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The S-matrix invariant is known to be complete for translation invariant topological stabilizer
models in two spatial dimensions, as such models are phase equivalent to some number of copies
of toric code. In three dimensions, much less is understood about translation invariant topological
stabilizer models due to the existence of fracton topological order. Here we introduce bulk com-
mutation quantities inspired by the 2D S-matrix invariant that can be employed to coarsely sort
3D topological stabilizer models into qualitatively distinct types of phases: topological quantum
field theories, foliated or fractal type-I models with rigid string operators, or type-II models with
no string operators.

In recent years the study of topological phases of mat-
ter has moved to the forefront of theoretical condensed
matter physics. This has been fueled in part by the the-
orized existence of exotic phases of matter that can serve
as topological quantum memories and computers [1]. The
classification of topological phases of matter in two spa-
tial dimensions in terms of anyon theories, or modular
tensor categories, and chiral central charges forms the
cornerstone of the subject [2, 3]. For the special case
of 2D translation invariant topological stabilizer models
this classification was established rigorously at the level
of lattice Hamiltonians [4, 5]. In three spatial dimen-
sions, recent steps have been taken towards a similar goal,
with some success for topological phases that admit a
topological quantum field theory (TQFT) description [6–
8]. However, the burgeoning field of fracton topological
phases [9–50] present a new and challenging facet of the
classification problem, as practically all the familiar tools
from the study of TQFTs no longer apply. These phases
are characterized by the restricted mobility of their topo-
logical superselection sectors. In the most extreme case
of type-II fracton models [13–20], there exist no string
operators capable of moving any nontrivial topological
excitation. More precisely, there is a logarithmic energy
barrier as a function of the distance a particle is to be
moved.

Even in the relatively simple setting of translation
invariant topological stabilizer models in 3D there are
a plethora of known models with very little organizing
structure. An exception to this is the growing under-
standing of foliated fracton phases [51–58], which has
proved quite successful due to many tools from the study
of 2D topological phases being applicable there.

In this work we set our sights beyond any particular
subclass of fracton models to consider techniques that
apply to arbitrary translation invariant topological sta-
bilizer models in 3D. Our aim is to provide diagnostics
that can be applied to an unknown model to sort it
into one of a few coarsely defined classes of topological
phases that share similar qualitative characteristics. To
achieve this we focus on the presence and deformabil-
ity of string and membrane operators, providing several

generalizations of the familiar S-matrix from two dimen-
sional anyon models that capture qualitative differences
between distinct classes of fracton topological order. Our
approach is based solely on bulk properties of each model
and so is not sensitive to boundary conditions, unlike pre-
viously used quantities such as the ground space degen-
eracy. Furthermore, the operator based quantities em-
ployed do not suffer from spurious contributions [59], un-
like entanglement entropy based quantities [36–38].

Our main results are presented in several tables: the
outcome of applying the sorting procedure to a number of
fracton models, including Haah’s 18 cubic codes [13, 18],
is summarized in table I. The characteristic behaviour of
different classes of fracton order under our diagnostics,
which determines the sorting, is summarized in table II.
Table III contains detailed results of the diagnostics for
each model we have considered.

The paper is laid out as follows: In section I we de-
scribe the qualitatively distinct kinds of topological or-
der that have been observed in 3D stabilizer models. In
section II we describe the tools we use to identify which
kind of topological order a 3D stabilizer model supports.
In section III we describe how to apply these tools to a
given 3D stabilizer model to identify the class of topo-
logical order it supports. In section IV we conclude with
a discussion of the results.

In addition to the main text there are several ap-
pendices containing examples and useful reference in-
formation: In appendix A we frame the deformation of
pair-creation operators more formally in terms of a suf-
ficient condition for deformability. In appendix B we
present examples of the deformation procedure for par-
ticle pair-creation operators. In appendix C we list nu-
merical results that demonstrate how the number of anti-
commuting membrane-membrane operator pairs scales
with their size. In appendix D we attempt to provide
an exhaustive list of 3D translation invariant topological
stabilizer models that have previously appeared in the
literature, along with their known properties.
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TQFT [D 5] Foliated type-I [D 4] Fractal type-I [D 2] Type-II [D 1]

Mobilities 3 0,1,2 0,1,2 0

of particles

Scaling of constant sub-extensive sub-extensive fluctuating

number of qubits + fluctuations with sub-extensive envelope

Examples 3D toric code Checkerboard Model Sierpinski FSL model Cubic codes 1-4,7,8,10

(with bosonic or X-Cube Model Cubic codes 0,5,6,9,11-17 Hsieh-Halsz-II modela

fermionic charge) Chamon’s Model

a Our results are consistent with fractal type-I or type-II.

TABLE I. Classes of topological order. The possible mobilities of particles and scaling of the number of qubits with system
size are characteristic of each class. Links are provided to a zoo of examples in the appendix.

I. TOPOLOGICAL ORDER IN STABILIZER
MODELS

We focus on translation invariant stabilizer Hamilto-
nians with topological order. These Hamiltonians are
specified by a choice of commuting local Pauli stabilizer
generators h(i), which become the interaction terms in a
Hamiltonian,

H =
∑
i,~v

(11− h(i)~v ) , (1)

where ~v are lattice vectors. In the above equation, h
(i)
~v in-

dicates a local generator h(i) after translation by a lattice
vector ~v. Each local generator h(i) is a tensor product of
Pauli matrices acting on a spatially local set of qudits,
tensor producted with the identity on all other qudits.
If each local generator consists of exclusively X or Z
operators, we refer to the Hamiltonian as CSS [60, 61].
Note that in this work, for the sake of simplicity, we dis-
cuss and apply our methods of sorting on qubit stabilizer
models, even though they are directly applicable to qudit
stabilizer models for prime d.

In the recent literature on fractons, topologically or-
dered stabilizer models in three dimensions have been
coarsely classified into three categories [23]: TQFT or-
der, type-I topological order and type-II topological or-
der. We further divide type-I topological order into fo-
liated type-I topological order and fractal type-I topo-
logical order, the latter of which has been referred to as
type-I.5 in some works. We present a summary of the
properties characterizing the different classes below.

A. TQFT order

TQFT order, sometimes referred to as conventional
topological order, is defined by the presence of particle
excitations in nontrivial superselection sectors that can
be moved in all directions by deformable string opera-
tors. It is characterized by a constant topological ground
space degeneracy (constant w.r.t. the system size after

sufficient coarse graining) and deformable logical oper-
ator segments. In two dimensions, all topological sta-
bilizer models are essentially built by stacking 2D toric
codes, and hence are TQFTs. This is due to a struc-
ture theorem [4, 5] which states that under a locality-
preserving unitary, any 2D translation invariant topo-
logically ordered Pauli stabilizer model can be mapped
to copies of the toric code and some ancillary qubits in
a trivial product state. We conjecture that a similar
structure theorem holds for TQFT stabilizer models in
three dimensions i.e. a translation invariant TQFT sta-
bilizer model in 3D is equivalent to copies of 3D toric
codes and some trivial ancillas. There is a slight subtlety
compared to the 2D case as there are two in-equivalent
versions of the 3D toric code, one has a bosonic point
charge and the other has a fermionic point charge [62].
Hence, properties of logical operators for TQFT stabi-
lizer models can be extrapolated from properties of log-
ical operators in the toric code. For 2D toric code, the
logical operator pairs are anti-commuting logical string
operators. For 3D toric code, the logical operator pairs
are composed of deformable string operators with corre-
sponding anti-commuting logical operators as deformable
membrane operators. Therefore, we expect TQFT sta-
bilizer models to be characterized by a constant ground
space degeneracy and logical string operators that are
fully deformable. For example, the stabilizer generators
of the 3D toric code with bosonic point particle are given
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by

XII

IXI XXX

IIX

IZI

IZZ IIZ

ZII

ZIZ

IIZ

ZZI ZII

IZI

, (2)

where X,Y, Z denote the Pauli matrices and
IXI = I ⊗X ⊗ I. Here, we have performed a coarse
graining such that qubits sitting on the adjacent edges in
the x̂, ŷ, ẑ directions, respectively, in the original model,
are merged onto a single vertex. Representative logical
operators on a torus are generated by three pairs of
anti-commuting membrane and string operators X̄ĵ , Z̄ĵ ,
respectively, where

X̄x̂ =
∏
y,z

(XII)0,y,z , Z̄x̂ =
∏
x

(ZII)x,0,0 . (3)

The subscript x̂ in X̄x̂ indicates the direction perpendic-
ular to the plane on which the logical operator acts. The
subscript x, y, z indicates the vertex coordinate on which
each three qubit operator acts. For Z̄x̂, the subscript x̂
indicates the direction of the string operator. One can
construct membrane and string operators along ŷ and ẑ
analogously. In section II, we present an invariant that
selectively detects the presence and number of such anti-
commuting operator pairs that are deformable in all three
dimensions. This should serve to identify the number of
copies of 3D toric code in a given stabilizer model.

B. Type-I topological order

Type-I topological order is defined by the presence of
particles in nontrivial superselection sectors that have re-
stricted mobility. It is characterized by a sub-extensive
ground space degeneracy and rigid string logical opera-
tors. We call the number of dimensions in which a parti-
cle can be mobile as its mobility dimension. The mobility
dimension of the most restricted particle is sometimes
specified in the nomenclature i.e. a planon, lineon, or
fracton topological order contains particles with a mini-
mum mobility dimension of 2, 1, or 0 respectively. Type-I
topological orders can be further divided into two broad
categories, foliated and fractal as described below.

FIG. 1. The foliation structure for X-cube.

1. Foliated type-I topological order

A foliated topological stabilizer model is defined by a
foliation structure [51] which implies that the model can
be grown by stacking with a 2D topological state and
applying a local unitary. Due to the 2D classification re-
sult, one only needs to consider 2D toric code states for
foliated topological stabilizer models. The most studied
example of this type is the X-cube model [23] which can
be grown by stacking with a 2D toric code as shown in
Fig. 1. More precisely, under entanglement renormaliza-
tion group flow [52] copies of the 2D toric code can be
extracted from the X-Cube model. This leads to a for-
mal definition of an equivalence class of foliated topolog-
ical orders [55] which states that two Hamiltonians are
in the same equivalence class if they are connected by
stacking with layers of 2D gapped Hamiltonians and gap
preserving adiabatic evolution. We remark that these
equivalence classes are much coarser than the usual defi-
nition of gapped phase [63], and were designed to include
decoupled stacks of 2D topological orders in the trivial
equivalence class, thereby modding them out from the
nontrivial equivalence classes. Foliated stabilizer mod-
els can support particles of different mobilities such as
fractons, lineons and planons. Due to their foliation
structure in terms of 2D toric codes, they always support
some planons. For example, the X-Cube model supports
planons in all three lattice directions, leading to a folia-
tion structure with stacks of toric codes along the three
lattice directions. Due to the underlying foliation struc-
ture of this class of models, the ground space degeneracy
scales with the linear size of the system.

Let us look at the X-cube model in more detail. The
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stabilizer generators are given by

XXI XII

IXI

XXX XIX

IXX IIX

IZI IZZ

IIZ

ZII

ZIZ

IIZ

ZII

IZI ZZI

(4)

and translations. Here again, we have performed a coarse
graining such that 3 edge qubits in the original X-cube
model [23] are merged onto a single vertex in the same
manner as we did for the 3D toric code. We consider the
model on an Lx × Ly × Lz cuboid with periodic bound-

ary conditions. We have logical operators X̄ î
k̂,`
, Z̄ ĵ

k̂,`
on

pairs of non-contractible loops, where i 6= j 6= k run
over {x, y, z} and ` = 0, . . . , Lk − 1. They are defined as
follows

X̄ x̂
ẑ,` =

∏
x

(XII)x,0,` , Z̄ ŷ
ẑ,` =

∏
y

(ZII)0,y,` , (5)

and in a similar fashion for other permutations of x, y, z.
These string operators are not independent due to three
relations∏

`

X̄ î
k̂,`

=
∏
`

X̄ k̂
î,`
, Z̄ î

ĵ,0
= Z̄ î

k̂,0
. (6)

Thus, overall, there are 2(Lx+Ly +Lz)−3 logical opera-
tor pairs. These string operators are rigid in nature as is
characteristic of type-I models. The rigidity of the string
operators directly corresponds to the restricted mobil-
ity of excitations. For example, particles that are pair-
created by a completely rigid undeformable string op-
erator are restricted to move in one-dimension and are
therefore lineons. From now on, we will refer to the seg-
ments of string operators that create excitations in pairs
as pair-creation operators.

