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Recent progress of quantum simulators provides new insight into the fundamental problems of
strongly correlated systems. To adequately assess the accuracy of these simulators, the precise
modeling of the many-body physics, with accurate model parameters, is crucially important. In this
paper, we employed an ab initio exact diagonalization framework to compute the correlated physics
of a few electrons in artificial potentials. We apply this approach to a quantum-dot system and
study the magnetism of the correlated electrons, obtaining good agreement with recent experimental
measurements in a plaquette. Through control of dot potentials and separation, including geometric
manipulation of tunneling, we examine the Nagaoka transition and determine the robustness of the
ferromagnetic state. While the Nagaoka theorem considers only a single-band Hubbard model, in
this work we perform extensive ab initio calculations that include realistic multi-orbital conditions
in which the level splitting is smaller than the interactions. This simulation complements the
experiments and provides insight into the formation of ferromagnetism in correlated systems. More
generally, our calculation sets the stage for further theoretical analysis of analog quantum simulators
at a quantitative level.

I. INTRODUCTION

Strong correlations are at the heart of many important
phenomena in condensed matter systems, including un-
conventional superconductivity1, quantum magnetism2

and fractional quantum Hall states3. These phenomena
have a wide range of applications in material design, en-
ergy science, and quantum information4. The complexity
of strongly correlated many-body systems does not allow
to apply traditional theoretical approaches based on per-
turbation theory, and requires using hard-core numerical
techniques, including exact diagonalization5, quantum
Monte Carlo6, density-matrix renormalization group7,
etc. However, these numerical techniques are limited to
restricted conditions such as small size, high tempera-
ture, and low dimension. The pursuit for understanding
strongly correlated systems in materials motivates new
approaches that can overcome these restrictions.

In addition to conventional numerical techniques,
analog quantum simulators offer a distinct solution.
Specifically, cold-atom simulators in optical lattices have
achieved great success in simulating interacting bosonic
systems8–10 and have recently begun exploring fermionic
systems11–16. Taking advantage of electrons as charged
particles, solid-state quantum-dot simulators naturally
incorporate the Coulomb interactions and provide an
alternative for mimicking electronic many-body states
in molecules and solids17–24. With the relatively easy
accessibility of high orbitals and low temperatures, the
quantum-dot simulators are promising to simulate a
realistic system. Despite the experimental progress

with these platforms for quantum simulation, the in-
terpretation of the underlying physics is still at the
stage of minimal models with estimated parameters25–27.
This limits the quantitative analysis of fine details of
experiments and hinders extensions to more complicated
models.

A solution to this problem might be readily available,
if we turn to the fields of chemistry and material science,
where atomic-basis-based ab initio approaches have been
well developed. The spirit of these approaches is the
unbiased evaluation of all physical parameters from a
given set of atomic ingredients. In the past half a
century, ab initio calculations have made great progress
towards describing systems with increasing complexity.
With the help of the Gaussian basis28–32, the com-
putational cost has been largely reduced, making the
simulation of large molecules possible. In addition to
the basic Hartree-Fock method33–37, many advanced
post-Hartree-Fock wavefunction-based methods (coupled
cluster38, configuration interactions39,40, etc.) and multi-
reference methods41–45 have been invented. More re-
cently, advanced computer architectures including graph-
ical processing units (GPUs) have been widely exploited
by quantum chemistry simulations, pushing the scale
of calculation to even larger systems46–50. Though
successful in chemistry, existing software packages are
not compatible with quantum simulators: the state-of-
the-art quantum chemistry calculations are based on
existing atomic wavefunction bases; however, the tun-
ability of quantum simulators requires the wavefunction
basis being the eigenstates of given, arbitrary potential
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landscapes, which are obtained numerically during the
calculation.

In small quantum-dot systems, initial progress has
been made using fixed wavefunction bases. Early studies
focused on the physics in a single parabolic quantum dot,
whose basis wavefunctions are Fock-Darwin states – a
subset of Gaussian wavefunctions. With these analytical
wavefunctions as bases, the many-body Hamiltonian can
be easily computed and the ground-state solution can be
obtained using exact diagonalization51–68 and quantum
Monte Carlo69–73. The simplified treatment was also
extended to double-dot systems74–79. Since the parabolic
potentials cannot describe the “crystal-field” corrections
– the impact of neighboring dot potentials on the single-
particle wavefunctions and site energies – recent work
has considered more realistic Gaussian potentials. In this
case, density functional theory (DFT) and wavefunction
based methods such as configuration interaction have
been attempted, using a numerical wavefunction basis
beyond the Fock-Darwin states80–82. However, these are
the largest quantum-dot systems that have been subject
to ab initio attempts. In trying to find a compromise
between model accuracy and computational complexity,
simulations of larger systems have been restricted to
simpler toy models like the Hubbard and extended-
Hubbard models83–87.

A recent experiment88 showcased some of the power
of quantum dot based simulators for studying quantum
magnetism, by using a 2×2 plaquette to investigate
Nagaoka magnetism – magnetism induced by a single
hole in a half-filled correlated electronic system. This
phenomenon has been difficult to realize experimentally,
in great part because of the correlated nature of the
electronic system required to observe the physics of Na-
gaoka ferromagnetism89. The success of the experiment
in Ref. 88 relied on pushing the limits of the maximum
achievable interaction strengths, as well as the minimum
measurable energy gaps. The observed energy gap crucial
for Nagaoka ferromagnetism is of the order of a few µeV
in such a system, three orders of magnitude smaller than
the level spacing between orbitals and the ground-state
Coulomb interaction.

Given that Nagaoka ferromagnetism was proven in
a single-band finite system, it is not obvious that this
phenomenon should persist when the level spacing among
different orbitals is well below the interaction scales, as
is the case in the quantum-dot experiment by Dehollain
et al88. Thus, these system conditions require a precise
numerical many-body approach in order to validate the
experimental observations. Moreover, to reflect the
tunability of quantum dots comparable with realistic
experiments, the modeling with ab initio inputs is also
necessary.

