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We investigate the fate of topological states on fractal lattices. Focusing on a spinless chiral p-
wave paired superconductor, we find that this model supports two qualitatively distinct phases when
defined on a Sierpinski gasket. While the trivial phase is characterized by a self-similar spectrum with
infinitely many gaps and extended eigenstates, the novel “topological” phase has a gapless spectrum
and hosts chiral states propagating along edges of the graph. Besides employing theoretical probes
such as the real-space Chern number, inverse participation ratio, and energy-level statistics in the
presence of disorder, we develop a simple physical picture capturing the essential features of the
model on the gasket. Extending this picture to other fractal lattices and topological states, we
show that the p + ip state admits a gapped topological phase on the Sierpinski carpet and that a
higher-order topological insulator placed on this lattice hosts gapless modes localized on corners.

I. INTRODUCTION

The discovery of electronic insulators with topolog-
ically nontrivial band structures has led to remark-
able progress in understanding gapped quantum phases.
The prediction and experimental discovery of topolog-
ical insulators (TIs)1–7 and topological superconduc-
tors (TSCs)8–11 led to a classification of gapped phases
of non-interacting fermions12,13; this ten-fold way en-
codes whether a system may host topologically nontrivial
phases given the spatial dimension and the symmetries
under which it is invariant. The nontrivial band topol-
ogy of electronic states is manifest in striking univer-
sal properties, including robust gapless modes confined
to the sample boundary and quantized response coeffi-
cients14,15.
These concepts were later extended to crystalline sym-

metries, such as reflection, inversion, or rotation. Gapped
phases protected by these symmetries are called topo-
logical crystalline insulators (TCIs)16–20 and include
higher-order topological insulators (HOTIs)21–25. Specif-
ically, an nth order TI/TSC in d spatial dimensions
is gapped everywhere except on a d − n dimensional
surface. More generally, TI/TSCs and HOTIs are ex-
amples of symmetry-protected topological (SPT)26,27
and crystalline SPT (cSPT)28–30 phases respectively,
whose classification also accounts for interactions. Such
phases have a trivial gapped bulk but host boundary (or
hinge/corner) modes protected against local, symmetry-
preserving perturbations31.
A defining feature of topological phases is their robust-

ness against disorder: provided the spectral (or mobility)
gap remains finite and the disorder respects the sym-
metry protecting the TI/TSC, quantized coefficients and
gapless edge modes persist32–35. Despite disorder break-
ing the lattice symmetries protecting TCIs, their bound-
ary modes can evade localization when the full ensemble
of disorder configurations remains symmetric36,37. Tradi-
tionally, robustness of topological states is established by
adding disorder to a clean system, thereby assuming an

underlying periodic reference state. This approach, while
efficacious, fails when no such structure exists i.e., for
aperiodic systems, including amorphous, quasiperiodic,
and fractal systems. Nonetheless, topological phenomena
have been shown to exist in both amorphous38–43 and
quasiperiodic44–49 systems.
That the topology of quantum states can be defined in

the absence of spatial regularity over long distances opens
the door to finding topological phases on fractal lattices,
which lack a natural distinction between bulk and bound-
ary, and whose (typically non-integer) Hausdorff dimen-
sions differ from their topological dimensions. Interest
in fractal structures, which have a rich history50–55, has
been revived given experimental advances in creating and
manipulating synthetic lattices with arbitrary structures,
in both photonic and electronic systems56–61. In partic-
ular, fractal lattices have been fabricated using focused
ion beam milling62, molecular chains63–65, and scanning-
tunneling-microscopy (STM) techniques66, with theoret-
ical studies primarily focusing on localization and trans-
port phenomena67–72.
However, our understanding of the influence of self-

similar geometry on the topological character of elec-
tronic states remains nascent, having received attention

(a) (b)

Figure 1: (a) SG with “periodic” boundary conditions, such
that all sites have coordination number four. (b) Regions
A,B,C considered in real-space Chern number calculations.
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Figure 2: Gapless topological phase of the chiral p+ ip superconductor on the SG, with g = 5,∆ = 1, t = 0.5, µ = 0.5. Energy
spectrum and probability densities of eigenvectors at indicated energies are shown. Color scale indicates values of x, y, z
coordinates, with dot size indicating the magnitude of the probability density at that point.

only recently73,74. In this paper, we fill this lacuna by
developing a general framework elucidating the fate of
topological states on fractal lattices embedded in two di-
mensions (2D). Through this picture, we find that the
nature of thermodynamic phases—gapped vs gapless—
on fractal lattices depends crucially on the ratio of bulk
to edge coordinated sites. Focusing on the chiral p-wave
superconductor on the Sierpinski gasket, we show that
qualitative features obtained through numerical diago-
nalization can be understood simply through our frame-
work. Besides characterizing the two distinct phases of
this model using various theoretical tools, we further cor-
roborate our understanding by studying both the p-wave
superconductor and an HOTI on the Sierpinski carpet.