2. Fractal type-I topological order

Fractal type-I topological orders are defined to be the
type-I topological orders that do not admit a foliation
structure. Fractal type-I topological order is character-
ized by the presence of operators supported on a frac-
tal shape that move isolated topological excitations ar-
bitrarily far apart. This subclass of orders have been
referred to as type-1.5 (and even incorrectly as type-II)

(a)

(b)

FIG. 2. Logical operator segments in the SFSL model [12,
16]. a) String operator along the ẑ direction. A product of
IX operators on adjacent sites along ẑ creates the excitation
pattern shown in the dual lattice where the stabilizers live on
vertices. b) A fractal operator moves three excitations apart
in the xy-plane. Repeating this at longer length scales results
in a Sierpinski triangle shaped operator.

in some of the recent literature, although technically they
fall within the original definition of type-I [23]. Due to
the presence of fractal operators, these models indeed
can not support a foliation structure. In fact, these mod-
els need not support planons which again is inconsistent
with the existence of a foliation structure. Also, due to
the materialized fractal symmetries of this class of mod-
els [1, 24, 43, 64, 65], the ground space degeneracy is
observed to fluctuate with the system size. The sim-
plest example of a fractal type-I lineon topological order
is the Sierpinski fractal spin liquid (SFSL) model due to
Castelnovo, Chamon and Yoshida [12, 16] specified by
the following stabilizer generators

IX

IX XX

XI

IZ

ZZ ZI

ZI

. (7)

This model supports rigid string operators (correspond-
ing to one-dimensional particles or lineons) in the ẑ direc-
tion and a Sierpinski triangle fractal operator that moves
topological excitations apart in 2D as shown in Fig. 2.
Hence this model provides an example with no planons.
We have also studied fractal type-I models that have frac-
tal operators embedded in 3D that are not embedded in
any 2D plane, similar to some type-II models, but that
still support lineons and planons along with fractons and
hence are not themselves type-II. Many of the cubic codes
discovered by Haah [13, 18] are of this type.
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(a) (b)

FIG. 3. Fractal excitation patterns in the cubic code 1
model [13]. a) The excitation pattern generated by the XI
operator on a single site. b) A small fractal operator that
moves excitations apart.

C. Type-II topological order

Type-II topological order is defined by the absence of
any string operators for all topological excitations. Hence
type-II orders are always fracton topological orders and
furthermore no topologically nontrivial excitations, even
composites, are mobile in any direction. They are char-
acterized by discrete fractal logical operators and a sub-
extensive ground space degeneracy that fluctuates with
system size. The most well-studied type-II topological
order is Haah’s cubic code 1, see Ref. 13, whose stabi-
lizer generators are given by

IX XI

XI II

XX IX

IX XI

IZ ZI

ZI ZZ

II IZ

IZ ZI

(8)

and their translations. This model does not have any
string operators and hence all topologically non-trivial
excitations are immobile. However, single excitations can
still be created in isolation at the corners of a fractal op-
erator given by a Sierpinski tetrahedron. Fig. 3 (a) shows
the excitation pattern generated by XI on the dual lat-
tice. Fig. 3 (b) shows the first iteration of a fractal oper-
ator that moves these excitations apart in three dimen-
sions. Such fractal operators are characteristic of type-II
fracton orders and are tied to the absence of string op-
erators. However, it should be noted that the presence
of fractal logical operators does not imply the absence of
string operators, as demonstrated by the fractal type-I
models.

II. TOOLS TO IDENTIFY CLASSES OF
TOPOLOGICAL ORDER

This section describes diagnostic tools that are suf-
ficient to identify the class of topological order that a

given 3D topological stabilizer model falls into. Our pri-
mary motivation is to generalize the string-string com-
mutation matrix invariant [44, 66, 67] from two to three
dimensions. A straightforward string-membrane commu-
tation matrix generalization of the invariant only works
for TQFT stabilizer models. We want to accommodate
the possibility that some string operators may be fully
rigid or deformable only in two dimensions. Hence, we
consider anti-commuting logical operator pairs that can
be supported on regions of certain shapes cut out from
the 3D stabilizer model in order to gain some informa-
tion about their rigidity. We refer to the shapes of re-
gions that support anti-commuting logical operator pairs
as configurations. We focus on two types of configura-
tions in particular, string-membrane configurations and
membrane-membrane configurations.

Our design of the string-membrane configurations is
informed by complimentary information about deforma-
bility of string operators that can be derived from a
stabilizer Hamiltonian. The deformation process indi-
cates whether a string operator can be deformed into an
equivalent operator supported on the union of flat-rods
along the lattice directions. For this reason we refer to
the string-membrane configurations as flat-rod configu-
rations. The deformability and generalized commutation
matrix data suffice to sort a given topological stabilizer
model into one of the four classes of topological order
introduced in the previous section. For type-I models
we further employ the intersection of generalized Gauss’s
laws [43] to find the minimal mobility dimension, d. This
determines whether a type-I model has a planon, lineon,
or fracton topological order.

A. String-membrane configurations

We consider several configurations involving pairs of
anti-commuting operators, one supported on a string seg-
ment that creates excitations at the endpoints, and the
other on a membrane patch that creates excitations along
the loop-like boundary. The distinct string-membrane
configurations, shown in Fig. 4, are inspired by the defor-
mation of string operators to contiguous flat-rods along
lattice directions in the proof of the no-strings condition
for Haah’s cubic code [13] and Kim’s qupit code [15].
Hence only a small number of flat-rod configurations,
aligned with the cubic lattice directions, are considered.
There are 48 configurations with flat-rods along all three
lattice directions, an example is shown in Fig. 4 (a). Sim-
ilarly there are 12 configurations, 4 in each lattice plane,
with flat-rods along two lattice directions, for example
see Fig. 4 (b), and 3 configurations with a flat-rod along
a single lattice direction, see Fig. 4 (c). We don’t need to
check all of these configurations though since we assume
that if there exists a string operator that is deformable in
3D for example, then it can be supported on any of the
48 3D flat-rod configurations. Similarly, for each lattice
plane, we need to consider only one flat-rod configura-



6

Tools TQFT [D 5] Foliated type-I [D 4] Fractal type-I [D 2] Type-II [D 1]

Deformable pair-creation operators all generically not alla generically not alla all

String-membrane configurations with all not all (possibly none)b not all (possible none)b none

nonzero commutation rank

Scaling of membrane- 0 generically linear linear and/or constant and/or

membrane operator pairs fluctuating corrections fluctuating corrections

a all pair-creation operators are deformable if all the rigid string operators are along lattice directions
b this is not necessarily needed to identify the type as foliated type-I or fractal type-I.

TABLE II. Tools to identify the type of a topological order. The second row indicates whether or not all pair-creation operators,
as shown in Fig. 7, are deformable into flat-rods. The third row displays the number of different string-membrane (or flat-rod)
configurations, as shown in Fig. 4, that lead to a commutation matrix of non-zero rank. The fourth row contains the scaling of
the membrane-membrane commutation matrix rank with size.

tion.

Due to the existence of particles with limited mobil-
ity, the geometry of the flat-rod configuration has a pro-
found impact on the properties of the associated string-
membrane commutation matrix. The string operators
detected by each flat-rod configuration depend upon the
deformability of the strings. The three dimensional flat-
rod configurations detect string operators for particles
with three dimensional mobility, the two dimensional
flat-rod configurations are additionally sensitive to string
operators for planon particles in the same plane, and the
one dimensional flat-rod configurations are further sensi-
tive to lineon particles with mobility along the flat-rod.

Owing to the rigid nature of lineon and planon string
operators, the commutation matrix ranks associated with
the one and two dimensional flat-rod configurations de-
pend sensitively upon the width of the flat-rod. This
demonstrates that even the naive generalization of the
TQFT commutation matrix to capture anti-commuting
deformable string and membrane operator pairs must be
taken with some care. Employing a three dimensional
flat-rod configuration ensures that one does in fact ob-
tain a local unitary invariant. We speculate that this
invariant counts the number of copies of 3D toric code,
with either bosonic or fermionic point particle, that can
be disentangled from a stabilizer Hamiltonian.

We tabulate the deformability and commutation ma-
trix data we have obtained for cubic codes 0 to 17 from
Ref. [13] and several other fracton models in table III.
We have used the Hamiltonians for cubic codes 1 to 10
given in Ref. [18]; these are equivalent to the Hamil-
tonians given in the earlier Ref. [13] under symplectic
transformations [68]. In the table, full deformability of
a model is indicated by a X, while an obstruction to de-
formability is indicated by ×. In one case a ? indicates
that we were not able to resolve whether the model was
deformable or not. The numerical value of the commuta-
tion rank is displayed for the 3D flat-rod configurations,
while for the 2D and 1D flat-rod configurations we only
record whether the result is zero or nonzero as the numer-
ical value depends upon the width of the flat-rods. Note
that for many of the models in the table, their topological

order type was not known. Our methods have correctly
pointed out the type for known models and sorted out
the unknown ones into their respective types.

1. Flat-rod commutation matrix

As discussed, the flat-rod configurations we have con-
sidered are of the string-membrane kind where the string
operator is supported on a contiguous configuration of
flat-rods while the membrane operator is supported on
a planar patch. The commutation matrix C associated
with such a configuration is defined via

Ci,j =

{
0 if [Sr

i , S
m
j ] = 0 ,

1 if {Sr
i , S

m
j } = 0 .

(9)

where Sr are a basis of Pauli operators supported on the
flat-rods that commute with the Hamiltonian except at
the endpoints and Sm are a similar basis of Pauli op-
erators supported on the membrane. The Z2-rank of C
is the number of independent pairs of anti-commuting
operators supported on these regions. For these opera-
tors to anti-commute, the excitations they create must
be topologically nontrivial. Similarly, a commutation
matrix can be defined for any configuration supporting
anti-commuting operator pairs that create well-separated
excitations, in particular for the membrane-membrane
configuration discussed below.

2. Deformability of pair-creation operators to flat-rod
configurations

To interpret the results of the flat-rod configurations
we supplement them with a test of deformability for pair-
creation operators in each model. Specifically, we con-
sider operators that create a pair of well-separated exci-
tations, each of which may have some spatial extent that
is small compared to the separation. We do not assume
the excitations are topologically nontrivial, although they
may be. The pairs of excitations fall into several distinct
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(a)

(b)

(c)

FIG. 4. Flat-rod configurations. Open boundary condi-
tions where excitations may be created are marked with black
edges. Closed boundary conditions where no excitations are
created are marked with blue edges

cases depending upon the vector between their positions.
For excitations that share a lattice plane there are two
distinct cases per plane, while for excitations that do not,
there are four distinct cases, see Fig. 7.

In the deformation process we first examine the con-
straints placed on the form of an arbitrary pair-creation
operator by the fact that it must commute with the
Hamiltonian terms away from the excitations. Next we
proceed to check whether the support of such an opera-
tor can be deformed to a flat-rod configuration through
multiplication with local stabilizer generators. See ap-
pendix A for a detailed discussion of deformability for
pair-creation operators.

The flat-rod commutation matrices count the number
of distinct nontrivial pair-creation operators that can be
supported on each region. Hence if a model has full de-
formability i.e. all pair-creation operators are deformable
to flat-rods, keeping the positions of excitations fixed,
then the flat-rod commutation matrices count the num-
ber of distinct topological charges that can be pair cre-
ated at their endpoints by operators without any shape
restriction. In particular, a model with full deformability
and with all flat-rod commutation matrix ranks equal to
zero supports no string operators and hence is type-II.
Similarly, for a model with full deformability, if the 3D,
2D and 1D flat-rod commutation matrix ranks are equal
and non-zero, the model must be either TQFT or a mix
of TQFT and type-II. The converse is also true, hence
full deformability and equality of commutation matrix
ranks associated with 3D, 2D and 1D flat-rod configu-
rations is an ’if and only if’ condition for a model to be
TQFT or a mix of TQFT and type-II. In practice the de-
formability and the values of flat-rod configurations can
only be checked up to a finite length scale. In some cases
this leads to an inconclusive result, consistent with both
fractal type-I and type-II, where a model is not fully de-
formable but no string operators are found.

The 3D and 2D flat-rod configurations are designed
to count the number of 3D particles and planons sup-
ported on a given region, respectively. Hence we expect
the value of all 3D flat-rod configurations to be equal,
and similarly we expect 2D flat rod configurations of the
same width and in the same plane to be equal. Conse-
quently, if some pair-creation operator is deformable to
one flat-rod configuration but not an equivalent one we
expect the relevant commutation matrix rank to be zero.
In the extreme case that a pair-creation operator is not
deformable to any flat-rod configuration, it implies the
existence of a nontrivial rigid string operator. In par-
ticular, if certain pair-creation operators can be cleaned
onto rigid lines that do not run along an axis we can check
those directions separately for the presence of nontrivial
rigid string operators.