For both of these purposes, we hereby introduce an
ab initio exact diagonalization framework to describe
artificial quantum simulator systems consisting of mul-
tiple quantum dots. By calculating the wavefunctions
in a given potential well and evaluating the one-center

and two-center integrals, we construct the tight-binding
Hamiltonian of the many-body system consisting of
multiple interacting quantum dots. This calculation
predicts the single-particle energies, along with various
interaction energies, which are quantitatively consistent
with experiments88. Additionally, we applied the calcula-
tion on a plaquette system, reproducing the experimental
conditions that led to the observation of the Nagaoka
ferromagnetic ground state. The model again shows
good agreement with the experimentally observed energy
gaps, as well as with the observed robustness of the
ferromagnetic state performed in the experiment88.
The description of this model and calculation will

gradually increase in complexity. In Sec. II, we first
explain the single-well wavefunction basis and the nu-
merical implementation that automatically generates
the basis based on a given potential. After that, we
present the derivation and implementation of many-body
Hamiltonians in multiple quantum wells in Sec. III. By
adjusting the model to represent a four-well system, in
Sec. IV we then explore the quantum magnetism and
especially the Nagaoka transition using the ab initio

exact diagonalization approach. Finally, we conclude and
discuss the future directions of our approach in Sec. V.

II. SINGLE ELECTRON IN A

SINGLE-QUANTUM WELL

To simulate the electrons trapped in a finite-width po-
tential well, we consider a confining central potential with
rotational symmetry. This confining potential mimics the
combined impact of electrodes surrounding the quantum
dot90. Though a generic potential landscape, obtained
by solving the Poisson equation, can be employed as an
input in the calculation, we use the Gaussian potential

V (r) = −V0e−|r|2/2σ in this article [see Fig. 1(a)], as
a typical description of the finite-size quantum dot80,82.
Here r = r cosφ ex + r sinφ ey is the spatial coordinate
with respect to the center of quantum well. In contrast
to an atomic potential, the quantum well has finite
potential energy with no singularity; unlike the parabolic
potential, the Gaussian potential has a finite width and
finite number of bound states. The single-electron static
Schrödinger equation is

[
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ψ(r) = Eψ(r) ,

(1)
where m⋆

e is the effective mass of electron in the two-
dimensional electronic gas (2DEG). The equation can be
simplified by separation of variables

ψ(r) =
χ(r)√
2πr

eimφ =
χ(r)√
r
ϕ(φ), (2)

where the χ(r) and ϕ(φ) are the radius and angular
wavefunctions. Denoting the radial quantum number as
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FIG. 1: Solution of single-well wavefunctions for V0 = 100
and Σ = 1. (a) The Gaussian quantum well in 2D. (b) Eigen-
energy solutions for all bound states in the quantum well
of (a), with the colors denoting different angular quantum
numbers. (c) Sample eigenstate wavefunctions for (n,m) =
(0, 0), (4,0), (1,1), (4, 1), (1,5), and (2,7), respectively.

n and angular quantum number as m, the set of {χn(r)}
satisfies the normalization condition

∫ ∞

0

χn(r)
∗χn′(r)dr = δnn′ . (3)

Then we obtain the radial differential equation

− ~
2

2m⋆
e

[

d2χ

dr2
− m2 − 1/4

r2
χ

]

+ V (r)χ = Eχ . (4)

It can be numerically solved using the finite difference
approximation. Choosing the angular part being real
for numerical convenience, we define the single-well

wavefunction as

ψnm(r) =















χn(r)√
2πr

, m = 0
χn(r)√

πr
cos(mφ), m > 0

χn(r)√
πr

sin(mφ), m < 0.

(5)

These eigenstate wavefunctions define the 2D orbital
(n,m) quantum numbers, while the spin component will
be introduced later. We label the single-well single-
electron eigen-energy as εnm. As shown in Fig. 1(b), the
energy levels are well separated near the ground state,
but become denser at higher energies. This is typical in
a finite potential well. Unlike a parabolic potential, there

are finite number of bound states (denoted as Norbital) in
a finite well.
The wavefunctions of the eigenstates also become more

extended with the increase of energy, or equivalently
quantum numbers. While m determines the angular
distribution of a wavefunction, n gives the number of
nodes along the radius. Fig. 1(c) shows examples of a
few eigenstate wavefunctions. The ground state (n,m) =
(0, 0) is restricted to the center of the potential well with
a Gaussian-like shape, while the high-energy states such
as (n,m) = (2, 7) spread three times wider.
Different from 3D systems, the eigenstates of a 2D

potential well have 2-fold orbital degeneracy for all
|m| > 0 (i.e., p, d, f orbitals in atomic notation). This
degeneracy is maintained in a C4 symmetric system.
This rotational-symmetric shape of the potential well
is a theoretical simplification. In reality, the confining
potential is not perfectly symmetric and can deviate from
the solution in Fig. 1, resulting in the level splitting of
the degenerate states91. However, as we will show in
Sec. IV, the ideal model gives an adequate estimation
of the experimentally measurable parameters, both qual-
itatively and quantitatively. This result indicates that
single-well wavefunctions obtained from the rotational-
symmetric potential well also form a good basis to expand
local electronic states.

III. MANY-BODY MODEL

With multiple potential wells, the general Hamiltonian
for a many-body system among Nwell wells is

H =

Ne
∑

a

[

− ~
2

2m⋆
e

∇2
a +

Nwell
∑

i

V (ra −Ri)

]

+
∑

a 6=b

e2

4πǫ|ra − rb|
,

(6)
where the sum over a and b traverses the Ne electrons,
while the sum over i traverses different potential wells.
The first term is a sum with respect to each electron,
which can be treated by separation of variables. Different
from a chemistry problem, here the electrostatic potential
V (r) is given by the electrodes and there is no need to
introduce the Born-Oppenheimer approximation.
Following the linear combination of atomic orbitals

(LCAO) approach in the electronic structure theory92,
we construct the basis using a superposition of the single-
well wavefunctions

ψ̃µσ(r) =
∑

ν

Xνµψνσ(r) . (7)

For simplicity in notation, we collapse the coordinate and
orbital indices as µ = (i, α), and denote ψµσ(r) = ψα(r−
Ri)s(σ). The s(σ) denotes the spin wavefunction which
does not mix in the hybridization. Since the single-well
wavefunctions are truncated at a relatively high level,
this linear combination does not span a complete spatial
basis, but is enough for the ground-state calculation
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when the number of tracked orbitals is much larger than
the number of occupied orbitals. With the presence
of multiple wells, the single-well wavefunctions are no
longer orthogonal. An orthonormalization should be
applied in order to simplify the many-body Schrödinger
equation. The overlap matrix among different single-well
wavefunction basis is

∫

dr3ψ∗
µσ(r)ψνσ′ (r) = Sµνδσσ′ . (8)

Thus, the overlap matrix among the new basis functions
is

∫

dr3ψ̃∗
µ1σ1

(r)ψ̃µ2σ2(r) = X†SX δσ1σ2 . (9)

By setting the requirement X†SX = I and considering
S being positive-definitive, a standard choice92 is X =
S−1/2. This selection results in a new orthonormal basis
set {ψ̃µσ(r)}.
Representing the many-body wavefunction in the Fock

space, spanned by the Slater determinants of {ψ̃µσ(r)},
we obatin the the second quantization of the many-body
states93:

|{ikαkσk}〉 = c†iNαNσN
· · · c†i2α2σ2

c†i1α1σ1
|0〉 , (10)

where subscripted “i”s denote the site indices labeling
the quantum dots; “α”s denote the orbital indices (n,m);
“σ”s denote the spin index. To perform an exact diag-
onalization calculation, we further construct a second-
quantized Hamiltonian, the generic form of which is

H = Hnon−int +Hint . (11)

The non-interacting part Hnon−int corresponds to the
hopping of an electron across orbitals and wells, while the
interacting partHint contains all the possible interactions
between multiple electrons. In the following subsections,
we introduce the methodology and approximations to
evaluate these two parts of Hamiltonians.