II. MODEL

We consider a 2D spinless chiral p-wave supercon-
ductor (symmetry class D12) within the Bogoliubov-
deGennes (BdG) framework, with the mean field lattice
BCS Hamiltonian:

Ĥ = −t
∑
〈r,r′〉

ĉ†rĉr′ − µ
∑

r
ĉ†rĉr +

∑
r,m

[∆mĉ
†
r+em

ĉ†r + h.c.],

(1)
where ĉ†r, ĉr satisfy fermionic anti-commutation relations
{ĉr, ĉ

†
r′} = δr,r′ , t is the nearest-neighbor hopping, µ is

the chemical potential, and we set the lattice spacing

a = 1. Specifying to a triangular lattice75, the pair-
ing term ∆m = ∆eiπm/3 is defined on the nearest-
neighbor bonds corresponding to the three lattice vec-
tors em with azimuthal angles mπ/3 (m = 0, 1, 2).
We introduce the standard Bogoliubov transformation:
ĉr =

∑
r
[
un,rγ̂n + vn,rγ̂

†
n

]
, where γ̂n is the Bogoliubov

quasiparticle annihilation operator and (un,r, vn,r)T diag-
onalizes the BdG Hamiltonian (1), with eigenvalue En.
We study this model on a Sierpinski gasket (SG) with

“periodic” boundary conditions (see Fig. 1a) i.e., with
four gaskets arranged on alternating faces of an octahe-
dron, ensuring that all lattice sites are equally (four) co-
ordinated. We construct a lattice regulated (with a small-
est triangle) SG recursively, by adding sites/bonds to a
gasket at generation g to arrive at the g + 1 SG. The
largest lattice we can probe numerically has g = 6, with
the total number of sites N ∼ 3g+1 at generation g.
Setting ∆ > 0 and noting that the Hamiltonian Eq. (1)

admits a topological phase on a triangular lattice for
−6t < µ < 2t (see Appendix A), we find that this model
admits topologically distinct phases even on the SG. The
qualitative distinction between the two phases is illus-
trated in Fig. 2, which shows the spectrum and states for
g = 5. For µ > 2t or µ < −6t, we find a fully gapped
“trivial” phase, where eigenstates are delocalized, thereby
behaving as bulk states in ordinary gapped systems. In
the thermodynamic (g → ∞) limit, the spectrum is
self-similar, with infinitely many gaps. In contrast, for
−6t < µ < 2t we find that the amplitude of the largest
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Figure 3: Gapped trivial phase of the p+ ip superconductor on the SG, with g = 5,∆ = 1, t = 0.5, µ = 2. Energy spectrum
and probability densities of eigenvectors at indicated energies are shown. Color scale indicates values of x, y, z coordinates,
with dot size indicating the magnitude of the probability density at that point.

gap in the spectrum decays exponentially with increasing
generation (see Appendix D), such that the spectrum is
strictly gapless in the g →∞ limit. Thus, this parameter
range describes a qualitatively distinct phase with emer-
gent continuous scale invariance, unlike the trivial phase
which only possesses discrete scale invariance. Particle-
hole symmetry is present in both phases. While the spec-
tra are obtained by numerically diagonalizing the BdG
Hamiltonian (1), these can in principle also be obtained
recursively (see Appendix B for details).

An intriguing feature of the gapless phase is the edge-
like nature of eigenstates: in Fig. 2, we plot the electronic
densities for representative states at the indicated ener-
gies, revealing states sharply localized on triangular mo-
tifs formed by sites of various generations i.e., localized
around the inner edges (or holes) of the SG. While states
closest to E = 0 are localized on the outer edges, corre-
sponding to the earliest generations, there is a hierarchy
of states localized on inner edges created at subsequent
generations of the SG. In the thermodynamic limit, we
expect that all eigenstates in this phase will be sharply
localized along edges. Remarkably, these localized states
are also chiral, with a wave-packet initialized on any in-
ner edge propagating in the direction opposite to that of
one initialized on the outermost edge (see Appendix C).

Surprisingly, we find that the transition between the
trivially gapped and the gapless phase coincides with the
trivial ↔ topological transition of Eq. (1) on the trian-
gular lattice. This observation hints that the model on
the SG inherits its behavior from one defined on a tri-

angular lattice. Indeed, we can regard the inner edges
of the SG as holes in a triangular lattice, which, in the
topological phase of Eq. (1), host gapless chiral Majo-
rana modes propagating counter to the outermost edge
state76. Since the number of these holes increases with g,
there are infinitely many gapless modes in the spectrum
as g →∞, resulting in a gapless spectrum. This physical
picture suggests that the chiral eigenstates in the gapless
phase are descended from Majorana edge modes of the
p + ip state on a triangular lattice. We hence dub this
the gapless topological phase on the SG.

III. DIAGNOSTICS

Before building on this intuitive picture and showing
that it generalizes to other fractal lattices, such as the
Sierpinski carpet (SC), and other topological states, we
further characterize the two distinct phases of the p+ ip
superconductor on the SG using some standard diagnos-
tics.