B. Membrane-membrane configurations

We compliment the string-membrane configurations
by considering membrane-membrane configurations that
support rectangular shaped operators which create exci-
tations along only two edges, see Fig. 5, such that the
commutation matrix is well defined. These commuta-
tion quantities are inspired by the possibility of anti-
commuting operators in fracton models that cannot ap-
pear in TQFTs. In fact the rank of the membrane-
membrane commutation matrix is zero for any TQFT,
and hence this quantity detects whether a model has
fracton topological order. Furthermore, the scaling of
the rank with the size of the membranes can be used
to distinguish whether a type-I model is an instance of
foliated or fractal type-I order.
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Model Deformability n3D
rods n2D

rods (zx, xy, yz) n1D
rods (x, y, z) nm (zx, xy, yz) d Type

CC0 × 0 (0, 0, 0) (0, 0, 0) (c, c, c) 0 fractal type-I

CC1 X 0 (0, 0, 0) (0, 0, 0) (c, c, c) 0 type-II

CC2 X 0 (0, 0, 0) (0, 0, 0) (c, c, c) 0 type-II

CC3 X 0 (0, 0, 0) (0, 0, 0) (c, c, c) 0 type-II

CC4 X 0 (0, 0, 0) (0, 0, 0) (c, c, c) 0 type-II

CC5 × 0 (0, 0, 0) (0, 0, 0) (c, 0, c) 1 fractal type-I

CC6 × 0 (0, 0, 0) (0, 0, 0) (c, 0, c) 1 fractal type-I

CC7 X 0 (0, 0, 0) (0, 0, 0) (c, c, c) 0 type-II

CC8 X 0 (0, 0, 0) (0, 0, 0) (c, c, c) 0 type-II

CC9 × 0 (0, 0, 0) (0, 0, 0) (c, c, c) 1 fractal type-I

CC10 X 0 (0, 0, 0) (0, 0, 0) (c, c, c) 0 type-II

CC11 X 0 (0, 0, n1) (n2, n1, n1) (c, c, `) 0 fractal type-I

CC12 X 0 (n1, 0, 0) (n1, 0, n1) (`, c, c) 0 fractal type-I

CC13 X 0 (n1, 0, 0) (n1, 0, n1) (`, c, 0) 0 fractal type-I

CC14 X 0 (n1, 0, 0) (n1, 0, n1) (`, c, c) 0 fractal type-I

CC15 X 0 (0, 0, n1) (0, n1, n1) (c, c, `) 0 fractal type-I

CC16 × 0 (0, 0, 0) (0, 0, 0) (c, c, c) 0 fractal type-I

CC17 X 0 (0, n1, 0) (n1, n1, n2) (c, `, c) 0 fractal type-I

3DTC X 1 (1, 1, 1) (1, 1, 1) (0, 0, 0) 3 TQFT

2DTCxy X 0 (0, n1, 0) (n1, n1, 0) (0, `, 0) 2 foliated type-I

2DTCyz X 0 (0, 0, n1) (0, n1, n1) (`, 0, 0) 2 foliated type-I

2DTCxz X 0 (n1, 0, 0) (n1, 0, n1) (0, 0, `) 2 foliated type-I

XC X 0 (n1, n1, n1) (n2, n2, n2) (`, `, `) 0 foliated type-I

CB X 0 (n1, n1, n1) (n2, n2, n2) (`, `, `) 0 foliated type-I

Chm X 0 (n1, n1, n1) (n2, n2, n2) (`, `, `) 0 foliated type-I

SFSL X 0 (0, 0, 0) (0, 0, n1) (0, 0, c) 1 fractal type-I

HH-I X 0 (n1, n1, n1) (n2, n2, n2) (`, `, `) 0 foliated type-I

HH-II ? 0 (0, 0, 0) (0, 0, 0) (c, c, c) 0 inconclusivea

a Our results are consistent with fractal type-I or type-II.

TABLE III. Sorting data for a range of 3D topological stabilizer models. We consider the cubic codes 0-17 [13, 18] labeled
CC0-17, the 3D toric code, labeled 3DTC, stacks of 2D toric code parallel to the ij plane, labeled 2DTCij , the X-cube model
and checkerboard model [23], labeled XC and CB respectively, Chamon’s model [9, 11], labeled Chm, the Sierpinski fractal spin
liquid [16] labeled SFSL, and finally the so-called type-I and II spin models in Ref. 31, labeled HH-I and HH-II respectively. The
first column indicates whether pair creation operators in a model are fully deformable X, not ×, or inconclusive ?. The second
column shows the commutation matrix rank of the 3D flat-rod configuration n3D

rods. The third column shows the commutation
matrix rank of the 2D flat-rod configurations, n2D

rods, in the zx, xy and yz lattice planes, where the membrane is perpendicular to
the x, y and z direction, respectively. The fourth column shows the commutation matrix rank of the 1D flat-rod configurations,
n1D
rods, with a string along the lattice direction x, y and z. The placeholders n1 and n2 represent some non-zero numbers

which depend on the width of the flat rods and may be different for each model. The fifth column indicates the scaling of the
membrane-membrane commutation matrix rank, nm, with the size of the membranes, where c stands for constant and ` stands
for linear scaling, both up to fluctuating corrections. The notation zx, xy, yz indicate the directions of the membranes, where
zx refers to a membrane in the xy plane intersecting a membrane in the yz plane and similarly for the others. The sixth column
shows the mobility dimension, d, of an excited X stabilizer generator. The final column displays the class of topological order
resulting from the sorting procedure. All data except for CC0 (which has width five string operators) and HH-II was taken with
excitation configurations within a box of dimensions Lx = Ly = Lz = L = 20, or with a size L for which the values become
stable with respect to increasing the system size further. The flat-rods were taken to be as wide as three stabilizer generators
and the membranes as wide as two. The type of topological order for HH-II is listed as inconclusive since the model is not
fully deformable using constraints up to third order, but we also did not find a nontrivial string operator. Here, the first order
refers to constraints on vertices due to the commutation relations, second order refers to commutation constraints on pairs of
vertices and so on. It is possible that the model is fully deformable using higher order constraints and hence is type-II, or that
it contains a nontrivial string operator that we did not find and hence is fractal type-I.
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FIG. 5. The membrane-membrane configuration. Open
boundary conditions where excitations may be created are
indicated by black edges. Closed boundary conditions where
no excitations are created are indicated in green and blue for
the two membranes respectively

The shape of the membrane-membrane configuration
determines the type of operators it is sensitive to. We
only consider configurations where the membranes are
aligned with lattice planes. Without loss of generality
suppose one membrane has dimensions Lx×Lz in the xz
plane, and the other has dimensions Ly × Lz in the yz
plane. We suppose both are of width w, small compared
to their lengths Lx, Ly. For Lz small compared to Lx, Ly,
the configuration counts anti-commuting string operator
pairs along the x̂ and ŷ axes. This will only detect the
presence of lineon and/or planon pairs along these axes.

We find that configurations where Lx = Ly = αLz,
for a constant aspect ratio α of order 1 as Lz is scaled,
provide more useful information that allows us to dis-
tinguish foliated and fractal type-I orders. For foliated
type-I orders we expect the scaling to be linear due to
the presence of planons. This is because the plane of
mobility for an arbitrary planon will generically inter-
sect the plane of a membrane operator along a line, and
hence the string operator for that planon can be sup-
ported on some translation of the membrane, provided α
is sufficiently large. For fractal type-I orders, and type-II
orders, the presence of fractal operators that create topo-
logical charges at their corners lead to contributions to
the membrane-membrane commutation rank that fluctu-
ate with the precise size of the membranes. Depending on
the aspect ratio α the contribution of the fractal opera-
tors will either be of order constant, or may scale within
a linear envelope. It is also possible for fractal type-I
orders to support planon excitations, in which case we
expect linear scaling plus fluctuating corrections.

We present results obtained from the membrane-
membrane configurations for a large range of topolog-
ical stabilizer models in table III. The scaling of the
membrane-membrane commutation rank with Lz for
α = 1 is reported, with c indicating a nonzero result of

FIG. 6. Generalized Gauss’s laws for the fracton sector of the
X-cube model within a finite region. The set of Gauss’s laws
containing a given stabilizer share only one common intersec-
tion point.

order constant that may be fluctuating, and l indicat-
ing a linear scaling with a possible fluctuating constant
correction.

C. Intersection of generalized Gauss’s laws

For type-I models we utilize a further tool to determine
the minimal mobility of their topological excitations and
hence whether a given model is a fracton, lineon or planon
type-I order. We achieve this by investigating the struc-
ture of conserved charges due to generalized Gauss’s laws
in a given stabilizer model.

On a system with periodic boundary conditions each
relation, i.e. a set of nontrivial stabilizer generators that
multiply to the identity, gives rise to a materialized sym-
metry of parity conservation for a subset of topological
charges [1, 43, 64, 65]. For simplicity we assume there
are no local relations, as these are not relevant for the
fracton models we have considered. This leaves open
the possibility of global relations, generalizing the fa-
miliar global Z2 × Z2 charge conservation in 2D toric
code. These global relations are sensitive to boundary
conditions, dramatically so for fracton models. To avoid
such complications we turn our attention to an arbitrary
large cube region R within the bulk. Each relation that
overlaps R leads to a generalized Gauss’s law obtained
by restricting the product of generators in that relation
to include only those that act nontrivially on R. This
produces a generalized Wilson operator supported just
outside R that measures the Z2 charge for that relation
within R. For example, for the 2D toric code, there is
an X (Z) string operator which is a product of X (Z)
stabilizer generators within a 2D region R and confined
to the boundary of R. Measuring this X (Z)-operator
measures the parity of the number of e (m) charges i.e.
excited local X (Z)-stabilizers in the region R.

The intersection of the set of Gauss’s laws that con-
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tain a stabilizer generator determine the mobility of the
particle obtained by exciting it. Here the intersection of
a set of Gauss’s laws refers to the set of stabilizer genera-
tors that appear in all the aforementioned Gauss’s laws.
We define the intersection of a stabilizer generator to be
the intersection of the set of Gauss’s laws that contain
it. Exciting a pair of generators that are contained in
each other’s intersections has neutral charge under all
Gauss’s laws, and hence can be implemented by a local
pair-creation operator [18]. If a generator’s intersection
contains only itself, an excitation of that generator must
be a fracton. More generally, a generator g1 that sup-
ports a fracton could have a nonempty intersection con-
sisting of distinct generators g2 such that g1 is not in the
intersection of g2. Alternatively, for an excitation of a
single generator g1 to be a lineon, the intersection of g1
must contain a distinct generator g2, and the intersec-
tion of g2 must contain g1. Similarly for an excitation of
a single generator g1 to be a planon, the intersection of
g1 must contain two distinct generators g2, g3 in linearly
independent directions that both contain g1 in their in-
tersections. A similar condition holds again for a fully
mobile excitation, this time involving three distinct gen-
erators in linearly independent directions. In the above
discussion we have focused on stabilizer Hamiltonians
that are given by translates of a single type of X and
Z generator for simplicity, a generalization to the case of
multiple generator types is straightforward.

This concept is illustrated for the X-cube model in
Fig. 6 where the Gauss’s laws involving a particular X
stabilizer lie on the three lattice planes shown and their
intersection contains only the single stabilizer. Hence, a
single X stabilizer excitation in the X-cube model is a
fracton [27]. In our sorting procedure we use the intersec-
tion of Gauss’s laws to determine the minimum mobility
of excitations in each stabilizer model. This is particu-
larly relevant when considering a type-I model, as it may
be a fracton, lineon, or planon model, whereas TQFTs al-
ways have fully mobile particles and type-II models only
contain fractons, by definition. In any case the mobil-
ity constraints derived from the Gauss’s laws serve as a
consistency check. We remark that since the Gauss’s law
test is applied to a particular choice of generators, it is
not particularly useful for determining the type of topo-
logical order in a model. For example, to verify that a
model is type-II in this manner would require checking
every possible charge cluster, which is not feasible.

The deformability and commutation matrix tests do
not suffer from the same difficulty. In table III, we report
the dimension of the least mobile particle in a variety of
models, found by using the intersection of Gauss’s laws.

III. SORTING A TOPOLOGICAL STABILIZER
MODEL OF UNKNOWN TYPE

As discussed in the previous section, the deformabil-
ity of pair-creation operators supplemented by string-

membrane and membrane-membrane commutation ma-
trix ranks for a given stabilizer model reveal the ex-
istence of topological particles along with information
about their mobilities. We outline a procedure that uti-
lizes these test to sort a given topological stabilizer model
of unknown type below. The tools used are summarized
in table II.

A. Sorting procedure

• First check whether all operators that create a pair
of excitation patches in any of the configurations
shown in Fig. 7 are deformable to flat-rods. This
proceeds by first attempting to deform an arbitrary
pair-creation operator to lie within the minimal box
containing the excitations, shown in Fig. 7. Next it
is checked whether any such pair-creation operator
can be further deformed into a flat-rod configura-
tion. The full deformation procedure is explained
in detail in appendix A 2.

– If all the pair-creation operators are de-
formable to flat-rods, check the ranks of the
commutation matrices associated with the
flat-rod configurations:

∗ If the flat-rod commutation matrix ranks
are not all equal, then the model is type-
I with rigid string operators along some
lattice directions.

∗ If the ranks associated with all flat-rod
configurations are zero, then the model is
type-II.

∗ If the ranks associated with all flat-rod
configurations are equal and non-zero,
then the model is either TQFT or a stack
of TQFT and type-II up to a local unitary
circuit.

∗ In order to distinguish between TQFT
and a combination of TQFT and type-
II, check the membrane-membrane com-
mutation matrix, if the result is always
0, the model is a TQFT. More generally,
we conjecture that the value of n3Drods in-
dicates the number of copies of 3D toric
code contained in the model, which also
applies to type-I models.

– If the pair-creation operators are not all de-
formable to flat-rods, we conjecture the model
must be type-I:

∗ Next check the scaling of the membrane-
membrane commutation matrix, if it is
linear with no correction the model is
foliated type-I. Otherwise, in the case
there are fluctuating correction terms, the
model is fractal type-I.
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∗ Finally, check the generalized Gauss’s
laws within a cube to find the mobility of
single stabilizer excitations to determine
whether the model has fracton, lineon,
or planon topological order, correspond-
ing to the mobility of the most restricted
particle.

By following the above procedure, one can sort 3D
topological stabilizer models into the following classes:
TQFT, type-II, fracton/lineon/planon foliated or frac-
tal type-I. Combinations of the aforementioned types of
topological order can also be generated by stacking mod-
els of different types.