A. Non-Interacting Part of Hamiltonian

The non-interacting part of the Hamiltonian is
quadratic in fermionic operators

Hnon−int =
∑

iασ

∑

jβσ

t ij

αβ
c†iασcjβσ . (12)

For any Fock state, this quadratic term can be evaluated
using single-electron states. To simplify the calculation,
we can first evaluate the matrix elements using the orig-
inal non-orthogonal basis {ψµσ(r)}, obtaining a matrix
hµν , which we can transform into the orthonormal basis.
This results in

hµν =

∫

dr3ψ∗
µσ(r)

[

− ~
2

2m⋆
e

∇2 +
∑

i

V (r−Ri)

]

ψνσ(r)

= εν +

∫

dr3ψ∗
µσ(r)

∑

j 6=iν

V (r−Rj)ψνσ(r) , (13)

for any spin σ. The diagonal terms of hµν define the
site energies associated with each (single-well) orbital ν.
Note, this energy is not equal to the bare eigen-energy
εν in a single well, since the second term also has a
finite diagonal contribution. This is an analog of the
“crystal field”. The off-diagonal terms in hµν define the
hybridization between different orbitals.
The transformation into orthonormal basis is done by

substituting Eq. (7) into (13), resulting in

tµν = 〈iασ|Hnon−int|jβσ〉

=
∑

µ′ν′

∫

dr3X∗
µ′µψµ′σ(r)Hψν′σ(r)Xν′ν . (14)

Here tµν defines the site energy (diagonal) and hybridiza-
tion (off-diagonal) of the orthonormal orbitals, which
appears in Eq. (11). Due to the impact of the “crystal
field” and hybridization, the energy distribution of a
multi-well system can be dramatically different from the
single-well solution.

B. Interacting Part of Hamiltonian

As a typical choice in condensed matter, we restrict
the interaction part Hint to four-fermion terms92. As
specified in Eq. (A1), the generic second-quantized four-
fermion term contains an enumeration of four coordinate
indices (i1, i2, j1, j2), four orbital indices (α1, α2, β1, β2)
and four spin indices (σ1, σ2, σ

′
1, σ

′
2). This results in

16N4
wellN

4
orbital interaction terms, whose general expres-

sion is shown in Eq. (A2). The bottleneck of the
computation is the evaluation of the interaction param-
eters by numerical integration. Therefore, the setup
of a model involving all combinatorial possibilities is
currently beyond our capability. Hence, we introduce
several common approximations to reduce the number
of independent variables. Firstly, without relativistic
effects, the Coulomb interaction is independent of spin;
therefore, {σ′

1, σ
′
2} = {σ1, σ2}. Secondly, due to the two-

body nature of the interaction, one-center and two-center
integrals dominate, whereas terms with more centers
decay exponentially for well-separated wells. Dropping
these multi-center terms implies the assumption that the
geometric coordinates {i1, i2, j1, j2} can take at most
two values. Thirdly, to further reduce the complexity,

(a) (b)

FIG. 2: The interaction terms that are ignored in the tight-
binding Hamiltonian: (a) the density-dependent hopping and
(b) the scattering terms involving more than two orbitals with
different site energies.
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FIG. 3: On-site interactions within one quantum dot: Hub-
bard U , inter-orbital Hubbard U ′ (and its spin-anti-parallel
form Ū ′), and Hund’s exchange J (and its spin-anti-parallel
form J̄).

we restrict the interaction terms to “perfectly” resonant
processes94, which strictly speaking is only fully justified
when level splitting is much larger than the interaction
energy scales. For example, we neglect two generic classes
of interactions: the density-dependent hopping and the
scattering terms involving more than two orbitals [see
Fig. 2]. These terms are important in some cold-atom
systems where individual energy scales are controllable,
but become non-resonant in our model due to the strong
interaction and unequal spacing between energy levels95.
The omission of these two non-resonant processes is
equivalent to setting {i1, i2} = {j1, j2} and restricting
each four-fermion interaction term to at most two orbital
indices. The above approximations significantly reduce
the complexity of the model and have been a common
strategy in solid state96.
After these simplifications, the interacting part of the

Hamiltonian can be decomposed as the on-site and (two-
center) long-range parts

Hint =
∑

i

H(OS)
i +

∑

ij

H(LR)
ij . (15)

The standard derivations of each term in the interacting
Hamiltonian is present in Appendix A. The on-site
interaction Hamiltonian can be written as

H(OS)
i =

1

2

∑

ασ

Uαnασ̄nασ +
1

2

∑

α1 6=α2

∑

σ1,σ2

U ′
α1α2

nα2σ2nα1σ1

+
1

2

∑

α1 6=α2

∑

σ1,σ2

Jα1α2c
†
α2σ1

c†α1σ2
cα2σ2cα1σ1 . (16)

This is the known as the multiplet model, widely used
to describe the valence electrons in the transition metal
systems96. The corresponding scattering processes are
sketched in Fig. 3. For convenience, the site index is
removed on the right-hand side, while in an inhomo-
geneous system [such as the modulations in Sec. IV],
one should consider it specifically for each individual
site. Due to a symmetry consideration [see discussions
in Appendix B], it is usually convenient to calculate the
interaction parameters using the original single-well basis
obtained from Eq. (5), through

Ξµ1ν1
µ2ν2

=

∫∫

drd1dr
d
2W (|r1−r2|)ψµ1(r1)

∗ψµ2(r2)
∗ψν1(r1)ψν2(r2) .

(17)

V K V’ K’

FIG. 4: Long-range interactions between two quantum dots:
direct Coulomb interaction V , long-range Hund’s exchange
K, correlated on-site exchange V ′ and correlated off-site
exchange K′.

