aberration, and not to be interpreted as an appearance of a symmetric excited state in x (e.g. a state characterized
by nx = 2, 4, 6, . . . ). These eigenstates are optically dark, so it is difficult to assess how the abnormal behavior of
the eigenfunction would affect calculations of the optical properties related to these states, if at all.

In Fig. 5, the allowed and forbidden optical transitions between the first six eigenstates are shown in blue for y-
polarized excitations and in red for x-polarized excitations. Counting from the top-left of the plot, the row numbers
denote the initial eigenstate |ni〉, while the column numbers correspond to the final eigenstate, |nf 〉. Boxes lying to
the right (left) of the diagonal thus correspond to optical absorption (emission) transitions, where the location of
each box in the array, specified by the ordered pair of (row, column) numbers, corresponds to the initial and final
eigenstates of the transition. Each box corresponds to a possible optical transition, and the color of the box is based
on the result of calculating fx0 and fy0 . The box was colored red (blue) if fx0 (fy0 ) was calculated to be non-zero, and
was colored white if neither calculation returned a non-zero result.

Due to intrinsic error both in the numerical eigenfunctions themselves and resulting from numerical integration
of the dipole transition matrix element, the oscillator strength was ”non-zero” if it was greater than 10−4. The
cutoff value of 10−4 was chosen after computing f j0 for all 12 calculated eigenstates and observing that the oscillator
strengths of allowed transitions decreased by roughly an order of magnitude for each successive allowed transition
from a given initial state. On the other hand, the numerical error in the calculated oscillator strengths for ”dark”
transitions was of the order of 10−10 or smaller for small ni and nf , but reached as high as 10−7 for transitions
involving eigenstates n > 8.

Qualitatively, the allowed and forbidden optical absorption transitions shown in Fig. 5 agree exactly with the
theoretically predicted optical selection rules of Ref. 13. Apparently, the aforementioned anomalous eigenfunctions
had no effect on the calculation of the optical selection rules using Eq. (7).
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