The data presented in table III indicates that cubic
codes [13, 18] CC1-4, CC7, CC8 and CC10 are type-II
while the remaining cubic codes are fractal type-I. We
remark that the fractal type-I model CC0 and type-II
models, such as CC1, differ only in the deformability
of their pair-creation operators to flat-rods as the only
rigid string operators in CC0 are along non-lattice di-
rections. CC11-15 and CC17 have rigid string operators
only along lattice directions and hence the pair-creation
operators are deformable to flat-rods along lattice direc-
tions. Another example of a fractal type-I model is given
by the Sierpinski fractal spin liquid (SFSL) in which all
elementary excitations are lineons that can move along
the ẑ direction. The X-cube model (XC) [23], checker-
board model (CB) [23], Chamon’s model (Chm) [9, 11]
and the type-I model from Ref. [31] (HH-I) are all ex-
amples of foliated type-I models. Not all pair-creation
operators for the so-called type-II model (HH-II) from
Ref. [31] could be deformed to flat-rods using the com-
mutation constraints up to third order where the first
order refers to commutation constraints on vertices, sec-
ond order refers to commutation constraints on edges or
pairs of vertices and so on. However, we also did not find
a non-trivial string operator. Since it is possible that
the pair-creation operators for this model are fully de-
formable to flat-rods using higher order constraints, we
have left the status of this model’s type as inconclusive.

B. Assumptions and limitations

When applying the sorting procedure there are some
practical limitations worth noting.

• For the deformability of pair-creation operators, we
assume that the excitation patches are sufficiently
far apart, i.e. their separation is much larger than
their extent. If this condition is not respected one
can find non-zero commutation matrix ranks asso-
ciated with certain flat-rod configurations, even for
models with no corresponding string operators.

• When checking the deformability of a pair-creation
operator, we utilize only a subset of all the possible

constraints that arise from commutation of the op-
erator with stabilizer generators away from the ex-
citations. For models that are not fully deformable
in table III we have checked up to third order con-
straints at least. This is supplemented by a direct
search for nontrivial string operators, informed by
the deformability results, and the demonstration of
particles with subdimensional mobility via general-
ized Gauss’s laws. When such rigid string opera-
tors are found they demonstrate conclusively that
a model is not fully deformable, which is indicated
by a × in table III. When a model is not fully de-
formable to third order but no rigid string operator
is found the result is inconclusive as it is consistent
with type-I or type-II, which is indicated by a ?
in table III. While any finite order constraint can
be checked in principle due to the general result
in Appendix A, this process becomes increasingly
complex as one considers higher order constraints.
A nontrivial application of higher order constraints
is discussed in Appendix B.

• The commutation matrix ranks for string-
membrane and membrane-membrane config-
urations can only be calculated for rods and
membranes of a tractable finite size. Hence, it is
possible in principle that nontrivial operators of
very large widths not reached in our numerics have
not been accounted for. It would be interesting
if one could upper bound the string operator
width that needs to be considered for translation
invariant topological stabilizer models to close
this loophole, but we do not have such a bound
presently.

• We have only considered membrane-membrane
configurations where the two membranes are
squares i.e. the aspect ratio is 1 and Lx = Ly = Lz.
For this choice of aspect ratio, the membrane-
membrane configuration does not detect the pres-
ence of planons with mobility in planes that inter-
sect the membranes in lattice planes, along a diag-
onal, such as the plane spanned by x̂+ ŷ, ŷ− ẑ. For
models with such planons, we can perform a mod-
ular transformation to map the diagonal planons
into alignment with a lattice plane. In the list of
models with planons we have considered, only cubic
code 16 has planons along such a diagonal plane.
These planons indeed show up in the membrane-
membrane configuration after a modular transfor-
mation is performed. In fact, after performing a
modular transformation to map the planons into a
lattice plane, we found the resulting model is equiv-
alent to cubic code 15 up to the relabeling of axes.
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l) (m)

FIG. 7. Different configurations of excitation pairs (grey cubes) and the minimal boxes containing them.

IV. DISCUSSION AND CONCLUSIONS

In this work we have provided a set of analytic and
numerical tools that can be applied to translation invari-
ant topological stabilizer models to sort them into one of
several qualitatively distinct classes of topological quan-
tum order: TQFT, foliated type-I, fractal type-I or type-
II. Our methods provide a recipe to sort an unknown
topological stabilizer model into one of these classes, as
explained in section III.

Our coarse sorting of topological stabilizer models into
classes with qualitatively similar physical properties con-
stitutes a step towards a full classification. Such a clas-
sification would likely require a more careful formulation
of generalized S-matrix quantities for fracton phases that
give rise to true local unitary invariants. We speculate
that such S-matrices would have to be customized to fit
the fusion rules and particle mobilities on a model by
model basis. Research along these lines has been initi-
ated in Ref. 63, which is complimentary to the ’one size
fits all’ approach taken here.

Over the coarse of this example centric study we have
formulated several conjectures about the structure of
general translation invariant topological 3D qubit sta-
bilizer models up to local unitary circuits:

• We conjecture that each independent 3D particle
implies a 3D toric code (possibly with emergent
fermions) can be disentangled via local unitary.
Hence a stabilizer model with only 3D particles is

equivalent to copies of the 3D toric code, possibly
including one copy with a fermionic point particle
in the case of a non CSS model. This is because
a stack of two 3D toric codes, one with a bosonic
point particle and the other with a fermionic point
particle is equivalent to a stack of two 3D toric
codes both with fermionic point particles, up to a
change of excitation basis.

• We similarly conjecture that each independent 2D
particle implies a 2D toric code can be disentangled.
We further conjecture that any planon stabilizer
model is equivalent to a stack of toric codes, which
may be a slightly stronger statement.

The properties of each different class of topological or-
der discussed in this paper are key to understanding the
entanglement renormalization flow for general 3D topo-
logical stabilizer models. If our conjectures are true, sta-
bilizer models with only 3D particles flow to RG fixed
points and for each 2D particle, a stack of 2D toric codes
can be extracted in a bifurcating renormalization flow.
Furthermore, the use of the stack of 2D toric codes as
a resource in the definition of foliated phases is essen-
tially unique amongst stabilizer models. Results along
these lines will be presented in a forthcoming work [69].
Several other directions for future work have presented
themselves during the coarse of this study. These in-
clude: the generalization of our methods beyond stabi-
lizer models using tensor network techniques following
Ref. 67, adapting our methods to apply to subsystem
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symmetry-protected phases, and the search for a rigorous
no strings condition for stabilizer models that is necessary
and sufficient while also remaining practical to verify.
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Appendix A: Sufficient condition for Deformability

In this appendix, we formulate a sufficient condition and a general recipe which can be employed to deform a
pair-creation operator to a certain “normal form” i.e. to clean a pair-creation operator to a flat-rod structure for
example. The main merit of our approach is that it can be applied to any stabilizer model. In particular, we have no
constraint on the number of physical qubits placed on each vertices. Without loss of generality, we assume that there
are nv qubits for each vertex. Broadly speaking, there are two types of elementary moves we are considering.

The first move is what we refer to as “3D corner cleaning.” We formulate a condition under which a corner of a
string segment can be “cleaned.” That is, given a Pauli operator P representing a pair-creation operator, we would
like to show that there is another Pauli operator P ′ whose support is reduced by a corner of the support of P . Of
course, P and P ′ will be a different operator in general, but their action on the ground state will be identical. The
second move is what we refer to as “2D corner cleaning”. This is analogous to the 3D corner cleaning, except for the
fact that we are considering a pair-creation operator supported on a two-dimensional sheet of thickness one.

Both of these moves can be understood in terms of a procedure called “local cleaning”. Local cleaning refers to a
process by which a pair-creation operator is converted to an equivalent pair-creation operator supported on a smaller
subsystem by removing one of the vertices. For a given vertex a, we formulate a condition under which the support
of the pair-creation operator can be cleaned to have a trivial action on a.

In the ensuing discussion, it is convenient to use a well-known symplectic representation of a Pauli operator. Consider
a Pauli operator acting on n qubits. Any such operator, up to a phase, can be represented as a 2n-dimensional vector
with a Z2 base field. For example, (x1, x2, z1, z2) represents an operator Xx1

1 Xx2
2 Zz1

1 Z
z2
2 , where the subscript refers

to the qubit index. More generally, the first n entries represent the Pauli X operators and the remaining n entries
represent the Pauli Z operators. A commutation relation between Pauli operators can be formulated concisely as
follows. Two Pauli operators represented by v1 and v2 commute with each other if and only if

v1ΩvT2 = 0, (A1)

where

Ω :=

(
0n In
In 0n

)
is the symplectic matrix. Here In is a n× n identity matrix and 0n is a n× n matrix with zero entries.

1. Local cleaning

We begin by formulating some intuitive notions precisely.

Definition 1. For a ∈ A,

1. In(a,A) is the set of stabilizers with nontrivial support on a which are supported on A.

2. Out(a,A) is the set of stabilizers with nontrivial support on a which are supported on {a} ∪Ac.

In other words, In(a,A) is a set of stabilizers that are “inside of” A that acts nontrivially on a. Similarly, Out(a,A)
is a set of stabilizers that are “outside of” A that acts nontrivially on a.

Now, we can formulate our strategy in words. By using the fact that the pair-creation operator must commute with
the stabilizers, we will derive a nontrivial constraint on the Pauli operator acting on a. The constraint comes from
the fact that this Pauli operator must commute with any stabilizer in Out(a,A). Then, we would like to deform the
pair-creation operator by multiplying a judicious set of stabilizers in In(a,A). Note that multiplying such a stabilizer
does not expand the support of the pair-creation operator.

A nontrivial question is whether one can always find a set of stabilizers in In(a,A) that achieves this goal. To gain
some intuition, it is instructive to consider an example, say, Cubic code 10, see appendix D 1 h. In this case, we have
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2 qubits per vertex. The space of Pauli operators on these two qubits can be represented by a 2× 2 = 4-dimensional
Z2-valued vector space. For each corner, there are two constraints coming from the commutation relation with the
two stabilizers, one X-type stabilizer and the other Z-type, that share just that corner. These are linear constraints,
so a set of vectors that obeys these constraint forms a linear subspace. This effectively constrains a set of possible
Paulis that the pair-creation operator can have at a. Now the question is whether any such Pauli can be removed
by multiplying a stabilizer in In(a,A). As we will show below, this again can be formulated in the language of linear
algebra.

In this somewhat restricted example, we made two important observations that apply more generally. First, both
the commutation relation with Out(a,A) as well as the reduction of the support of the pair-creation operator by
multiplying a stabilizer from In(a,A) can be formulated in the language of linear algebra over Z2. Second, in this
discussion, we did not need the information about the entire stabilizer itself. Rather, all that mattered was the
restriction of the stabilizers in In(a,A) and Out(a,A) on a.

Definition 2. We define constraint matrices Cin(a,A) and Cout(a,A) as

Cin(a,A) =

s
(i)
1 |a
...

s
(i)
ni |a



Cout(a,A) =

s
(o)
1 |a

...

s
(i)
no |a

 ,

(A2)

where s
(i)
i ∈ In(a,A) and s

(o)
i ∈ Out(a,A). For each stabilizer s, s|a is a symplectic representation of a restriction of

s to a.

To be clear, a restriction of a stabilizer to a is defined as follows. Let s = pa ⊗O for some operator O and a Pauli
operator pa acting on a. A restriction of s to a is pa.

Here is our key lemma.

Lemma 1. (Local cleaning lemma) Consider a pair-creation operator P acting on A. Let a ∈ A. If

ker(Cout(a,A)Ω) = Im(Cin(a,A)) (A3)

then there exists an equivalent pair-creation operator P ′ acting on. A \ {a}.

Proof. Let v be a restriction of the pair-creation operator to a. Because v must commute with all the stabilizers in
Out(a,A), we have

Cout(a,A)ΩvT = 0. (A4)

If the condition is satisfied, the orthogonal complement of the vector space spanned by rows of Cout(a,A)Ω must be
spanned by the rows of Cin(a,A).

Therefore, no matter what v is, there is a stabilizer in In(a,A) whose restriction on a, in the symplectic represen-
tation, is v. Therefore, there is a stabilizer supported on A, which, upon multiplying with P , reduces the support to
A \ {a}.

There is a generalization of this lemma which will prove useful for certain models, e.g., CC8. The main idea is to
consider a set of sites as opposed to a single site. That is, a is no longer a single site but rather a subset of A. A
restriction of a stabilizer to a will thus generally become a longer vector.

Lemma 2. (Generalized local cleaning lemma) Consider a pair-creation operator P acting on A. Let B ⊂ A. If

ker(Cout(B,A)Ω)|a = Im(Cin(a,A)) (A5)

then there exists an equivalent pair-creation operator P ′ acting on. A \ {a}.

Here |a is projection onto the Pauli operator acting on a ∈ B. The proof is analogous to the local cleaning lemma.
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2. Cleaning strategy

The local cleaning lemma is extremely general. For any model, we can apply the following greedy strategy to reduce
the support of the pair-creation operator. Namely,

1. For each a in the support of the pair-creation operator, check eq. A3.

2. If the condition is satisfied, clean a.

3. Repeat.

There is a freedom in choosing the order of the cleaning. However, often it is convenient to follow these steps.
Without loss of generality, suppose we have a pair-creation operator contained in some box. We first clean this box
so that the operator is supported on a box that tightly encloses the excitations. We will explain this process once we
set up our notation. Provided that this is done already, we repeat the following.

1. Pick a corner of the box for which eq. A3 is satisfied. Repeatedly apply the same cleaning move for every corner
in the same direction.

2. This results in a box with a 2D structure.

3. Clean the 2D structure in a similar manner.

4. Go to the other corners and repeat the same procedure.

There is a notable exception for which this strategy does not work. This is CC8. The main challenge here lies in
using Lemma 2. The stabilizer generators of Cubic code 8 are given by

XX XX

XI II

XX XI

IX XI

IZ ZI

IZ ZZ

II IZ

ZZ ZZ

. (A6)

Table IV summarizes the Cout, Cin for each corner of a cube. The origin (0, 0, 0) is at the XX of the X-stabilizer.
Note that there are 8 different types of corners. We will label these types following the convention of Fig. 8.