A. Real-space Chern number

Since our model lacks translation invariance, and
only retains (discrete) scale invariance, we cannot use
the momentum-space Chern number to characterize the
topological and trivial phases of the p+ ip superconduc-
tor on the SG. Thus, we instead compute the real-space
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Figure 4: The real-space Chern number (black curve) as a function of Fermi energy Ef , with the corresponding spectrum
shown in red in (a) the trivial phase (µ = 2), and (b) the topological phase (µ = 0.5). Here, g = 4, t = 0.5, and ∆ = 0.5.

Chern number introduced in Ref. [77], which reduces to
the momentum-space Chern number in the presence of
translation invariance:

C = 12πi
∑
j∈A

∑
k∈B

∑
l∈C

(PjkPklPlj − PjlPlkPkj), (2)

where P projects onto occupied states with respect to
a given chemical potential, and j, k, l are indices corre-
sponding to three distinct neighboring regions A,B,C,
arranged counter-clockwise (see Fig. 1b). In Eq. 2, Pij is
a 2×2 matrix whose rows correspond to c†i , ci, and whose
columns correspond to cj , c†j . Retaining the site basis, we
rotate only the k /pseudospin basis. We then diagonalize
the 2 × 2 matrix in the expression for C such that pseu-
dospin is now a good quantum number, and then take
the trace. With P̃ij representing the 2× 2 block after di-
agonalization, the expression for the Chern number can
be rewritten as:

C = 12πi
∑
j∈A

∑
k∈B

∑
l∈C

Tr(P̃jkP̃klP̃lj − P̃jlP̃lkP̃kj), (3)

For g = 5 in the trivial phase, we find that C = 0
for all gapped regions of the spectrum (see Fig. 4a). We
have checked that this quantization becomes independent
of the specific choice of regions A,B,C at large g ≥ 4
i.e., in the limit when the number of sites in each region
becomes large. In the thermodynamic (g → ∞) limit,
the spectrum within the trivial phase displays an infinite
hierarchy of self-similar gaps, and we expect that C will
vanish identically for each of the infinitely many gaps in
the spectrum.

In contrast, within the topological phase the gapped
regions of the SG scale to zero and have a trivially quan-
tized Chern number. As can be seen in Fig. 4b, we find

that indeed C = 0 within the finite-size gaps at finite g in
the topological phase. Nevertheless, similarly to previous
works on topological amorphous superconductors43 and
on the quantum Hall effect on fractal lattices74, we expect
the Chern number to take a non-trivial quantized value
within the gapless regions due to the presence of a mobil-
ity gap and the topological nature of the phase. While our
numerics suggest that the Chern number tends towards
a quantized non-zero value with increasing g in regions
corresponding to low but non-zero density of states, we
are numerically limited to g ≤ 5, for which finite-size
effects obscure the expected quantization.

Thus, in the thermodynamic limit, the trivial phase
will exhibit a strictly quantized C = 0 within the in-
finitely many gaps in the spectrum; on the other hand,
although the spectrum becomes gapless in the topolog-
ical phase, we expect that C converges to a non-trivial
quantized value as g → ∞ in the gapless regions due
to the presence of a mobility gap74. Verifying the latter
requires investigating the model on a SG with large g,
which is beyond our current numerical capabilities.

B. Inverse participation ratio

Another useful diagnostic is the inverse-participation-
ratio (IPR) of the nth eigenstate78,79,

IPRn =
∑

r
(
|un,r|4 + |vn,r|4

)[∑
r (|un,r|2 + |vn,r|2)

]2 (4)

which scales as L−2 for extended states but remains fi-
nite for localized states even in the thermodynamic limit.
In the trivial phase, all eigenstates are delocalized (see
Fig. 5a), reflecting their bulk nature. Increasing g sup-
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Figure 5: IPRn (using open boundary conditions on a single SG), with g = 4, t = 0.5,∆ = 0.5. All states are delocalized in the
(a) trivial phase (µ = 2) while the (b) topological phase (µ = 0.5) exhibits states localized around edges.

presses the IPR values further towards zero. In the topo-
logical phase, the IPR values instead abruptly jump be-
tween ∼ 0 and ∼ 1, with the latter corresponding to
eigenstates localized along the various edges (or holes)
of the SG, as in Fig. 2. The number of localized states
increases with g (see Figs. 5b and 6), consistent with the
physical picture discussed above: cutting out holes from
the triangular lattice does not introduce any edge modes
in the trivial phase, and all states remain extended. In the
topological phase however, additional gapless edge modes
are introduced, with the number of such modes increas-
ing with g. This agrees with the numerical observation of
localized states with IPRn ∼ 1 as shown in Fig. 5b.

Figure 6: IPRn with g = 5, t = 0.5,∆ = 0.5. Comparison
with Fig. 5b clearly shows that the number of localized
states in the middle of the spectrum increases with g.