Here W (|r1−r2|) = e2/4πǫ|r1 − r2| is the two-electron
Coulomb repulsion. Note, here we have taken the
compact notation µ = (j, β) introduced above and have
omitted the spin indices as they do not affect the spatial
integral. Then using Eq. (7), we have

U ′
α1α2

=
∑

µ1,µ2

∑

ν1,ν2

X∗
µ1a1

Xν1a1X
∗
µ2a2

Xν2a2Ξµ1ν1
µ2ν2

Jα1α2 =
∑

µ1,µ2

∑

ν1,ν2

X∗
µ1a2

Xν1a1X
∗
µ2a1

Xν2a2Ξµ1ν1
µ2ν2

.
(18)

These parameters define the on-site interactions among
the orthonormal orbitals.
Similarly, the long-range interactions is written as

H(LR)
ij =

1

2

∑

ασ

∑

βσ′

Vαβniασnjβσ′

+
1

2

∑

αβ

∑

σσ′

Kαβc
†
jβσc

†
iασ′cjβσ′ciασ

+
1

2

∑

α6=β

∑

σσ′

V ′
αβc

†
iβσc

†
jασ′cjβσ′ciασ

+
1

2

∑

α6=β

∑

σσ′

K ′
αβc

†
jασc

†
iβσ′cjβσ′ciασ

+
1

2

∑

α6=β

∑

σ 6=σ′

K ′′
αβc

†
iβσc

†
jβσ′cjασ′ciασ . (19)

As sketched in Fig. 4, Vαβ represents a direct Coulomb
interaction and Kαβ is the corresponding exchange inter-
action; similarly, V ′

αβ is the correlation between two on-

site exchange interactions, while K ′
αβ is the correlation

between off-site exchange. The K ′′
αβ term is an analog

of the pair-hopping term and is also ignored here. The
expressions for the relevant long-range terms are

V ij
αβ =

∑

µ1,µ2

∑

ν1,ν2

X∗
µ1(iα)

Xν1(iα)X
∗
µ2(jβ)

Xν2(jβ)Ξµ1ν1
µ2ν2

Kij
αβ =

∑

µ1,µ2

∑

ν1,ν2

X∗
µ1(jβ)

Xν1(iα)X
∗
µ2(iα)

Xν2(jβ)Ξµ1ν1
µ2ν2

V ij′
αβ =

∑

µ1,µ2

∑

ν1,ν2

X∗
µ1(iβ)

Xν1(iα)X
∗
µ2(jα)

Xν2(jβ)Ξµ1ν1
µ2ν2

Kij′
αβ =

∑

µ1,µ2

∑

ν1,ν2

X∗
µ1(jα)

Xν1(iα)X
∗
µ2(iβ)

Xν2(jβ)Ξµ1ν1
µ2ν2

.(20)
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mul�plet low-spin state mul�plet high-spin state

FIG. 5: Cartoon for multi-orbital Nagaoka transition in a
four-dot system. For moderate effective interaction, the
multiplets in each quantum well form an overall low-spin
state, with total spin S = 1/2 (left). In contrast, a large
interaction relative to the tunneling gives a Nagaoka FM state
(right). The shaded surfaces denote the potential wells, while
the white dots denote the single-well energy levels, which
are slightly shifted according to different angular quantum
numbers. The spin configuration is a conceptual sketch
instead of a realistic solution.

Note, the long-range interaction has contributions from
both direct long-range integrals (for two-center µi and
νi indices), and indirect hybridized on-site integrals (for
one-center µi and νi indices). With well-separated
quantum dots, the long-range interactions are typically
much smaller than the on-site interactions. That being
said, V ≪ U , K ≪ J , and V ′ and K ′ are even smaller
compared to V and K. Due to the orbital match of on-
site wavefunctions, the V terms are expected to dominate
in the long-range interactions. However, for the study
of Nagaoka ferromagnetism in the plaquette (see Sec.
IV), it is necessary to consider all of these long-range
parameters, since the effects we want to observe can
depend significantly on the superfine structures.

IV. SIMULATION OF FOUR-WELL QUANTUM

DOT SYSTEM: PROBING NAGAOKA

MAGNETISM

The explicit expressions for the tight-binding parame-
ters described above allow one to fully diagonalize many-
body electronic systems with multiple quantum dots.
We will use this methodology to investigate the physics
described by Nagaoka89, applied to a multi-orbital, 2×2
system. Specifically, we study a system with three
electrons in a four-site plaquette, which realizes the
condition of a single hole in a Mott insulator where
for a single orbital per site Nagaoka proved that the
ground state must be ferromagnetic in the limit of large
interaction strength. As sketched in Fig. 5, with the total
electron occupation less than the number of quantum
dots, the multiplets on each quantum dot interact with
each other and are expected to yield an effective collective
spin configuration. If the multi-orbital system has similar

behaviors to those of a single-band system formed by
those multiplets, we expect it to display a high-spin-low-
spin transition at various model parameters: with large
enough interaction relative to the tunneling, we expect
the Nagaoka mechanism to yield a ferromagnetic (FM)
high-spin ground state; however, with moderate interac-
tions, the system becomes a doped Mott insulator with a
low-spin ground-state configuration, which corresponds
to an anti-ferromagnetic state in the thermodynamic
limit97.
A recent experiment has studied Nagaoka magnetism

using a quantum dot array in a 2 × 2 plaquette
configuration88. For a great part of the analysis in that
work, a single-band extended Hubbard model with fitted
parameters was used to model the system, obtaining
results that seem to describe most of the experimental
observations accurately. However, the fact that the
experimentally observed level spacing between the two
lowest orbitals is smaller than the electronic interaction
raises the question of whether the system is adequately
described by the single-band model. In this section,
we use the ab initio exact diagonalization approach
described above to extract the precise many-body model
of the 2 × 2 quantum dot plaquette and quantitatively
reproduce the Nagaoka conditions that were explored
with the experimental system.