D′ C′

A B

B′ A′

C D

(A7)

FIG. 8. There are 8 different types of corners. The shape of the pair-creation operator doesn’t have to cube or cuboid but can
always be confined in a cuboidal box as shown. Two corners, if they are of the same type, have identical constraint matrices.

Now that we have set up our convention, let us explain the procedure to clean a general operator to an operator
in a box that tightly encloses the excitations. As a starting point, without loss of generality, we can assume that the
operator is supported on some finite cuboid. Suppose that the type-B corner can be cleaned. By repeatedly cleaning
the type-B corner, we will end up having a cuboid with two sheets attached to it. The sheet normal to the x-direction
will have a corner of type A which we can attempt to clean. The sheet normal to the y-direction will have a corner of
type C ′ which we can also attempt to clean. Suppose at least one of them can be cleaned. By repeating the cleaning
process, one ends up having a single sheet. The remaining sheet can be cleaned if at least one of its corners (e.g., D′

or C ′ on a sheet normal to the y-direction and A or D′ on a sheet normal to the x-direction) can be cleaned. If either
of these two conditions holds, we can completely remove the parts of the cuboid whose z coordinate is larger than
the z coordinates of the excitations. More precisely, we will be able to remove parts of the cuboid whose z coordinate
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satisfies z > zmax, where zmax is highest z coordinate in the support of the excitation. By the symmetries of the
models we have considered, one can remove the parts of the cuboid whose z coordinate is smaller than the lowest z
coordinate of the excitations. Note that we did not need to begin this procedure by cleaning corner type B. In order
to clean the top portion of the cuboid, one could have started by cleaning vertices or corners of type A, C ′, or D′

followed by cleaning the appropriate set of sheets for those choices. One can similarly squash the cuboid down to the
minimal box in the other directions as well. We verified that this was possible in all the models we considered, except
for the Hsieh-Halasz-II model.

Corner type Cin Cout Cleanable?

B
(
0 0 1 1

) 1 1 0 0
0 0 1 1
0 0 0 1

 Yes

C′
(

1 1 0 0
0 0 1 0

) (
0 1 0 0
0 0 1 1

)
Yes

A

(
1 0 0 0
0 0 0 1

) (
1 0 0 0
0 0 0 1

)
No

D

(
1 0 0 0
0 0 1 1

) (
1 1 0 0
0 0 0 1

)
Yes

D′
(

1 1 0 0
0 0 0 1

) (
1 0 0 0
0 0 1 1

)
Yes

C

(
0 1 0 0
0 0 1 1

) (
1 1 0 0
0 0 1 0

)
Yes

A′
(

1 0 0 0
0 0 0 1

) (
1 0 0 0
0 0 0 1

)
No

B′ (
1 1 0 0

) (
0 0 1 1

)
No

TABLE IV. Cleanability criteria of CC8 from eq. A3. For the convention on the corner type, see Fig. 8.

We will also consider a cleaning strategy for corners of two-dimensional sheets that are normal to the x̂, ŷ, and ẑ
directions. Let us first summarize the result and sketch the proof.

Sheet Corner type Cleanable? Lemma

x̂
B,C,B′, C′ Yes 1
A,D,A′, D′ Yes 2

ŷ
A,B,A′, B′ Yes 1
C,D,C′, D′ No

ẑ
B,D,B′, D′ Yes 1
A,C,A′, C′ Yes 2

TABLE V. Cleanability criteria of CC8 for corners of 2D sheet. By the Z2 symmetry that exchanges the X and Z stabilizer,
the cleanability of two corners in the opposite direction are identical. The vector x̂, ŷ, ẑ represents the normal vector of the
sheets. For the corners, we follow the convention of Fig. 8.

Here, let us sketch how these facts can be used to deform any string segment into union of flat rods. First of all,
without loss of generality, suppose two excitations were created by an operator in some finite box. We would like to
reduce the support of this operator to a box that tightly encloses the two excitations; see Fig. 7. Then, we would
like to clean the type-B corners. This leaves us with two sheets normal to the x and y-direction. Because the sheet
normal to the x direction can be cleaned. What remains is the sheet normal to the y direction. Because at least one
of its corners can be cleaned, this sheet can be cleaned as well. This process cleaned the portion of the operator that
is on top of the figures shown in Fig. 7 in the z-direction. We can apply the analagous process on the other sides,
leading us to Fig. 7.

a. Corner cleaning on sheets

Let us discuss how the corner cleaning condition on a 2D surface can be derived. For this discussion, it is convenient
to use the following convention. We specify the corners of the sheets by (i) specifying the normal vector of the sheet
and (ii) referring to the corners in Fig. 8. Of course, the actual corner in consideration may differ from the one
described in Fig. 8. However, whether a corner can be cleaned or not is determined by the constraint matrix, and this
constraint matrix will be determined uniquely by the type of corner. Specifically, for each sheet, there are 4 different
types of corners, as one can see in Fig. 8. Once we specify this information, the constraint matrix is uniquely defined.
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FIG. 9. A set of points used in the second order constraint in cleaning of a corner of type A, D, A′ or D′. The corner is at
position a as shown. Points a, b and c lie in the yz plane.

FIG. 10. A set of points used in the third order constraint involving the vertex with type B, D, B′ or D′ at position c as
shown. Points a, b, c, d and e lie in the xy plane.

We will now consider cleaning of sheets (of thickness one) normal to each lattice direction. Consider the sheet
normal to the x-direction. For the corner types B, C, B′ or C ′ in Fig. 8, we have

Cout =

1 1 0 0
0 1 0 0
0 0 1 1
0 0 0 1

 , (A8)

which is full rank. Therefore, this corner can be cleaned. For the corner types A, D, A′ or D′, without loss of
generality, we can consider three vertices a, b, c described in Fig. 9. This leads to the constraint matrix in Eq. (A9).

Cout =

aX bX cX aZ bZ cZ



1 1 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 1 1 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 1 1 0
0 0 0 0 0 0 1 1 0 1 1 1
0 1 1 0 0 0 0 0 0 0 0 0
1 1 1 1 1 1 0 0 0 0 0 0

(A9)

From row 1, 2, 3, 6, 7, 8 of eq. A9, we can see that the kernel of eq. A9 restricted to aX must be (0, 0). Let ri be the
ith row vector. From row 1 and 2, one can see that the kernel of Cout must obey the constraint aX = (0, 0). From row
3 and r6 + r7 + r8, one can see that the kernel restricted to aZ must be (0, 0). Therefore, the corner at (y, z) = (1, 0)
can be cleaned as well.

Now, let us consider the sheet normal to the y-direction. For the corner types A, B, A′ or B′, in Fig. 8, we have

Cout =

1 1 0 0
1 0 0 0
0 0 0 1
0 0 1 1

 , (A10)

which is full rank. Therefore, these types of corners can be cleaned. We were unable to verify if the type-C,D,C ′, D′

corners can be cleaned.
Lastly, let us consider the sheet normal to the z-direction. For the corner types A, C, A′ or C ′, we have

Cout =

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 1

 , (A11)
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which is full rank. Therefore, these types of corners can be cleaned. For the corner types B, D, B′ or D′, we have
the constraint matrix in eq. A12, which is based on the configuration of 5 vertices described in Fig. 10.

Cout =

aX bX cX dX eX aZ bZ cZ dZ eZ



1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 1

(A12)

In eq. A12, from the row 1, 2, 5, 6, 7, 8, 14 we can conclude that the restriction on c is (0, 0). To see why, let ri be
the ith row vector. Note that r1 + r7 + r8 becomes (0, 1) on cX . Together with row 2, this implies that cX must be
(0, 0). Also, r6 + r14 becomes (1, 1) on cZ and r5 becomes (0, 1) on cZ . Because these two are linearly independent,
cZ = (0, 0). Therefore, the corner at (x, y) = (1, 1) can be cleaned. More precisely, this corner can be cleaned if in its
vicinity we have an arrangement described in Fig. 10.

Therefore, we conclude that, for any “stairwell” configuration, one can clean the vertex of the central protruding
corner. It is important to note that this is possible independent of the details of the other vertices in the vicinity.
Specifically, in Fig. 10, the fact that c can be cleaned is independent of what a, b, d, and e are. By repeatedly applying
this fact, one can clean the entire 2D sheet into a one-dimensional subsystem.

Appendix B: Example of deforming pair-creation operators: Cubic code 8

In this appendix, we discuss deformability of all pair-creation operators as shown in Fig. 7 for cubic code 8. We
do not employ the general symplectic formulation in terms of the cleaning lemma used in the Sec. A. Instead we
equivalently describe deformability in terms of commutation constraints on local Pauli operators. The stabilizer
generators of cubic code 8 are given by

XX XX

XI II

XX XI

IX XI

IZ ZI

IZ ZZ

II IZ

ZZ ZZ

(B1)

(a) (b) (c) (d)

FIG. 11. Deformation of xy planar boxes. If the excitations fit within a box along a lattice plane, we refer to it as a planar
box.

For the configuration shown in Fig. 11 (a), we start by cleaning the corner edge where 3 of the vertices are denoted
O2, D and E. We show that this edge is completely and independently cleanable and then the same process can be
applied subsequently to the protruding edges. [O2, ZZ] = 0 implies O2 = II,XX. One can keep cleaning the column
of operators on these corner edges of the box by multiplying X stabilizers until one is left with a pair of operators



21

acting on D and E. [D⊗E, IZ ⊗ZZ] = 0, [D,ZZ] = 0 and [E, IZ] = 0 implies D⊗E is either II ⊗ II or XX ⊗XI
which can be cleaned by multiplying with X stabilizers. In this manner, the protruding edges of the box can be
cleaned to yield the flat-rod configuration as shown in Fig. 11 (b).

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

FIG. 12. Steps in deformation of the first xy planar box. There is no good edge for cleaning, so we employ higher order
commutation constraints.

For the configuration of excitations shown in Fig. 11 (c), the deformation procedure is more complicated. We
explain it in detail in Fig. 12. In Fig. 12 (a), [O1, IZ] = 0 implies O1 = XI or O1 = II. If O1 = XI, it can be
cleaned by multiplying with an X stabilizer. Subsequent corners like A have the same constraint and can be cleaned
in the same manner. When only the top corner B is left, it obeys constraints [B, IZ] = 0 and [B,ZZ] = 0 due to the
commutation with the edges IZ − II and ZZ − II of the Z-stabilizer. For example, [B ⊗ B′, ZZ ⊗ II] = 0. In this
manner, the edge joining O1, A and B is cleanable and hence, we get Fig. 12 (b). Now, C and D as shown have the
same constraint as O1 and can be cleaned. Subsequent equivalent cleaning leads to configuration in Fig. 12 (c) where
[E, IZ], [G, IZ] = 0, [G,ZZ] = 0 and [E⊗F ⊗G,ZZ⊗II⊗IZ] = 0. Since [G, IZ] = 0, this implies that [E,ZZ] = 0.
The constraints imply E = G = II. Hence, the columns starting from C and D are cleaned. Similarly, we can
clean the columns containing C2, E2 and D2, G2 respectively. An equivalent procedure leads to the configuration in
Fig. 12 (g). Again, the edge joining O2, A2 and B2 is cleanable. Subsequent cleaning using the cleaning of columns
as described, eventually leads to the configuration shown in Fig. 12 (k) which has a cleanable edge joining B2, A2

and O2. Hence, we get the flat-rod configuration of Fig. 12 (l).

(a) (b) (c) (d)

FIG. 13. Deformation of xz planar boxes

In the pair-creation operator in Fig. 13 (a), [O1, ZZ] = 0 implies O1 = XX, II. Hence, O1 can be cleaned by
multiplying the X stabilizer. Subsequent cleaning of an equivalent corner in this manner will finally leave a pair
of vertices A and B which should satisfy the constraints [A ⊗ B, IZ ⊗ ZZ] = 0, [A,ZZ] = 0 and [B, IZ] = 0.
Together these imply that A ⊗ B is either II ⊗ II or XX ⊗XI which can be again cleaned by multiplying with X
stabilizers. Hence, the whole edge has been cleaned. Subsequent cleaning of protruding edges in this manner will lead
to the flat-rod configuration as shown. Similarly for the configuration shown in Fig. 13 (c), one can clean O2 as it
obeys [O2, ZI] = 0 which implies it is either IX or II and hence can be cleaned by multiplying with X stabilizers.
[C⊗D, IZ⊗ZI] = 0, [C,ZI] = 0 and [D, IZ] = 0 imply C⊗D = IX⊗XI which can be again cleaned by multiplying
with X stabilizers. Subsequent cleaning leads to the configuration shown in Fig. 13 (d).
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(a) (b) (c) (d)

FIG. 14. Deformation of yz planar boxes

In Fig. 14 (a), since [O1, ZZ] = 0, O1 and resulting corners can be cleaned as before by multiplying X stabilizer.
Final pair of vertices A and B can be cleaned because [A⊗ B, IZ ⊗ ZZ] = 0, [A,ZZ] = 0 and [B, IZ] = 0 i.e. since
IZ and ZZ are independent. Hence, subsequent cleaning of edges leads to the flat-rod configuration in Fig. 14 (b).
Similarly, in Fig. 14 (c), the pair of vertices of Z-stabilizer that impose commutation constraints on the edge of the
box joining O2, C and D are ZZ and ZI which are independent. Hence the edge of the box as shown is cleanable.
Subsequent cleaning leads to the flat-rod configuration shown in Fig. 14 (d).