C. Level Statistics

Since disorder provides an independent probe of topol-
ogy, we add an onsite term

∑
r Vrĉ

†
rĉr to the Hamilto-

nian (1), with Vr drawn randomly from the uniform dis-
tribution [−W/2,W/2]. In Fig. 7, we plot the energy-level
spacing distributions, averaged over 500 disorder real-
izations, for weak and strong disorder in both phases.
The normalized level spacing is given by s = |En −
En+1|/δ(En), with δ(En) the mean-level spacing near en-
ergy En. In the trivial phase, the distribution is Poisso-
nian at both weak and strong disorder, consistent with
a localized phase. The level spacings in the topological
phase follow unitary Wigner-Dyson (GUE) statistics at
weak disorder (W = 2) and transition to Poisson at
strong (W = 8) disorder, with the transition80 to the

Figure 7: Distribution of normalized energy level spacings
with disorder W , with g = 4, t = 0.5,∆ = 0.5. Level statistics
shown for weak (W = 2) and strong (W = 8) disorder for
the trivial (µ = 2) and topological (µ = 0.5) phase.
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Anderson insulator occurring at W ∼ 5. Agreement with
the Wigner surmise (for β = 2) at weak disorder (see
Fig. 7) indicates that the gapless topological phase is a
diffusive metal81,82.

IV. RECURSIVE DECIMATION

We propose a physical picture which elucidates how
topological states on 2D fractal lattices inherit their be-
havior from a “parent” state on an underlying periodic
lattice. Consider the BdG Hamiltonian (1) on a triangu-
lar lattice with open boundary conditions, lattice spacing
a, and size L = 2pa, as shown in Fig. 8. We define bulk
and edge sites as those with coordination number six and
four, respectively83. We now decimate sites and bonds
recursively to generate the SG. At the gth step (g ≥ 1),
we eliminate all sites and bonds contained inside 3g−1

inverted triangles of length L/2g, introducing an addi-
tional 3g−1 inner boundaries into the lattice. The proce-
dure continues until g = gc, with L/2gc = 2a (gc = p−1),
at which stage a generation gc SG is produced: the ratio
of bulk sites nB(g) to edge sites nE(g) vanishes identi-
cally when g = gc (see Appendix E for details). This
process is illustrated in Fig. 8.

Starting in the topological phase, where a chiral Ma-
jorana mode propagates clockwise along the outermost
boundary, each subsequent iteration introduces addi-
tional physical boundaries into the lattice, each hosting a
chiral Majorana mode propagating counter-clockwise76.
In the thermodynamic limit L/a → ∞, the decimation
is repeated infinitely many times (gc → ∞) until only
boundary sites are left and a chiral Majorana mode prop-
agates along each of the infinitely many edges, result-
ing in a gapless spectrum. Thus, the decimation picture
shows that the chiral eigenstates of the gapless topolog-
ical phase are intimately linked to the Majorana edge
modes of the underlying p-wave state. Further, the ab-
sence of any bulk sites explains why all bulk features of
the underlying model are washed out as g →∞, with the
novel gapless state effectively described by a self-similar
network of chiral 1D Majorana modes.

Figure 8: Decimating a triangular lattice recursively to
generate the SG. Blue (black) dots denote sites with
boundary (bulk) coordination. Sites and bonds inside the red
(green) triangle(s) are eliminated at the first (second) step.

Starting instead in the trivial phase, each iteration only
introduces additional gaps as no edge modes appear. The
self-similar arrangement of the gaps is a consequence of
discrete scale invariance of the generated SG, and the
trivial → topological transition on the SG can be under-
stood as the proliferation of chiral Majorana modes which
occurs during the transition on the underlying periodic
lattice. Our analytic picture naturally accounts for the
phase boundaries of Eq. (1) on the SG matching those
on the triangular lattice. We also expect that the gap-
less topological phase inherits the robustness of the edge
modes against arbitrary local perturbations respecting
the symmetry protecting the parent (p+ ip) state.
To further test our decimation picture, we place the

p + ip Hamiltonian on the SC. This lattice can be con-
structed by recursively decimating a square lattice, on
which a topological phase exists for −t < µ < t. However,
the ratio limg→∞ nB(g)/nE(g) ∼ 5 for the SC, resulting
in more bulk than edge coordinated sites. Crucially, the
distance between gapless edge modes appearing along in-
ner boundaries at each step of the decimation process de-
creases with each iteration, such that each Majorana edge
mode on the recursively generated SC is separated from
one with opposite chirality by 3a. In the thermodynamic
limit, these edges states back-scatter and hybridize, lead-
ing to a gapped spectrum; we thus expect that bulk fea-
tures of the underlying state persist on the SC as g →∞
even in the topological phase. Results obtained by nu-
merically diagonalizing the BdG Hamiltonian Eq. (1) on
the SC vindicate our prediction: we find a trivial (C = 0)
and a gapped topological (with quantized C = 1) phase,
with phase boundaries matching those of the model on
the square lattice (see Appendix E 2 for details).

We posit that the above analysis readily generalizes
to any parent 2D topological state protected by internal
symmetries: for parameters corresponding to the topolog-
ical phase on a triangular lattice, the model will admit
a gapless topological phase on the SG, whose physics is
governed by that of the 1D gapless edge states of the par-
ent state. On the SC, for parameters corresponding to the
topological phase on the square lattice, the spectrum will
remain gapped and exhibit a nontrivial quantized topo-
logical invariant. Thus, the nature of topological states
on a given fractal lattice depends crucially on whether
limg→∞ nB(g)/nE(g) remains finite or vanishes, resulting
in a gapped or gapless topological phase respectively. The
results of Ref. [73], which studied the half-BHZ model84
on the SG and SC, are in excellent agreement with our
conjecture and support the generality of our arguments.