A. Evaluation of Model Parameters

To compare with a realistic system, we first discuss
the typical values of parameters. The gate-electrode
structure of the experimental device was lithographically
designed to define quantum dot wells on the scale of
100nm24,88. Therefore, we set our spatial units of the
lattice constant a0 = 100nm and Gaussian potential
width Σ = 100nm. Considering the effective mass of
electrons in a GaAs/AlGaAs 2DEG is m⋆

e ≈ 0.067me,
the natural energy unit corresponds to ~

2/a20m
⋆
e ≈

0.114meV. Applying this scale to the eigen-spectrum
solved in Fig. 1 (i.e., V0 = 100 ~2/a20m

⋆
e = 11.4meV),

we obtain the ground state to first excited state level
spacing ∆E = ε1 − ε0 ≈ 0.75meV, comparable to the
experimental observation of ∼ 1meV.
The evaluation of the electron-electron interaction

requires a specific value of the dielectric constant ǫ, which
is ideally 12.9 in GaAs. It is known that the presence of
metallic gate electrodes in the vicinity of the 2DEG has
the effect of increasing ǫ. However, the precise evaluation
of ǫ is challenging. Instead, we rely on the value of the
addition energy, which has been accurately estimated by
experiments to be 2.9 meV, and select an ǫ that results
in reasonable interaction values. Taking ǫ = 20 into
the solution of V0 = 11.4meV mentioned above gives
the ground-state U0 ≈ 2.34meV and the ground-excited-
state U ′

01 ≈ 1.92meV. Note, these are the intrinsic model
parameters in the many-body Hamiltonian. A typical
experimental estimation of this Hubbard interaction is
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obtained by measuring the addition energy. Due to the
orbital mixture when ∆E < U and the fact that excited-
state wavefunctions are spatially wider, the experimen-
tally measured “effective interaction” strength is slightly
smaller than the model parameters U and U ′. Fig. 6 gives
an example of level spacing ∆E, ground-state Hubbard U
and effective interaction calculated in a single-well system
with different shape parameters.

The long-range interactions are much smaller than the
on-site ones. Specifically for d = 210nm, the long-
range interaction V ranges from 0.22meV to 0.4meV
depending on the orbitals; K and V ′ are on the order of
or below 1µeV; the off-site exchange correlation K ′s are
even lower, on the order of 0.1 or 0.01µeV. These terms
form higher-order corrections to the multiplet model of
Eq. (16). As shown in Table I, only the long-range
Coulomb interaction V obviously affects the ground-state
energy, by order of 1 meV, while others contribute to
∼ 0.01meV. However, as stated before and now made
clear in Table I, the strong interaction condition results
in a high-spin to low-spin state energy gap–which we
refer to as the Nagaoka gap, that is on the scale of
µeV. The precise value of the Nagaoka gap depends
on the details of the microscopic parameters such as
the confining potential for electrons and the many-
body interactions. Therefore, every long-range term
provides a non-negligible contribution to the Nagaoka
gap. Noticeably, the K terms have larger contributions
to the Nagaoka gap than V , although it is inconsistent to
include only one of them because it is the combination
of both that obeys the exchange relation in Eq. (A2).
A closer inspection of the dependence of the Nagaoka
gap size on various models – in particular the contrast
between t-U -J and t-U -J-V -K-V ′-K ′ – indicates that the
long-range Hund’s exchange only contributes ∼ 23% of
the ferromagnetic effect, with the Nagaoka mechanism
dominating. Distinguishing these two contributions is
only possible in a multi-band model. This quantitative
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FIG. 6: (a) Ground-first-excited state level spacing, (b)
ground-state interaction U and (c) effective interaction as a
function of the depth V0 and the width Σ of quantum well.
The calculation is obtained on a single quantum well without
hybridization.

Model Ground-State Energy Nagaoka Gap
t-U -J -43.579950 meV 2.213 µeV

t-U -J-V -42.576572 meV 2.318 µeV
t-U -J-V -K -42.558866 meV 2.775 µeV

t-U -J-V -K-V ′-K′ -42.558912 meV 2.868 µeV

TABLE I: Effect of system parameters (definition of these
parameters can be found in the Sec. III B) on ground-state
energies and the Nagaoka gap obtained by various models
for d = 210 nm. The calculations are performed on a four-
dot system with three electrons, and the ground states of all
models listed here are high-spin states.

200 260 280
d[nm]

220 240
0

100

t 
[ µ

e
V

 ]

40

80

60

20

FIG. 7: The effective hopping t estimated by a quarter of the
single-particle bandwidth calculated for various distances in
a 2× 2 plaquette.

assignment gives further confirmation that the experi-
mental result in Ref. 88 is indeed caused by a Nagaoka-
like mechanism.

The hybridizations, or tunneling terms, vary among
different orbitals and are exponentially dependent on the
distance between quantum dot potential wells. Since the
single-well ground-state wavefunctions are most local-
ized, the hybridizations between neighboring-quantum-
dot (single-well) ground states are extremely small (∼
0.06µeV for d = 210nm). However, these local orbitals
and tunnelings among them hµν are non-physical: they
are nothing but mathematical tools to solve the many-
body problem98. In reality, the “crystal field” and wave-
function orthogonalization cause heavy hybridization
between the (single-well) ground state and excited states
– the maximum of which can be close to ∆E. These high-
level excited states can contribute a ∼ 0.5meV hopping
amplitude between neighboring quantum wells. There-
fore, the experimentally measurable effective tunneling

across low-energy states is the result of a superposition
of all different conceptual paths.

Following this philosophy, the effective hopping t can
be simply extracted from the single-particle bandwidth in
the entire multi-well system. If we only consider nearest-
neighbor tunneling, the low-energy band structure of a
2 × 2 plaquette takes the form E(θ) = −2t cos θ for
θ = {0, π/2, π, 3π/2}. Therefore, the width of the lowest
band (the lowest four states) in a single-electron system
gives an estimation of 4t. Fig. 7 shows the extracted
values of t for different neighboring-dot distances. In
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the experimental device, the inter-dot tunneling can be
tuned to the range of 0-40µeV24,88, which in the ab initio
model corresponds to a range of distances d = 210 −
240nm. This is fairly consistent with the lithographically
designed inter-dot distance of 150nm, which is also an
approximation, since the actual inter-dot distance in the
experiments is not measurable.
We emphasize that the above model parameters (in-

cluding the first excited-state level spacing ∆E, the
ground-state and ground-excited-state Coulomb inter-
action U0 and U ′

01, long-range Coulomb interaction V ,
the effective tunneling t, and the Nagaoka gap ∆)
evaluated from our ab initio calculation using only very
limited experimental input match quantitatively with the
experiment in Ref. 88. Therefore, we believe the ab

initio calculation serves the purpose of predicting model
parameters in a quantitative level based only on given
potential landscapes.
To simulate the correlated Nagaoka physics in multiple

quantum dots, we perform the calculation in a micro-
canonical ensemble, with three electrons in a four-well
system, and focus on the ground-state properties. The
evaluation of single-well eigenstates and the integration
are performed on a grid with a spacing of 1 nm. To
simplify the calculation, we keep 15 orbitals in each
quantum dot, which span a ∼ 5meV energy range.
As this range is much larger than both U and t, we
believe that the level mixture above this truncation can
be ignored99. We perform exact diagonalization to solve
this 60-orbital spinful system, using the parallel Arnoldi
approach100,101.