The cleaning of 3D configurations can be understood in terms of the cleaning of planar boxes we have done in the
previous figures. We first clean the box containing the pair of excitation in 3D to 3 planar boxes joined together.
This can be done by first cleaning a corner, say O1 and all subsequent corners that creates. The planar boxes thus
produced can be cleaned using the strategy empoyed for the planar boxes shown in previous figures leading to the
final configuration of flat-rods.

(a) (b) (c) (d) (e)

FIG. 15. Deformation of 3D configuration of excitations of Fig. 7 (a)

For example, in the first 3D configuration shown in Fig. 15 (a), we clean the corner O1 by multiplying with an X
stabilizer since [O1, ZI] = 0 implies O1 = IX or II. From the cleaning in Fig. 14 (c), we know that the edge joining
O2, B and C in Fig. 15 (b) is cleanable and hence the plane can be cleaned to reach the configuration in Fig. 15 (c).
Again, from the cleaning in Fig. 13 (a), we know that the edge joining O3, D and E is cleanable and hence, subsequent
cleaning of such edges gives Fig. 15 (a). Using the cleaning done for Fig. 11 (c), we arrive at the flat-rod configuration
shown.

(a) (b) (c) (d) (e)

FIG. 16. Deformation of the 3D configuration of excitations from Fig. 7 (b)

Similar to the previous configuration of excitations, the configuration in Fig. 16 (a) can be cleaned via the corners,
O1 and so on, to arrive at a configuration with three planar boxes. All the edges as marked by vertices on the three
planar boxes are cleanable as shown before and hence, the configuration is easily cleaned to a flat-rod configuration.
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(a) (b) (c) (d) (e)

FIG. 17. Deformation of the 3D configuration of excitations in Fig. 7 (c)

A similar process can be followed for the configuration in Fig. 17 (a). Due to the cleanability of O1, O3−D−E and
O4 −G−H, we arrive at the configuration in Fig. 17 (d). Now, we have an xy planar box equivalent to the one for
which we used higher order commutation constraints. Using the same cleaning procedure, we can go from Fig. 17 (d)
to (e).

(a) (b) (c) (d) (e)

FIG. 18. Deformation of 3D configuration of excitations of Fig. 7d

We follow the same process for the configuration in Fig. 18 (a) and find that the protruding edges of all planar
boxes marked with vertices are cleanable. Hence, by the cleanability of planar boxes, we arrive at the final flat-rod
configuration.

Appendix C: Membrane-membrane operator commutation scaling

In this appendix, we present tables that exhibit the scaling behavior of the commutation matrix rank for membrane-
membrane configurations. Our labeling of the models is as follows: XC for the X-cube model, CB for the checkerboard
model, Chm for Chamon’s model, HH-I for Hsieh-Halasz’s type-I model, HH-II for Hsieh-Halasz’s second model which
may be type-I or II, 2DTCij for a stack of 2D toric codes parallel to the i j plane, 2FXC for the twice foliated X-cube
model, 3DTC for the 3D toric code, SFSL for the Sierpinski fractal spin liquid model and CCi for cubic code i. The
final row in each table contains the result of the scaling behaviour, ` stands for linear, c stands for constant, both up
to fluctuating corrections of order constant. When the rank is precisely 0 that is indicated instead.

Foliated type-I Fractal type-I (d = 0, 1, 2)
L XC CB Chm HH-I 2DTCxy 2DTCyz 2DTCxz 2FXC CC11 CC12 CC13 CC14 CC15 CC16 CC17
14 30 30 18 60 0 0 30 30 4 26 28 26 10 15 4
15 32 32 20 64 0 0 32 32 4 30 28 28 10 16 4
16 34 34 20 68 0 0 34 34 4 32 32 30 10 13 4
17 36 36 22 72 0 0 36 36 4 32 32 32 10 12 4
18 38 38 22 76 0 0 38 38 4 36 36 34 10 10 4
19 40 40 24 80 0 0 40 40 4 38 36 36 10 8 4

` ` ` ` 0 0 ` ` c ` ` ` c c c

TABLE VI. Scaling of the commutation matrix rank with L = Lx = Ly = Lz and w = 3 for the membrane-membrane
configuration with membranes along the xy and yz planes that have open boundary conditions along their ŷ oriented edges.
This table contains foliated Type-I models and fractal type-I models with planons.
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TQFT Type-II (d = 0) Fractal type-I (d = 0, 1)
L 3DTC CC1 CC2 CC3 CC4 CC7 HH-II SFSL CC0 CC5 CC6 CC8 CC9 CC10
14 0 14 14 14 8 15 16 0 16 10 10 8 12 15
15 0 16 12 16 8 16 12 0 12 10 10 8 16 16
16 0 12 12 15 8 12 14 0 15 10 10 8 12 15
17 0 16 14 14 8 14 16 0 15 10 10 8 16 14
18 0 12 14 15 8 16 14 0 15 10 10 8 12 14
19 0 12 16 14 8 16 0 10 10 8 12 12

0 c c c c c 0 c c c c c c c

TABLE VII. Scaling of the commutation matrix rank with L = Lx = Ly = Lz and w = 3 for the membrane-membrane
configuration with membranes along the xy and yz planes that have open boundary conditions along their ŷ oriented edges.
This table contains TQFT, Type-II and fractal Type-I models with no planons.

Foliated type-I Fractal type-I (d = 0, 1, 2)
L XC CB Chm HH-I 2DTCxy 2DTCyz 2DTCxz 2FXC CC11 CC12 CC13 CC14 CC15 CC16 CC17
14 30 30 18 60 30 0 0 0 4 10 10 8 10 15 52
15 32 32 20 64 32 0 0 0 4 10 10 8 10 16 60
16 34 34 20 68 34 0 0 0 4 10 10 8 10 13 64
17 36 36 22 72 36 0 0 0 4 10 10 8 10 12 64
18 38 38 22 76 38 0 0 0 4 10 10 8 10 10 72
19 40 40 24 80 40 0 0 0 4 10 10 8 10 8 76

` ` ` ` ` 0 0 0 c c c c c c `

TABLE VIII. Scaling of the commutation matrix rank with L = Lx = Ly = Lz and w = 3 for the membrane-membrane
configuration with membranes along the xz and yz planes that have open boundary conditions along their ẑ oriented edges.
This table contains foliated Type-I models and fractal type-I models with planons.

TQFT Type-II (d = 0) Fractal type-I (d = 0, 1)
L 3DTC CC1 CC2 CC3 CC4 CC7 HH-II SFSL CC0 CC5 CC6 CC8 CC9 CC10
14 0 14 14 16 8 7 16 0 16 0 0 15 12 10
15 0 16 12 12 8 4 12 0 12 0 0 16 16 14
16 0 12 12 16 8 4 14 0 15 0 0 14 12 15
17 0 16 14 16 8 4 16 0 15 0 0 16 16 16
18 0 12 14 16 8 6 14 0 15 0 0 14 12 14
19 0 12 16 12 8 8 0 0 0 16 12 14

0 c c c c c 0 c 0 0 c c c c

TABLE IX. Scaling of the commutation matrix rank with L = Lx = Ly = Lz and w = 3 for the membrane-membrane
configuration with membranes along the xz and yz planes that have open boundary conditions along their ẑ oriented edges.
This table contains TQFT, Type-II and fractal Type-I models with no planons.

Foliated type-I Fractal type-I (d = 0, 1, 2)
L XC CB Chm HH-I 2DTCxy 2DTCyz 2DTCxz 2FXC CC11 CC12 CC13 CC14 CC15 CC16 CC17
14 30 30 19 60 0 30 0 30 26 8 0 10 26 15 4
15 32 32 20 64 0 32 0 32 30 8 0 10 30 16 4
16 34 34 21 68 0 34 0 34 32 8 0 10 32 13 4
17 36 36 22 72 0 36 0 36 32 8 0 10 32 12 4
18 38 38 23 76 0 38 0 38 36 8 0 10 36 10 4
19 40 40 24 80 0 40 0 40 38 8 0 10 38 8 4

` ` ` ` 0 0 ` ` ` c 0 c l c c

TABLE X. Scaling of the commutation matrix rank with L = Lx = Ly = Lz and w = 3 for the membrane-membrane
configuration with membranes along the xy and xz planes that have open boundary conditions along their x̂ oriented edges.
This table contains foliated Type-I models and fractal type-I models with planons.
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TQFT Type-II (d = 0) Fractal type-I (d = 0, 1)
L 3DTC CC1 CC2 CC3 CC4 CC7 HH-II SFSL CC0 CC5 CC6 CC8 CC9 CC10
14 0 14 14 15 12 8 16 2 15 10 10 15 14 15
15 0 16 16 16 12 8 12 2 12 10 10 16 16 16
16 0 16 16 14 12 8 14 2 15 10 10 16 16 15
17 0 16 16 14 14 8 16 2 15 10 10 16 16 14
18 0 14 14 15 16 8 14 2 15 10 10 16 14 14
19 0 12 12 14 14 8 12 2 12 10 10 14 12 12

0 c c c c c c c c c c c c c

TABLE XI. Scaling of the commutation matrix rank with L = Lx = Ly = Lz and w = 3 for the membrane-membrane
configuration with membranes along the xy and xz planes that have open boundary conditions along their x̂ oriented edges.
This table contains TQFT, Type-II and fractal Type-I models with no planons.

Appendix D: Topological stabilizer model zoo

In this appendix we collect the topological stabilizer models known to us, sorted according to the type of topological
order they support.

1. Type-II models

In this section we collect known examples of type-II models: cubic codes 1, 2, 3, 4, 7, 8, 10, from Ref. 13, Yoshida’s
type-II qubit and qutrit fractal spin liquids [16], Kim’s type-II qutrit and qudit models [15]. Cubic codes 1 to 4 were
shown to be type-II codes in Ref. 13 and our results indicate cubic codes 7, 8 and 10 are also type-II. We also include
Halasz and Hsieh’s “type-II” model [31], although it has not been shown to be type-II. Our results are inconclusive
for this model as they are consistent with fractal type-I or type-II.

a. Cubic code 1

The stabilizer generators of cubic code 1 are given by

IX XI

XI II

XX IX

IX XI

IZ ZI

ZI ZZ

II IZ

IZ ZI

. (D1)

Model Deformability n3D
rods n2D

rods (zx, xy, yz) n1D
rods (x, y, z) nm (zx, xy, yz) d Type

CC1 X 0 (0, 0, 0) (0, 0, 0) (c, c, c) 0 type-II

TABLE XII. Operator data for 3D stabilizer models. For definitions, see table III

b. Cubic code 1B

It was shown in Ref. 20 that real-space entanglement renormalization of cubic code 1 yields cubic code 1, cubic
code 1B and disentangled qubits in the trivial state. It was further shown that cubic code 1B bifurcates into two
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copies of itself under entanglement renormalization. The stabilizer generators of cubic code 1B are given by

XIII

IXIX IIXX

XXXI

IXII

XXXX IIXI

XIIX

ZIZZ

ZZII IZIZ

IIZI

IZZI

ZIII ZZZZ

IIIZ

. (D2)

Cubic code 1B is type-II since any nontrivial string operators in the model would imply string operators in cubic code
1, which was shown to contain no string operators [13].

c. Cubic code 2

The stabilizer generators of cubic code 2 are given by

XX IX

XI XI

XI XX

IX XI

IZ ZI

ZZ IZ

IZ IZ

ZI ZZ

. (D3)

Model Deformability n3D
rods n2D

rods (zx, xy, yz) n1D
rods (x, y, z) nm (zx, xy, yz) d Type

CC2 X 0 (0, 0, 0) (0, 0, 0) (c, c, c) 0 type-II

TABLE XIII. Operator data. For definitions, see table III

d. Cubic code 3

The stabilizer generators of cubic code 3 are given by

IX XI

XI XI

XX IX

IX II

II ZI

ZI ZZ

IZ IZ

IZ ZI

. (D4)

Model Deformability n3D
rods n2D

rods (zx, xy, yz) n1D
rods (x, y, z) nm (zx, xy, yz) d Type

CC3 X 0 (0, 0, 0) (0, 0, 0) (c, c, c) 0 type-II

TABLE XIV. Operator data. For definitions, see table III
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e. Cubic code 4

The stabilizer generators of cubic code 4 are given by

IX IX

XI II

XX XI

IX XI

IZ ZI

IZ ZZ

II IZ

ZI ZI

. (D5)

Model Deformability n3D
rods n2D

rods (zx, xy, yz) n1D
rods (x, y, z) nm (zx, xy, yz) d Type

CC4 X 0 (0, 0, 0) (0, 0, 0) (c, c, c) 0 type-II

TABLE XV. Operator data. For definitions, see table III

f. Cubic code 7

The stabilizer generators of cubic code 7 are given by

XX XI

II XI

XX IX

IX II

II ZI

ZI ZZ

IZ II

IZ ZZ

. (D6)

Our results indicate that this model is type-II.

(a) (b)

FIG. 19. Excitation patterns for CC7.

Model Deformability n3D
rods n2D

rods (zx, xy, yz) n1D
rods (x, y, z) nm (zx, xy, yz) d Type

CC7 X 0 (0, 0, 0) (0, 0, 0) (c, c, c) 0 type-II

TABLE XVI. Operator data. For definitions, see table III
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g. Cubic code 8

The stabilizer generators of cubic code 8 are given by

XX XX

XI II

XX XI

IX XI

IZ ZI

IZ ZZ

II IZ

ZZ ZZ

. (D7)

Our results indicate this model is type-II.