V. HOTI ON THE SIERPINSKI CARPET

Extending the above ideas to topological states pro-
tected by spatial symmetries requires more care, since
we must ensure that no symmetries protecting the un-
derlying state are broken at any step of the recursive
decimation, in order to stay within the same phase. For
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Figure 9: (a) Spectrum and (b) non-propagating corner modes in an HOTI defined on the SC (g = 3, γ = 0.5, λ = 1).

instance, for a cSPT protected by C4 rotation, we can
start from a square lattice and recursively generate the
SC through decimation, resulting in a gapped topolog-
ical phase in the thermodynamic limit. To demonstrate
the applicability of our general framework to this case,
we have studied the paradigmatic four-band model of an
HOTI, introduced in Ref. [22], on the SC. The real space
Hamiltonian on the square lattice is given by:

H = −
∑
m,n

[
λ(1)
m,nĉ

†
m+1,nĉm,n + λ(2)

m,nĉ
†
m,n+1ĉm,n + h.c.

]
,

where ĉ†m,n, ĉm,n are fermionic creation/annihilation op-
erators for site (m,n) of the square lattice, and where

2λ(1);(2)
m,n = λ(1 + (−1)m;n) + γ(1− (−1)m;n) .

This model preserves C4 rotation, time-reversal, and
charge-conjugation symmetries, and presents localized
corner modes when |γ/λ| < 1. Starting from the topo-
logical phase on the square lattice, we recursively deci-
mate the lattice to generate the SC. Each iteration cre-
ates additional inner boundaries, each hosting protected
gapless corner modes since no symmetries are broken at
any stage. Following our general arguments, we expect
a gapped topological phase on the SC as g → ∞, with
modes localized along the corners of infinitely many inner
edges. As shown in Fig. 9, we indeed find a gapped spec-
trum and corner modes on all inner boundaries. While
we are numerically limited to g = 3, we expect this be-
havior persists for larger generations. We also note that
the topological nature of the SC HOTI is protected only
in the presence of a particle-hole symmetry in addition to
a C4 symmetry: in the absence of particle-hole symme-
try, the zero energy modes can be shifted around without
breaking the C4 symmetry22. Besides the generalization
to spatial symmetries, this analysis indicates that HOTIs

remain well-defined on fractal lattices as long as symme-
tries protecting the parent state remain unbroken.

VI. CONCLUSIONS

In this paper, we have presented general principles
which determine the fate of 2D topological states on some
fractal lattices, with numerics supporting our analytic ar-
guments. Our results strongly suggest that lattices such
as the SG (SC) can support gapless (gapped) topological
phases, whose properties derive from those of an under-
lying parent state. Understanding the role of interactions
remains an important open question, as does extending
these ideas to 3D topological phases on e.g., the Sierpin-
ski prism, where novel behavior could result from the rich
structure of surface states. A more thorough investigation
of the gapless topological phase of the p + ip supercon-
ductor on the SG is also warranted and could shed light
on its low-energy effective field theory as well as the ob-
served topological metal-to-insulator transition. Finally,
given the progress in fabricating fractal lattices62–66 and
in realizing HOTIs on a variety of platforms85–88, experi-
mentally realizing corner modes on a fractal lattice could
be within reach.
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Appendix A: p+ ip on a Triangular Lattice

While the d = 2 BdG Hamiltonian describing the chiral
p+ ip superconductor (Eq. (1) in the main text) is typi-
cally implemented on a square lattice (see e.g. Ref. 89), it
also allows for a topological phase on a triangular lattice,
which we discuss briefly here. For a system with periodic

boundary conditions along both x and y directions, we
can write the Hamiltonian in momentum space as

Ĥ =
∑

k

(
ĉ†k ĉ−k

)
Hk

(
ĉk
ĉ†−k

)
, (A1)

where ĉ†k and ĉk are fermionic creation and annihilation
operators corresponding to momentum k, and where

Hk = 1
2

(
εk ∆1,k

∆2,k −εk

)
, (A2)

with

εk = −2t
[
cos(kx) + cos

(
kx
2 +

√
3ky
2

)
+ cos

(
kx
2 −

√
3ky
2

)]
− µ, (A3)

∆1,k = −2i∆
[
sin(kx) + eiπ/3sin

(
kx
2 +

√
3ky
2

)
+ e2iπ/3sin

(
− kx

2 +
√

3ky
2

)]
, (A4)

∆2,k = 2i∆
[
sin(kx) + e−iπ/3sin

(
kx
2 +

√
3ky
2

)
+ e−2iπ/3sin

(
− kx

2 +
√

3ky
2

)]
. (A5)

The energy eigenvalues of Hk are given by E(k) =
±
√
ε2k + ∆1,k∆2,k. Here, t is the hopping parameter, ∆

is the pairing amplitude, and µ is the chemical potential.
It is straightforward to check that this system has gap
closings at µ = −6t, 2t. For a triangular lattice with open
boundary conditions, the above Hamiltonian gives rise to
persistent chiral Majorana edge modes for −6t < µ <
2t for any ∆ 6= 0. These parameter values, therefore,
characterize the trivial ↔ topological transition on the
triangular lattice.