B. Distance Dependence

Having selected the quantum dot potential well pa-
rameters, we first study the ground state properties as a
function of the distance between neighboring dots in the
plaquette. As shown in Fig. 8(b), the energy increases
monotonically when the quantum dot separation is in-
creased from 200nm to 280 nm. This is a consequence
of the crystal field renormalization of the site energies.
As the dot separation becomes large enough to make the
long-range interactions negligible, the electrons can no
longer lower their energy by delocalizing, and the ground-
state energy saturates towards ∼ 30meV. This energy
corresponds to each of the three electrons occupying the
ground state of a quantum well independently.
Interestingly, the ground-state configuration switches

from a high- to a low-spin state at d & 206nm. This
is a feature of the Nagaoka effect applied to finite-size
lattices, which have access to regimes outside of the
thermodynamic limit (U/t → ∞) where Nagaoka made
the original prediction. Increasing the distance between
dots effectively suppresses t and long-range interactions,
but changes little of the on-site interactions. At small
enough effective tunneling with large enough distance,
the U ≫ t condition is reached at some point. Such a
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FIG. 8: (a) The Nagaoka gap and (b) the ground-state
energy of three electrons in four quantum dots, as a function
of the distance d. The red open circles denote the low-
spin ground states, while the blue dots denote the high-spin
ground states. The size of the data points reflects the energy
difference between the lowest low-spin and high-spin states in
a logarithmic scale.

Nagaoka effect was originally predicted for a single hole
in a half-filled Hubbard model in the thermodynamic
limit, where the transition occurs at an infinite U/t ratio.
However, this critical ratio becomes finite for a finite
cluster, since the underlying physics reflected by the
Nagaoka transition is a t versus Nwell × J competition.
This phenomenon was previously shown (and proven)
in a single-band Hubbard89,102 and extended Hubbard
models103. Here, for the first time, we show its validity
in a multi-orbital system.
As shown in Fig. 8(a), the Nagaoka gap switches to

positive at d > 206nm and reaches a maximum at
d ∼ 210nm. With larger distances, the Nagaoka gap
starts to decrease as the correlations among electrons in
different wells diminish. We select d = 210nm as the
default geometric setup for the following calculations.
In this case, the absolute value of the Nagaoka gap
is 2.87µeV, consistent with an estimation in Ref. 88
through a comparison between experimentally measured
parameters with a fitted single-band model.

C. Potential Detuning

In addition to investigating the Nagaoka transition as a
function of separation between the dots, we demonstrate
that the low-spin-high-spin transition can also be driven
by varying the potential of a single well, which reflects
the robustness of the magnetism against disorder. As
shown in Fig. 9(a), we vary the depth V0 of one of
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the wells by a positive or negative dV , which results in
unbalanced site-energies. More broadly, the change of all
eigenstates associated with this particular well affects the
hybridization and interaction parameters. These changes
are all captured in the ab initio calculation.

The results from this study, shown in Fig. 9(b), give
some expected, but also some unexpected outcomes. A
first observation is that the total energy of the system
is lowered as the selected well is made deeper, and
the Nagaoka condition breaks when the well becomes
sufficiently shallow or deep. Surprisingly though, the
slope of such energy decrease varies when dV switches
from positive to negative. Additionally, there is an
asymmetry in the robustness of the Nagaoka state,
between positive and negative detuning, which was also
observed in the experiment88. Taking the d = 210nm
system as an example, at dV = 0, the ground state is
the Nagaoka high-spin state discussed above; when the
potential detuning is dV =0.11meV or dV =−0.07meV,
the system undergoes a transition to the low-spin ground
state. The asymmetric behaviors indicate that the
transitions at positive and negative dV s have a different
nature.

For dV > 0, the detuned well is deeper, lowering
the energy barrier for a doubly-occupied state (some-
times called doublon) and accordingly increasing the
spin-exchange energy J through the super-exchange
process18,104. Thus, the ground state becomes a low-
spin state for large enough dV . We note that the
range of dV that we are sweeping is smaller than the
Hubbard interactions (on the order of meVs); therefore,
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FIG. 9: (a) Schematic illustrating the potential detuning
applied on one of the four quantum dot potential wells. (b)
The ground-state energy for the entire system as a function
of the potential detuning dV , calculated for various distances
d. The gray lines denote the energy drop with slope 1.
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enlarged energy devolution for the dashed boxed region in (a).

the transition is not caused by a direct doublon formation
in the detuned site. In addition, the range of detuning
over which the high-spin ground state survives is larger
than the hybridization ∼ 40µeV, consistent with the
experiment88. This can be reflected by the excited-state
spectrum in Fig. 10: the transition between low-spin
and high-spin states occurs “adiabatically” between the
ground states of each section. The Nagaoka gap is always
much smaller than the level spacing, which is roughly
reflected by the gap between the high-spin ground and
excited states.

On the other hand, it is much easier to empty a site
comparing to doubly occupying one, in a hole-doped
system (with three electrons on four sites): the detuning
potential only has to compensate the kinetic energy
instead of interaction energy to achieve the former. Thus,
with a negative dV , the E − dV slope flattens out
rapidly, except for a small influence from the presence
of hybridization. This means that increasing the site
energy causes the emptying of the particular dot. For
large enough −dV , the many-body system becomes an
effective empty site plus three singly-occupied dots, or
equivalently, a half-filled open-boundary array. Without
the “mobile” hole in the “half-filled” system, the ground
state becomes a low-spin state instead of the Nagaoka
FM state.

The effect of hybridization is made clear by the dot
distance d comparison in Fig. 9(b). With increasing
distance, the slopes tend towards 0 for negative dV and 1
for positive dV , since the increase in distance effectively
suppresses any hybridization effects. Interestingly, al-
though the Nagaoka gap decays rapidly for d > 210 nm in
Fig. 8, it does not reflect the robustness against potential
detuning. In fact, the range of dV where the Nagaoka
phase is retained is similar for d = 210 and 220 nm. Only
after 220 nm, the range starts to shrink. This is because
the robustness of the Nagaoka phase not only depends
on the absolute energy gap, but its relative strength
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compared to the effective tunneling t. The fact that t
drops by a factor of 2 from d = 210nm to d = 220nm
compensates the reduction of the absolute Nagaoka gap.