Model Deformability n3D
rods n2D

rods (zx, xy, yz) n1D
rods (x, y, z) nm (zx, xy, yz) d Type

CC8 X 0 (0, 0, 0) (0, 0, 0) (c, c, c) 0 type-II

TABLE XVII. Operator data. For definitions, see table III

h. Cubic code 10

The stabilizer generators of cubic code 10 are given by

IX XX

XI XI

XX XI

IX XI

IZ ZI

IZ ZZ

IZ IZ

ZZ ZI

. (D8)

Our results indicate this model is type-II.

Model Deformability n3D
rods n2D

rods (zx, xy, yz) n1D
rods (x, y, z) nm (zx, xy, yz) d Type

CC10 X 0 (0, 0, 0) (0, 0, 0) (c, c, c) 0 type-II

TABLE XVIII. Operator data. For definitions, see table III

i. Type-II fractal spin liquid

The local stabilizer generators of this model [16] are given by

XI

XI IX

XI XX II

IX

IX

ZI

ZI

II ZZ IZ

ZI IZ

IZ

. (D9)

It was shown to be type-II in Ref. 16.
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j. Qutrit Type-II fractal spin liquid

This is a type-II model with stabilizer generators given by

IX

IX XX XI

II

XI

IZ

II

IZ ZZ ZI

ZI

, (D10)

where X and Z are generalized Pauli operators associated with a qutrit such that X3 = Z3 = 1. It was shown to be
type-II in Ref. 16.

k. Kim’s qutrit models

This is another 3D qutrit stabilizer model which is likely a type-II model. It was shown numerically in Ref. 15 that
there are no strings operators up to width 20. The stabilizer generator is given by

X̄Z X̄Z̄

X Z

Z̄ X̄

XZ XZ̄

. (D11)

A related model is given by the following stabilizer generator,

XZ̄ X̄Z̄

X Z

Z̄ X̄

XZ X̄Z

. (D12)

There are also closely related “symmetric” versions, where the back plane of the generator is conjugated, which have
the same bulk properties.

l. Kim’s d = 5 qudit model

This is a 3D qudit (d = 5) stabilizer model. The no string condition was proven in Ref. 15 with a string operator
length to width aspect ratio 5.

X̄3Z3 X̄Z̄

X Z

Z̄ X̄

XZ X3Z̄3

. (D13)

There is also a closely related “symmetric” version where the back plane is conjugated.
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m. HH-II model (?)

This model was claimed but not shown to be type-II in Ref. 31. Our results were not conclusive, as the deformability
condition was only checked to third order. This leaves open the possibility that the model is fractal type-I or type-II,
which deserves further study. The local stabilizer generators are given by

XZ II

ZI IX

IX ZI

II XZ

XI II

IY Y X

Y X IY

II XI

. (D14)

Model Deformability n3D
rods n2D

rods (zx, xy, yz) n1D
rods (x, y, z) nm (zx, xy, yz) d Type

HH-II ? 0 (0, 0, 0) (0, 0, 0) (c, c, c) 0 inconclusivea

a Our results are consistent with fractal type-I or type-II.

TABLE XIX. Operator data. For definitions, see table III

2. Fractal type-I models with lineons

In this section we collect the fractal type-I models that support lineons, but do not appear to support planeons
(although this is not rigorously shown). This includes cubic codes 0, 5, 6, 9, from Ref. 13, the Sierpinski [12] and the
Fibonacci fractal spin liquids [16]. Except for cubic code 0, the rest of these examples are in fact lineon models, i.e.
all excitations are lineons along a common direction.

Below we have represented string operators in terms of their basic repeating unit segment, following Ref. 13. We
refer to this unit as the basic string segment. We use E[v̂]p to denote a Pauli operator E at position p times its
translates along the unit vector v̂. With this notation the basic string segment determines the whole string operator.
For example, XX[ŷ](000)XI[ŷ](100) represents a basic string segment with XX and XI at positions (0, 0, 0) and
(1, 0, 0), respectively, which is repeated along the ŷ direction to generate the full string operator.

a. Cubic code 0

This is a non-CSS fracton model whose stabilizer generators are given by

ZX XZ

XX ZI

II ZZ

ZY XY

XY ZY

ZZ II

ZI XX

XZ ZX

. (D15)

It has 3 basic string segments [13] given by

ZZ[101̄](000)XI[101̄](001)ZZ[101̄](002) , (D16)

ZX[1̄10](200)XI[1̄10](100)ZX[1̄10](000) , (D17)

ZY [01̄1](020)XI[01̄1](010)ZY [01̄1](000) . (D18)

Model Deformability n3D
rods n2D

rods (zx, xy, yz) n1D
rods (x, y, z) nm (zx, xy, yz) d Type

CC0 X 0 (0, 0, 0) (0, 0, 0) (c, c, c) 0 fractal type-I

TABLE XX. Operator data. For definitions, see table III
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b. Cubic code 5

This is a lineon model whose stabilizer generators are given by

XX XX

XI II

IX XI

IX II

II ZI

IZ ZI

II IZ

ZZ ZZ

. (D19)

The X-sector excitation patterns and a string operator IX[11̄2](000)XX[11̄2](001) are shown in Fig. 20. Cubic code
5 is equivalent to cubic code 9. The transformation relating these models is explained below in section D 2 d.

(a) (b) (c)

FIG. 20. Excitation patterns and a string operator for cubic code 5

Model Deformability n3D
rods n2D

rods (zx, xy, yz) n1D
rods (x, y, z) nm (zx, xy, yz) d Type

CC5 × 0 (0, 0, 0) (0, 0, 0) (c, 0, c) 1 fractal type-I

TABLE XXI. Operator data. For definitions, see table III

c. Cubic code 6

This is a lineon model whose stabilizer generators are given by

IX XI

XI II

XX XX

IX II

II ZI

ZZ ZZ

II IZ

IZ ZI

. (D20)

The X-sector excitation patterns and a string operator XX[1̄02](000)XI[1̄02](001) are shown in Fig. 22.
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(a) (b) (c)

FIG. 21. Excitation patterns and a string operator for Cubic code 6

Model Deformability n3D
rods n2D

rods (zx, xy, yz) n1D
rods (x, y, z) nm (zx, xy, yz) d Type

CC6 × 0 (0, 0, 0) (0, 0, 0) (c, 0, c) 1 fractal type-I

TABLE XXII. Operator data. For definitions, see table III

d. Cubic code 9

This is a lineon model whose stabilizer generators are given by

XX XI

XI II

IX IX

IX XI

IZ ZI

ZI ZI

II IZ

IZ ZZ

(D21)

The X-sector excitation patterns and a string operator IX[112̄](000)XI[112̄](001) are shown in Fig. 20.

Cubic code 9 is equivalent to cubic code 5. Applying a modular transformation z → zx−1, shifting the first qubit
on every vertex by one unit in the x̂ direction and applying a CNOT operation between first and second qubits on
every vertex maps cubic code 9 to cubic code 5.

(a) (b) (c)

FIG. 22. Excitation patterns and a string operator for Cubic code 9
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Model Deformability n3D
rods n2D

rods (zx, xy, yz) n1D
rods (x, y, z) nm (zx, xy, yz) d Type

CC9 × 0 (0, 0, 0) (0, 0, 0) (c, c, c) 1 fractal type-I

TABLE XXIII. Operator data. For definitions, see table III

e. Sierpinski fractal spin liquid

This is a lineon model due to Chamon-Castelnovo [12] and Yoshida [16] whose stabilizer generators are given by

IX

IX XX

XI

IZ

ZZ ZI

ZI

. (D22)

Model Deformability n3D
rods n2D

rods (zx, xy, yz) n1D
rods (x, y, z) nm (zx, xy, yz) d Type

SFSL X 0 (0, 0, 0) (0, 0, n1) (0, 0, c) 1 fractal type-I

TABLE XXIV. Operator data. For definitions, see table III

f. Fibonacci fractal spin liquid

This is a lineon model due to Yoshida [16] whose stabilizer generators are given by

IX

IX

IX XX

XI

IZ

ZZ ZI

ZI

ZI

. (D23)

3. Fractal type-I models with planons

In this section we collect fractal type-I models that support composite planons: cubic codes 11-17 from Ref. 13. All
of these models include planons in a single stack of parallel planes, we indicate the orientation and braiding statistics
of these planons for each model. The planons in these models were found via generalized Gauss’s laws, each formed by
the product of stabilizer generators over a membrane that leave a planon string operator along the boundary. These
Gauss’s laws are easy to identify by inspection of a single stabilizer generator: since the product of the operators on
all corners of any cubic code generator is equal to the identity, a planar Gauss’s law arises whenever the product of
operators on the corners of a single square face of a generator equals the identity.
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a. Cubic code 11

This is a fracton model with stabilizer generators given by

XI II

IX II

XX IX

XI XX

ZZ IZ

ZI ZZ

II ZI

II IZ

. (D24)

This model supports particles of all sub-dimensional mobilities 0, 1 and 2. Planon operators [13] are given by
ZZ[ẑ](000)ZI[ẑ](100) and XI[ŷ](000)IX[ŷ](100) and there is also a lineon operator XX[x̂](000)IX[x̂](100)XI[x̂](200). The
planon operators lie in the yz plane due to emergent Gauss’s laws which arise since the product of operators at the
corners of a yz square in a single generator equals the identity. For example XI, XX, IX and II on the front yz face
multiply to give II. The string operator XI[ŷ](000)IX[ŷ](100) appears along the top and bottom edge of a Gauss’s law
membrane and can be seen to arise from the product of corner operators in a single generator along the boundary of
the membrane, e.g. the product of XX and IX give XI along the lower edge of the back face and XI, XX give IX
along the lower edge of the front face.

pZ

pX

x̂

FIG. 23. Anticommutation relations for planons parallel to the yz plane in CC11. pX denotes composite planon excitations of
X stabilizers, and similarly for Z. An edge between a pX and pZ planon indicates that they have a braiding phase of −1.

Model Deformability n3D
rods n2D

rods (zx, xy, yz) n1D
rods (x, y, z) nm (zx, xy, yz) d Type

CC11 X 0 (0, 0, n1) (n2, n1, n1) (c, c, `) 0 fractal type-I

TABLE XXV. Operator data. For definitions, see table III

b. Cubic code 12

This is a fracton model with stabilizer generators given by

XX XX

IX II

XI IX

II XI

IZ II

ZI IZ

II ZI

ZZ ZZ

. (D25)

This model has all sub-dimensional mobilities 0, 1 and 2. The planon operators [13] are IZ[ẑ](000)ZI[ẑ](010) and
XI[x̂](000)XX[x̂](010) due to Gauss’s laws in the xz planes.

Model Deformability n3D
rods n2D

rods (zx, xy, yz) n1D
rods (x, y, z) nm (zx, xy, yz) d Type

CC12 X 0 (n1, 0, 0) (n1, 0, n1) (`, c, c) 0 fractal type-I

TABLE XXVI. Operator data. For definitions, see table III
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pZ

pX

ŷ

FIG. 24. Anticommutation relations for planons parallel to the xz plane in CC12. Where pX denotes composite planon
excitations of X stabilizers, and similarly for Z. An edge between a pX and pZ planon indicates that they have a braiding
phase of −1.

c. Cubic code 13

This is a fracton model with stabilizer generators given by

IX XI

XI II

XX IX

II XX

ZZ II

ZI ZZ

II IZ

IZ ZI

. (D26)

This model has all sub-dimensional mobilities 0, 1 and 2. A planon operator [13] is given by ZZ[ẑ](000)IZ[ẑ](010) due
to Gauss’s laws in the xz planes.

pZ

pX

ŷ

FIG. 25. Anticommutation relations for planons parallel to the xz plane in CC13. Where pX denotes composite planon
excitations of X stabilizers, and similarly for Z. An edge between a pX and pZ planon indicates that they have a braiding
phase of −1.

Model Deformability n3D
rods n2D

rods (zx, xy, yz) n1D
rods (x, y, z) nm (zx, xy, yz) d Type

CC13 X 0 (n1, 0, 0) (n1, 0, n1) (`, c, 0) 0 fractal type-I

TABLE XXVII. Operator data. For definitions, see table III

d. Cubic code 14

This is a fracotn model with stabilizer generators given by

XX XX

XI II

XI IX

XX XI

IZ ZZ

ZI IZ

II IZ

ZZ ZZ

. (D27)

This model has has all sub-dimensional mobilities 0, 1 and 2. A planon operator [13] is given by IX[ẑ](000)XI[ẑ](010)
due to Gauss’s laws in the xz planes.
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pZ

pX

ŷ

FIG. 26. Anticommutation relations for planons parallel to the xz plane in CC14. Where pX denotes composite planon
excitations of X stabilizers, and similarly for Z. An edge between a pX and pZ planon indicates that they have a braiding
phase of −1.

Model Deformability n3D
rods n2D

rods (zx, xy, yz) n1D
rods (x, y, z) nm (zx, xy, yz) d Type

CC14 X 0 (n1, 0, 0) (n1, 0, n1) (`, c, c) 0 fractal type-I

TABLE XXVIII. Operator data. For definitions, see table III

e. Cubic code 15

This is a fracton model with stabilizer generators given by

XX II

XI XX

XI IX

II IX

ZI II

ZI IZ

ZZ IZ

II ZZ

. (D28)

This model has all sub-dimensional mobilities 0, 1 and 2. The planon operators [13] are ZI[ŷ](000)ZZ[ŷ](100) and
IX[ẑ](000)XI[ẑ](100) due to Gauss’s laws along yz planes.

pZ

pX

x̂

FIG. 27. Anticommutation relations for planons parallel to the yz plane in CC15. Where pX denotes composite planon
excitations of X stabilizers, and similarly for Z. An edge between a pX and pZ planon indicates that they have a braiding
phase of −1.