Writing the BdG Hamiltonian in Eq. (A2) as Hk =

Figure 10: Chern number C for the p+ ip superconductor on
a triangular lattice. The plot shows that C = 1 for
−6 < µ/t < 2 (the topological phase), and C = 0 otherwise,
i.e. in the trivial phase. The above holds for any ∆ 6= 0.

h(k) · σ, with h(k) being a smooth function which is
nonzero for all momenta, such that the bulk is fully
gapped, we can then define a unit vector ĥ(k) that maps
the 2D momentum space (defined on T 2) onto a unit
sphere. Here, σ is the usual vector of Pauli matrices
σi, i = x, y, z. The momentum-space Chern number C
is then given by90

C =
∫

k∈BZ

d2k
4π

[
ĥ ·
(
∂kx ĥ× ∂ky ĥ

) ]
, (A6)

where “BZ” refers to Brillouin Zone. We find that C = 1
in the topological phase (−6t < µ < 2t), and C = 0 in
the trivial phase (see Fig. 10).

Appendix B: Recursive method for determining the
BdG eigenspectrum on the Sierpinski Gasket

We follow the analysis in Ref. [50] to show that it is
sufficient to study an effective model defined on a sub-
set of the original sites rather than solving an eigenvalue
equation involving all sites of the fractal lattice i.e., the
SG. The eigenvalue equation for our system takes the
form H|ψ〉 = E|ψ〉. We divide the Hilbert space into two
subspaces: one subspace consisting of all sites added up
to the (n-1)th generation, and the other subspace with
sites added at the nth generation. We refer to these sub-
spaces as A and B respectively. We denote the projection
of |ψ〉 onto these two subspaces as |ψA〉 and |ψB〉, with



9

Figure 11: Decimating a g = 1 lattice to a g = 0 lattice by
using Eq. (B3).

the eigenvalue equation then given by:(
HAA HAB

HBA HBB

)(
|ψA〉
|ψB〉

)
= E

(
|ψA〉
|ψB〉

)
, (B1)

following which we can can formally write

|ψB〉 = (E −HBB)−1HBA|ψA〉 . (B2)

As discussed in Ref. [50], we can now define an “effective”
Hamiltonian acting only on the sites of the decimated
lattice i.e., sites belonging to subspace A:

Heff|ψA〉 = [HAA +HAB(E −HBB)−1HBA]|ψA〉 . (B3)

We now apply this formalism to the system under con-
sideration. An additional feature of the BdG Hamilto-
nian in Eq. (A2) is the presence of two “orbitals” per site

instead of one. To obtain the analogue of Eq. (B3), we
need the hopping matrices associated with the underlying
n = 1 triangle (see Fig. 11).

For i, j ∈ {1, 2, 3}, we find that

(HAA)ij = −µ2σzδij ,

(HAB)ij = −µ2σzδij + (1− δij)
[
− t

2σz − i∆e
iαijσy

]
= (HBA)ij = (HBB)ij ,

(B4)

for the Hamiltonian defined in Eqs. (A2)-(A5). Here, αij
is the angle between the link joining sites i and j and the
local x-axis at site i. Using Eq. (B3), we find that

Heff
ij = [HAA +HAB(E −HBB)−1HBA]ij . (B5)

Since the BdG Hamiltonian gives rise to robust chiral
edge states for −6t < µ < 2t for any ∆ 6= 0, we set ∆ = 1
and µ = 0 here (corresponding to the topological phase
for any nonzero t) to simplify our analysis. Other param-
eters can be analyzed following the procedure delineated
here. Now, we compare the effective Hamiltonian with
the original BdG Hamiltonian but now defined on the
generation n = 0 lattice and with hopping parameter t′.
This allows us to express the effective Hamiltonian as the
BdG Hamiltonian acting on sites in the A sublattice, but
with renormalized hopping strength t′. Using Eq. (B5),
we can derive an expression for t′ in terms of the original
parameters:

t′ = t(48− 12t2 + t6)− t(144 + 7t2(4 + t2))E2 + 2t2(−10 + t2)E3 + 4t(16 + 3t2)E4 − 8(2 + t2)E5

48− 12t2 + t6 − 3(48 + 8t2 + 3t4)E3 + 4t(16 + 3t2)E4 − 16E6 (B6)

Next, we use Eq. (B6) and the relation t′ εn−1 = t εn to
derive a recursion relation between εn−1 and εn(= E/t),
the dimensionless (scaled by the hopping energies t′ and
t respectively) energy eigenvalues on the generation n−1
and n SGs. Therefore, in principle, given an energy eigen-
value εn−1 of the system defined on the generation (n−1)
SG, Eq. (B6) allows us to determine the correspond-
ing eigenvalues on the generation n lattice. However, as
pointed out in Ref. [50], the recursion relation by itself
does not give the correct degeneracy for those eigenval-
ues which correspond to the zeroes of the denominator:
these have to be put in by hand at every iteration of the
recurrence relation.