D. From a Plaquette to a Chain

By increasing the distance between two of the dots in
the plaquette, we can study the four-dot system under
different topologies. The Nagaoka theorem applies to
a 2D system with periodic boundary conditions. In
contrast, a 1D open-boundary system must obey the
Lieb-Mattis theorem, which restricts the ground-state
solution to the lowest spin sector105. We can gradually
change the topology, from a plaquette to a chain, by
increasing the angle θ between two edges in the 2x2
system, as shown in Fig. 11(a). We again focus on the
d = 210nm system first. As shown in Fig. 11(b), the
ground state soon becomes a low-spin state for a rotation
angle of ∼0.3◦ [also see Fig. 11(c)]. The rapid increase
of the ground-state energy indicates its sensitivity to the
angle, or the topology. This sensitivity can be understood
from the excited-state spectrum. The original plaquette
has a C4 rotational symmetry, leading to a rotational
symmetric ground state. The first and second excited
states correspond to the eigenstates of rotation with a
factor of eiπ/2 and e−iπ/2, which are degenerate for θ = 0.
Thus, the extent to which the system ceases to be 2D can
be reflected by the energy splitting of these two excited
states. As shown in Fig. 11(d), these two lowest excited
states soon separate from each other and the separation
becomes comparable with the gap to the ground state
for θ ∼ 0.5◦. This phenomenon indirectly reflects the
fact that the system, including its ground state, becomes
more like 1D in contrast to 2D, resulting in an S = 1/2
instead of S = 3/2 ground state.

Interestingly, the transition from high- to low-spin
ground state occurs at very small angles, far before

the system becomes 1D geometrically. As Mattis has
pointed out, the Lieb-Mattis theorem holds only for
a strictly 1D open-boundary system102. That being
said, there should be additional mechanisms accounting
for the drop of Nagaoka ferromagnetism. The answer
to this question might come from the intuition that
Nagaoka ferromagnetism is a consequence of constructive
interference between the paths that the hole can take
through the plaquette, lowering the kinetic energy in the
presence of C4 rotational symmetry. This interference
effect is quickly lost at even small values of θ, with the
broken rotational symmetry leading to unbalanced x- and
y-direction hopping.

Alternatively, one can look at the above reasoning
in terms of translational symmetry. Once the hopping
between any neighboring sites is dramatically weakened,
the system behaves more like an open-boundary chain
describable by the Lieb-Mattis theorem. In this sense,
the high- to low-spin transition is caused by unbalanced
tunneling in the system, rather than geometry. In the
experiment, the geometric modification of the system
is achieved by tuning the gate potentials, which has
a combined effect of increasing the potential barrier
between the dots, as well as increasing their separation.

We also examine the transition for different distances
d, as shown in Fig. 11(b). Here we observe the Nagaoka
high-spin state is almost equally robust as a function
of distance. This can be attributed to the fact that
the intrinsic interaction and tunneling scales are almost
unchanged when one rotates the two edges, especially
for larger distances where the hybridization is negligible.
In the former case, only the relative values of the
tunneling strengths show up in the path interference,
which depends on the rotation angle instead of the
absolute tunneling strengths.
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V. DISCUSSION AND CONCLUSION

We described a theoretical, ab initio analysis of a
quantum dot plaquette system, in which we obtained
quantitative agreement with the recent experimental
study of the emergence of quantum magnetism through
the Nagaoka mechanism. Our work provides theoretical
support for the experimentally observed robustness of
the Nagaoka state against perturbations such as distance
between the dots and potential detuning. Interestingly,
one can also find good agreement between experiments
and a single-band extended Hubbard model by prop-
erly choosing model parameters88. The effective single
band should be understood as being comprised of a
linear superposition of single-particle electronic orbitals
determined by strong inter-orbital interactions. This
phenomenological approach, however, has very limited
predictive power as it fully relies on fitting parameters to
experimental measurements. Our analysis demonstrates
that ab initio calculations are possible for experimentally
relevant systems and can be used to study phenomena
beyond the single-band model106–108. Even for the
quantitative modeling on a single-band level, we expect
the “bottom-up” approach to be more accurate than
fitting to experimental data. Current experiments can
only provide limited information about the excited states
and gap sizes, even with the state-of-the-art experimental
techniques, and do not allow to determine all parameters
of the effective model. With a practical down-folding
to the fewer-orbital models, one can further extend the
calculation approximately to much larger quantum-dot
systems.

Thus, with the focus on a tunable quantum-dot sys-
tem, we have introduced the ab initio exact diagonal-
ization approach, which can be in general applied to
different types of artificial quantum simulators. The
computational complexity for the model parameter eval-
uation scales polynomially with the number of sites and
orbitals. Calculating the expensive two-center integrals
is most costly in the plaquette system. The next level of
complexity for these calculations would consider multiple
and inhomogeneous Gaussian decompositions, which are
significant for stronger hybridized systems or higher-
order corrections. These issues have been overcome
in modern quantum chemistry using composite atomic
basis. Through appropriate fitting using an extended
Gaussian basis, we expect to solve these issues by the
same means. In any case, the bottleneck of the ab

initio calculation comes from the bottom-level one-center
and two-center integrals Eq. (B2) and (B5). They have
been shown to be efficiently accelerated using GPU-based
programming, which can also be directly ported into our
systems.

The evaluation of many-body model parameters
through the ab initio calculation has achieved the goal
of precisely modeling an artificial electronic system.
Although we here adopt the four-well system and the
Nagaoka transition as an example of our approach, moti-

vated by the recent quantum-dot experiment, we would
like to emphasize that the ab initio exact diagonalization
approach can be applied to larger quantum-dot systems
with necessary numerical improvements. Unlike the tra-
ditional mean-field approaches, a many-body numerical
solver like exact diagonalization is always necessary to
obtain the ground-state or excited-state wavefunctions.
This step is relatively cheap in the current example, but
scales up exponentially with the number of sites and elec-
trons. To simulate a larger system, a proper separation
of scales might be necessary. For example, if the electron
occupation is large, the “fully occupied” low energy
states may be treated by mean-field theory as a pseudo-
potential, to limit the complexity to the bands near the
Fermi level. Additionally, the efficiency of the modeling
may be further increased employing other many-body
numerical approaches including quantum Monte Carlo,
density matrix renormalization group, embedding theory,
and quantum cluster methods, depending on the purpose
of calculation.
Focusing specifically on quantum dot simulators, the

accessibility of multiple orbitals and precise treatment
of electron interactions could enable a direct simulation
of many-body states. Owing to the tunability and
measurability of electronic configurations, the quantum
dots have been shown to emulate artificial chemical
molecules with dominant 2D geometry. For example, the
four-dot system investigated in this work can be regarded
as an H4 molecule, which is a standard platform for test-
ing correlated quantum chemistry methods. Hence the
quantum-dot simulators can be used to find the many-
body electron state in a Born-Oppenheimer assumption.
Looking beyond quantum dot systems, this approach

can be naturally extended to Rydberg atoms or cold
molecules by replacing the Coulomb interaction W (r1 −
r2) with the Lennard-Jones potential and making V (r)
a standing-wave potential. The breaking of rotational
symmetry in V (r) may cause more computational com-
plexity, which can be overcome using some of the efficient
integration implementations mentioned above. More-
over, the majority of the optical lattice studies concern
bosons. The ab initio exact diagonalization framework
can be applied to bosonic systems by replacing the
fermionic basis states represented by Slater-determinants
with bosonic product states represented by permanents.
In general, this approach holds the promise to push the
boundaries of predictability and quantitative accuracy in
the ever-expanding zoo of quantum simulators that are
being implemented.
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Appendix A: Derivation of the Interacting Part of

the Hamiltonian

Restricting to the four-fermion terms, the second-
quantized Hamiltonian can be generically expressed as109