Model Deformability n3D
rods n2D

rods (zx, xy, yz) n1D
rods (x, y, z) nm (zx, xy, yz) d Type

CC15 X 0 (0, 0, n1) (0, n1, n1) (c, c, `) 0 fractal type-I

TABLE XXIX. Operator data. For definitions, see table III

f. Cubic code 16

This is a fracton model that turns out to be equivalent to CC15. The stabilizer generators are given by

XI II

XI XX

IX IX

II XX

ZZ II

ZI ZI

ZZ IZ

II IZ

. (D29)
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This model has all sub-dimensional mobilities 0, 1 and 2. Several string operators supported by the model [13] are

ZZ[101](000)IZ[ ˆ101](100) and IX[110](000)XI[110](100).
Applying a modular transformation x 7→ x/y, y 7→ y, z 7→ zy and relabelling the axes we find

II XX

IX IX

XX XI

XI II

II IZ

IZ ZZ

ZI ZI

ZZ II

(D30)

Rotating π/2 anticlockwise around ŷ, and reflecting across the x = y plane we find CC15.

Model Deformability n3D
rods n2D

rods (zx, xy, yz) n1D
rods (x, y, z) nm (zx, xy, yz) d Type

CC16 × 0 (0, 0, 0) (0, 0, 0) (c, c, c) 0 fractal type-I

TABLE XXX. Operator data. For definitions, see table III

g. Cubic code 17

This is a fracton model with stabilizer generators given by

IX XI

XI IX

XX IX

IX XX

ZZ ZI

ZI ZZ

ZI IZ

IZ ZI

. (D31)

This model has all sub-dimensional mobilities 0, 1 and 2. A planon operator [13] is given by ZZ[x̂](000)IZ[x̂](001) due
to Gauss’s laws parallel to the xz plane.

pZ

pX

ẑ

pZ (B)

pX (B)

pZ (W )

pX (B)

FIG. 28. Anticommutation relations for planons parallel to the xz plane in CC17. The planons can be decomposed into those
hopping on a (B/W ) checkerboard coloring of the 2D ẑ-planes. Where pX(B) denotes composite planon excitations of X
stabilizers on the black sublattice, and similarly for Z and (W ). An edge between a pX and pZ planon indicates that they have
a braiding phase of −1.

Model Deformability n3D
rods n2D

rods (zx, xy, yz) n1D
rods (x, y, z) nm (zx, xy, yz) d Type

CC17 X 0 (0, n1, 0) (n1, n1, n2) (c, `, c) 0 fractal type-I

TABLE XXXI. Operator data. For definitions, see table III
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4. Foliated type-I models

In this section we collect foliated type-I models: stacks of 2D toric code in 3D, the twice foliated X-cube model [53],
the standard X-cube model [23], the Checkerboard model [22], Halasz and Hsieh’s type-I model [31], Chamon’s
model [9], the membrane coupled X-cube model [25], and Halasz, Hsieh and Balents’s models [30]. Only the first
four models listed above have been rigorously shown to be foliated, we show that Halasz and Hsieh’s type-I model
is equivalent to two copies of the checkerboard model and hence also foliated. The other models are expected to be
foliated but it remains an interesting open question to show this. We remark that closely related Majorana stabilizer
models have appeared in the literature [22], and it has even been demonstrated that the Majorana checkerboard model
is foliated and equivalent to the qubit X-cube model [58]. For simplicity we only consider qudit stabilizer models and
so do not include any majorana stabilizer models here.

a. Stack of 2D toric codes

A stack of 2D toric codes forms a 3D model with planons obviously appearing in the planes of the 2D toric codes.
The stabilizer generators are given by

XI

IX XX

ZZ ZI

IZ

. (D32)

We remark there are also ZN versions of the 2D toric code and stacks made up from them.

Model Deformability n3D
rods n2D

rods (zx, xy, yz) n1D
rods (x, y, z) nm (zx, xy, yz) d Type

2DTCxy X 0 (0, n1, 0) (n1, n1, 0) (0, `, 0) 2 foliated type-I

2DTCyz X 0 (0, 0, n1) (0, n1, n1) (`, 0, 0) 2 foliated type-I

2DTCxz X 0 (n1, 0, 0) (n1, 0, n1) (0, 0, `) 2 foliated type-I

TABLE XXXII. Operator data. For definitions, see table III

b. Twice foliated X-cube model

This is a lineon model whose stabilizer generators are given by

XI

XX IX

IX IX

ZI ZI

ZI ZZ

IZ

. (D33)

Single stabilizer excitations are lineons along the ẑ direction, and a composite formed by a pair of like excitations
shifted along the x̂ or ŷ direction is a planon in the orthogonal plane respectively. This model was found with a
foliated construction [53] and also via an anisotropic coupled layer construction [70].
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c. X-Cube model

This is a fracton model with stabilizer generators given by

XXI XII

IXI

XXX XIX

IXX IIX

IZI IZZ

IIZ

ZII

ZIZ

IIZ

ZII

IZI ZZI

. (D34)

This model has particles of all sub-dimensional mobilities 0, 1 and 2. There are also ZN versions of the X-Cube
model [23, 26, 34], and other generalizations known as cage-nets [41] and the related string-membrane-nets [56].

Model Deformability n3D
rods n2D

rods (zx, xy, yz) n1D
rods (x, y, z) nm (zx, xy, yz) d Type

XC X 0 (n1, n1, n1) (n2, n2, n2) (`, `, `) 0 foliated type-I

TABLE XXXIII. Operator data. For definitions, see table III

d. Checkerboard model

This is a fracton model with stabilizer generators given by

X X

X X

X X

X X

Z Z

Z Z

Z Z

Z Z

, (D35)

where the generators only appear on one colour of cells in a cubic lattice with bicoloured cells. The checkerboard
model was shown to be local unitary equivalent to two copies of the X-cube model, and hence foliated, in Ref. 54. A
twisted generalization of the checkerboard model was formulated in Ref. 42.

Model Deformability n3D
rods n2D

rods (zx, xy, yz) n1D
rods (x, y, z) nm (zx, xy, yz) d Type

CB X 0 (n1, n1, n1) (n2, n2, n2) (`, `, `) 0 foliated type-I

TABLE XXXIV. Operator data. For definitions, see table III

e. HH Type-I model

This is a fracton model that is equivalent to two decoupled copies of the checkerboard model after bicoloring the
sites and applying swap to qubits on sites of one color. The stabilizer generators are given by

XI IX

IX XI

IX XI

XI IX

ZI IZ

IZ ZI

IZ ZI

ZI IZ

. (D36)
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(a) (b) (c)

(d) (e) (f)

FIG. 29. Lineon and planon operators in Chamon’s model. a) The excitation pattern for an X operator, two of the excitations
shown on the yz plane form a lineon that moves along the x̂ direction. b) The excitation pattern for a Z operator, two
excitations along xz plane form a lineon that moves along the ŷ direction c) The excitation pattern for a Y operator, two
excitations along the xy plane form a lineon that moves along the ẑ direction. (d)-(f) Excitations that form composite planons
in the xy, yz plane and xz plane respectively.

Model Deformability n3D
rods n2D

rods (zx, xy, yz) n1D
rods (x, y, z) nm (zx, xy, yz) d Type

HH-I X 0 (n1, n1, n1) (n2, n2, n2) (`, `, `) 0 foliated type-I

TABLE XXXV. Operator data. For definitions, see table III

f. Chamon’s model

This is the first topological fracton model to appear in the literature [9]. It is expected to admit a foliation structure
but this has not been shown. The stabilizer generators are given by

IIIZ

IXY Z IIY I

IXII

IIIY XIZY

XIII

IIZI

IIIX

Y ZIX Y III

IZII

ZIII

IIXI

IY II ZY XI

, (D37)

which can also be written in terms of a single stabilizer generator by making a different choice of lattice vectors

Y X

Z I

I Z

X Y

. (D38)

Some lineon string operators are given by X[01̄1](000), Y [11̄0](000) and Z[010](000). Planon string operators for exci-

tations with mobility in the î-plane appear at the boundary of a product of stabilizers over a square in the î plane of
the dual lattice. The lineon and planon operators are shown in Fig. 29.

Model Deformability n3D
rods n2D

rods (zx, xy, yz) n1D
rods (x, y, z) nm (zx, xy, yz) d Type

Chm X 0 (n1, n1, n1) (n2, n2, n2) (`, `, `) 0 foliated type-I

TABLE XXXVI. Operator data. For definitions, see table III
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g. CSS model derived from Chamon’s model

This is a CSS model with the same charge module/structure as Chamons model [23]. The stabilizer generators are
given by

XX XI

IX II

II IX

XI XX

ZZ IZ

ZI II

II ZI

IZ ZZ

. (D39)

It is expected to have the same foliation structure, if any, as Chamon’s model.

h. Membrane coupled X-Cube model

This is a model derived from coupling four copies of X-cube [25]. The four copies of X-Cube are arranged on
the edges of four cubic sublattices of the face centered cubic lattice, such that an edge from three distinct cubic
sublattices intersect on every edge and cube. We define a new lattice where these intersections of edges are the sites,
the stabilizers are given by

III IXI

IIX XII

III IIX XII

IXI III IXI

XII IIX III III

III XII IIX

III IXI

IIZ

ZII

ZII

IIZ

IZI IIZ

IIZ IZI , (D40)

which is equivalent to four copies of X-Cube, where translations act by permuting the copies. The X-Cubes are then
coupled with an on-site XXX field, leading to the stabilizer generators

II XI

IX XX

II IX XX

XI II XI

XX IX II II

II XX IX

II XI

II IZ

ZI ZZ

II ZI ZZ

IZ II IZ

ZZ ZI II II

II ZZ ZI

II IZ

, (D41)

within the subspace where XXX = 1, to leading order in perturbation theory. This model is expected, but not
shown, to be foliated.
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i. HHB model A

The following model is also expected to be foliated from the analysis in Ref. 30 but it has not been shown.

IX IX

IX XX

IX XX

XX IX XI

XI

XI

IZ

IZ

IZ ZI ZZ

ZZ ZI

ZZ ZI

ZI ZI

. (D42)

j. HHB model B

Similarly for the following model, also from Ref. 30

Z Y

Y Z

Z Y X

X Y Z

Z Y

Y Z

. (D43)

5. TQFT models

In this section we summarize the TQFT stabilizer models in 3D: toric code with bosonic [71] or fermionic point
particle [62] and the 3-fermion Walker-Wang model [72] which is subtly nontrivial.

a. 3D toric code with bosonic charge

The stabilizer generators of the 3D toric code with bosonic charges are given by

XII

IXI XXX

IIX

IZI

IZZ IIZ

ZII

ZIZ

IIZ

ZZI ZII

IZI

. (D44)

We remark there are other models due to Bombin [73] and Kim [74], equivalent to copies of 3D toric code, based on
lattices with special colorability properties. The 3D toric code can be generalized to ZN and further other groups and
twisted by 4-cocycles via Dijkgraaf-Witten models [75].
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Model Deformability n3D
rods n2D

rods (zx, xy, yz) n1D
rods (x, y, z) nm (zx, xy, yz) d Type

3DTC X 1 (1, 1, 1) (1, 1, 1) (0, 0, 0) 3 TQFT

TABLE XXXVII. Operator data. For definitions, see table III

b. 3D toric code with fermionic charge

There are also 3D toric codes with fermionic charges. A particular Hamiltonian realization of this is due to Levin
and Wen [62] and its stabilizer generators are given by

XY IZ

ZI Y X

ZY

IX

XI

Y Z

Y I ZX

XZ IY

. (D45)

There is also a version due to Walker and Wang [72] with the following stabilizer generators

XII

IXI XXX

IIX

IZI XII

XII

IZZ IIZ

ZII

IXI

IXI ZIZ

IIZ

ZZI ZII

IZI IIX

IIX

. (D46)

These Hamiltonians realize the simplest case of discrete gauge theory with fermions. More general discrete gauge
theories with fermions have been argued to cover the bulk topological excitations of any 3D topological order in a
qudit commuting projector model [6, 7]. In Ref. 62 it was explained how to verify if a string operator moves a particle
with fermionic or bosonic self-statistics. This can be implemented numerically to distinguish whether a 3D point
particle is fermionic or bosonic. More generally the test can be applied to check whether any string operator moves
a bosonic or fermionic point particle. This may be relevant for a more fine grained sorting of fractonic topologial
stabilizer models, particularly nonCSS models, in the future.

c. 3-fermion Walker-Wang model

The 3-fermion Walker-Wang model [72] has 3 edges per vertex and 2 qubits per edge, labeled by 1 and 2. The
stabilizer generators after coarse-graining the 6 qubits adjacent to each vertex onto a single site, are given by
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Recently this model has been shown to be trivialized by a locality preserving Clifford unitary [76], even though a
local unitary circuit cannot trivialize the model without also creating a 2D commuting projector Hamiltonian for a
chiral 3-fermion topological order. It remains an interesting open question to define a local unitary circuit invariant
that detects this model, or equivalently the locality preserving Clifford unitary that creates it. Since there are no
nontrivial topological sectors in the bulk methods such as ours do not apply.
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