Appendix C: Chiral nature of eigenstates in the
topological phase

In order to visualize the chiral nature of the edge modes
that appear in the topological phase of the p+ ip super-
conductor on the SG, we construct an initial wave packet
localized over a few sites belonging to some outer edge
of the Sierpinski gasket, and project it onto edge states
within an arbitrary but small energy window close to
zero, say (−0.3 < ε < 0.3), in order to obtain the propa-
gating edge mode shown in Fig. 12.
Likewise, we project a wave packet localized on an in-

ner edge onto the states within a similar energy range in
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Figure 12: The evolution of a wave packet created by projecting onto edge states close to zero energy within the energy range
(−0.3 < ε < 0.3) is shown. It can be seen that it moves exclusively on the edge of the system with definite chirality
(g = 4, µ = 0.5, t = 0.5,∆ = 0.5).

Figure 13: The evolution of a wave packet initialized on an inner edge is shown. It can be seen that it moves exclusively on the
corresponding inner edge of the system with chirality opposite to that of the outermost edge (g = 4, µ = 0.5, t = 0.5,∆ = 0.5).

one of the other gaps in the spectrum to obtain Fig. 13.
We find that the chirality of wave packets initialized on
any of the inner edges (or holes) of the lattice is opposite
to that of a wave packet propagating along the outermost
edge.

Appendix D: Scaling of the gap in the topological
phase

For any finite generation g, the spectrum of the p+ ip
state on the SG presents a finite number of gaps {Ej}.
However, the amplitude of these gaps decreases exponen-
tially with g, such that the spectrum becomes gapless in
the thermodynamic limit. Specifically, we have the ana-
lyzed the scaling of the largest gap in the spectrum as
a function of g, for various parameters corresponding to
the topological phase. In Fig. 14, we show the gap scaling

on a semi-log plot, which clearly demonstrates that the
largest gap in the spectrum goes to zero exponentially
fast as g →∞ i.e.,

maxjEj = Emax ∼ ∆e−βg , (D1)
for some β > 0, which is weakly dependent on µ/t. Since
the maximal gap Emax → 0 as g →∞, all the other gaps
also vanish, leading to a gapless phase in the thermody-
namic limit.

Appendix E: Details regarding the decimation
procedure

1. SG from triangular lattice

As discussed in the main text, we consider a triangular
lattice with lattice spacing a. We assume that the lattice
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Figure 14: Scaling of the gap as a function of the generation
g of the Sierpinski gasket in the topological phase. The gap
decays to zero exponentially fast as g →∞. Here,
t = 0.5,∆ = 0.5.

takes the shape of an equilateral triangle with each side
of length L = 2pa (p ∈ Z+). The thermodynamic limit
is taken in the usual way, L/a → ∞. The coordination
number of sites in the interior of the lattice, which we
denote bulk sites, equals six, while that of those along
the edge, denoted edge sites, equals four. To ensure that
the three corner sites, which have coordination number
two, are also boundary sites, we can place four copies
of this lattice in the arrangement depicted in Fig. 1(a)
of the main text. For simplicity, we discuss the recursive
decimation for a single lattice here, with the analysis car-
rying over as is for that configuration. Alternatively, we
can also simply count the corner sites as boundary sites;
since the ratio of corner sites to boundary sites vanishes
in the thermodynamic limit, this will not affect our anal-
ysis. Defining l ≡ L/a, the number of boundary sites is
hence 3l while the number of bulk sites is 1

2(l− 2)(l− 1),
with only a single, outer boundary present.

At the first step of the decimation procedure, we elim-
inate sites and bonds contained in the interior of a in-
verted triangular lattice with side L/2, which introduces
an interior boundary into the lattice. At the gth step
(g ≥ 1), we eliminate all sites and bonds contained
within 3g−1 inverted lattices of length L/2g, which are
arranged self-similarly within the parent triangular lat-
tice (see Fig. 5 in the main text). This introduces an
additional 3g−1 boundaries into the parent lattice, such
that the total number of boundaries at step g is 1

2(3g+1),
which includes the single outermost boundary of the un-
derlying triangular lattice. Denoting the number of bulk
and edge sites present at the gth iteration as nB(g) and

Figure 15: Generating an SC from a square lattice. The first
(second) step results in inner edge mode(s), shown in red
(green), when starting from the topological phase of the
p+ ip superconductor on a square lattice. However, a finite
number of bulk sites (black dots) remain even after the SC
is generated, as shown in the zoomed in image on the right.

nE(g) respectively, straightforward algebra shows that

nB(g) = 1
2(l − 2)(l − 1)− 1

2

g∑
j=1

3j−1
(
l

2j − 2
)(

l

2j − 1
)

−
g∑
j=1

3j−1
(

3l
2j − 3

)
, (E1)

nE(g) = 3l +
g∑
j=1

3j−1
(

3l
2j − 3

)
. (E2)

The SG is generated once all sites are edge sites with
coordination number four. Hence, we stop the process
once we have eliminated the smallest triangle containing
sites and bonds contained within its interior i.e., at step
g = gc, with 2gc = l

2 , since a triangle with side length a
is the smallest possible triangle and contains no interior
sites or bonds. It is then easy to check that nB(gc) = 0
as stated in the main text. In the thermodynamic limit,
gc →∞ so that the decimation process must be repeated
infinitely many times, leading to infinitely many inner
edges created within the parent triangular lattice. More-
over, for a fixed l = 2p, one can check that

lim
g→p

nB(g)
nE(g) = 0 . (E3)

2. SC from square lattice

We now repeat the above analysis in order to gener-
ate a lattice-regulated SC (with a smallest square) from
a square lattice through recursive decimation. A key dis-
tinction between the SG and the SC is that the former has
a finite ramification while the latter is infinitely ramified;
in other words, only a finite number of bonds need to be
cut to separate out an extensive piece of the gasket, while
for the carpet, the number of bonds which need cutting
tends to infinity in the thermodynamic limit. Crucially,
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(a) (b) (c)

Figure 16: p+ ip state on the Sierpinski Carpet: the energy eigenvalue spectrum is shown for (a) the trivial phase
(t = 0.5, µ = 1, ), and (b) the topological phase (t = 0.5, µ = 0.25). (c) shows the real space Chern number within the gap as
function of µ/t, clearly indicating the existence of a gapped topological phase on the SC.

while the SG at any generation has only edge sites, the
SC always contains a finite number of sites with bulk co-
ordination number. The procedure follows that discussed
in the previous section closely: consider a square lattice
with lattice spacing a and length L, with l = L/a. Bulk
and edge sites have coordination number four and three
respectively, where we again subsume corner sites with
coordination number two as boundary sites since the ra-
tio of corner sites to edge sites vanishes as l → ∞. The
parent lattice thus has 4l boundary sites and (l−2)2 bulk
sites, with a single outer boundary.

At the gth step (g ≥ 1) of the decimation, we elimi-
nate sites and bonds contained within 8g−1 square lat-
tices of length L/3g, arranged self-similarly within the
parent square lattice (see Fig. 15). This introduces an ad-
ditional 8g−1 inner edges into the parent lattice, such that
the total number of boundaries at step g is 1

7(8g + 6), in-
cluding the outermost boundary of the underlying square
lattice. As before, denoting the number of bulk and edge
sites present at the gth iteration as nB(g) and nE(g) re-
spectively, we find that

nB(g) =(l − 2)2 −
g∑
j=1

8j−1
(
l

3g − 1
)2

−
g∑
j=1

8j−1
(

4l
3g − 4

)
, (E4)

nE(g) =4l +
g∑
j=1

8j−1
(

4l
3g − 4

)
(E5)

We arrive at the SC when g = gc, with 3gc = l
3 . In the

thermodynamic limit, we hence require gc →∞, with

lim
gc→∞

nB(gc)
nE(gc)

= 315
64 ∼ 5, (E6)

such that the ratio of bulk to edge sites remains finite.

Following the above analysis, it is also straightforward
to see that at the gth step of the decimation procedure,
each chiral edge mode is separated from another one by
a distance L/3g. At the final step g = gc, where the SC
is generated, each mode is separated by 3a from an edge
mode with opposite chirality, as illustrated in Fig. 15.
Since the separation between such counter-propagating
Majorana edge modes approaches their bulk penetration
depth at large g, these states are gapped out due to back-
scattering, resulting in a gapped spectrum. As discussed
in the main text, the hybridization of the gapless edge
states is a consequence of a non-vanishing ratio of bulk to
boundary coordinated sites in the thermodynamic limit,
which in turn allows the SC to host gapped topological
phases retaining the bulk features of the phase defined
on the parent square lattice.

Appendix F: Numerical diagonalization of the BdG
Hamiltonian on the SC

The pairing term of the BdG Hamiltonian (Eq. (1) in
the main text) on a square lattice is specified by ∆x̂ = ∆
and ∆ŷ = i∆, defined on the nearest-neighbor bonds cor-
responding to the lattice vectors ex̂ and eŷ. The spectrum
is gapped everywhere for ∆ 6= 0, except at µ = ±4t, with
|µ| < 4t corresponding to the topological phase, which
has a quantized momentum space Chern number C = 1
and hosts a chiral gapless Majorana mode along the sam-
ple boundary. We numerically diagonalize this model on
the Sierpinski carpet and find that, unlike the model on
the SG, the spectrum remains gapped in both the triv-
ial (|µ| > 4t) and the topological phase (|µ| < 4t), as
shown in Figs. 16a and 16b respectively. We also calcu-
late the real space Chern number (Eq. (2) in the main
text) within the gap as a function of µ/t and find that
it vanishes in the trivial phase, but takes on a quantized
value C = 1 in the topological phase, as shown in Fig. 16c.
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