Hint =
1

2

∑

i1α1σ1

∑

i2α2σ2

∑

j1β1σ′

1

∑

j2β2σ′

2

W(j1, β1, σ
′
1; j2, β2, σ

′
2|i2, α2, σ2; i1, α1, σ1)c

†
j1β1σ′

1
c†j2β2σ′

2
ci2α2σ2ci1α1σ1 . (A1)

Substituting the wavefunctions into it, we obtain
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′
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[

ψ̃j1β1σ′

1
(r1)

∗ψ̃j2β2σ′

2
(r2)

∗ψ̃i1α1σ1(r1)ψ̃i2α2σ2(r2)δσ′

1σ1
δσ′

2σ2

−ψ̃j1β1σ′

1
(r1)

∗ψ̃j2β2σ′

2
(r2)

∗ψ̃i2α2σ2(r1)ψ̃i1α1σ1(r2)δσ′

1σ2
δσ′

2σ1

]

. (A2)

Using the simplification mentioned in the main text,
the interaction terms can be categorized into σ1 = σ′

1

and σ1 = σ′
2 parts. Denoting these two parts as U and

J , we obtain

Hint =
∑

i,j

σ,σ′

∑

α1,α2
β1,β2

Uσσ′

ij (β1,β2|α2,α1)

2
c†iβ1σ

c†jβ2σ′cjα2σ′ciα1σ

+
∑

i,j

σ,σ′

∑

α1,α2
β1,β2

Jσσ′

ij (β1,β2|α2,α1)

2
c†iβ1σ′c

†
jβ2σ

cjα2σ′ciα1σ .(A3)

Note the U and J terms are not completely independent,
since Uσσ

ij ≡ Jσσ
ij . Additionally, we also have the

permutation symmetry

Uσσ′

ij (β1, β2|α2, α1) = Uσ′σ
ji (β2, β1|α1, α2)

Jσσ′

ij (β1, β2|α2, α1) = Jσ′σ
ji (β2, β1|α1, α2) . (A4)

For electrons on a single lattice site, the generic form

in Eq. (A3) reduces to

H(OS)
i =

1

2

∑

ασ

Uαnασ̄nασ +
1

2

∑

α1 6=α2

∑

σ

U ′
α1α2

nα2σnα1σ

+
1

2

∑

α1 6=α2

∑

σ

Ū ′
α1α2

nα2σ̄nα1σ

+
1

2

∑

α1 6=α2

∑

σ

Jα1α2c
†
α2σc

†
α1σcα2σcα1σ

+
1

2

∑

α1 6=α2

∑

σ

J̄α1α2c
†
α2σc

†
α1σ̄cα2σ̄cα1σ . (A5)

Note that the spin-parallel Hund term Jα1α2 is the same
as the spin-parallel Hubbard term U ′

α1α2
with a sign flip.

Therefore, the on-site Hubbard interaction in Eq. (A4)
is

Uα= W(i, α, σ; i, α, σ̄|i, α, σ̄; i, α, σ)

=

∫∫

drd1dr
d
2W (|r1−r2|)|ψ̃iασ(r1)|2|ψ̃iασ̄(r2)|2 .

(A6)
The Hubbard interaction is dominant among the interac-
tion terms due to the maximal overlap of wavefunctions.
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The remaining terms in a single-well interaction are all
the inter-orbital interactions. The spin-parallel interac-
tion is

U ′
α1α2

− Jα1α2

= W(i, α1, σ; i, α2, σ|i, α2, σ; i, α1, σ)

=

∫∫

drd1dr
d
2W (|r1−r2|)

[

|ψ̃iα1σ(r1)|2|ψ̃iα2σ(r2)|2

−ψ̃iα1σ(r1)
∗ψ̃iα2σ(r2)

∗ψ̃iα2σ(r1)ψ̃iα1σ(r2)
]

, (A7)

while spin-anti-parallel interaction is

Ū ′
α1α2

= W(i, α1, σ; i, α2, σ̄|i, α2, σ̄; i, α1, σ)

=

∫∫

drd1dr
d
2W (|r1−r2|)|ψ̃iα1σ(r1)|2|ψ̃iα2σ̄(r2)| .

(A8)
Given that the two-body interaction W (|r1 − r2|) (typi-
cally Coulomb) does not involve spin degrees of freedom,
the first term of Eq. (A7) is equal to the anti-parallel
spin contribution in Eq. (A8). Naturally, one can split
the entire parallel spin interactions in Eq. (A7) into
charge and Hund’s part by assuming U ′

α1α2
= Ū ′

α1α2
.

This partition also guarantees the equivalence of the two
exchange coefficients

J̄α1α2 = W(i, α2, σ; i, α1, σ̄|i, α2, σ̄; i, α1, σ)

=

∫∫

drd1dr
d
2W (|r1−r2|)ψ̃iα2σ(r1)

∗ψ̃iα1σ̄(r2)
∗

ψ̃iα1σ(r1)ψ̃iα2 σ̄(r2)

= Jα1α2 . (A9)

Therefore, we obtain the on-site interacting Hamiltonian
Eq. (16) in the main text.
Then following Eq. (19) in the main text, we can

evaluate the interaction parameters in the long-range

part of Hamiltonian H(LR)
ij . Similar to the on-site terms,

the “off-diagonal” terms of Vαβ and V ′
αβ are absorbed

by the corresponding exchange terms for parallel spins.
Therefore, we can write expressions for each of the
relevant long-range terms

Vαβ =

∫∫

drd1dr
d
2W (|r1−r2|) |ψ̃iασ(r1)|2 |ψ̃jβσ(r2)|2

Kαβ =

∫∫

drd1dr
d
2W (|r1−r2|) ψ̃jβσ(r1)

∗ψ̃iασ′ (r2)
∗

ψ̃iασ(r1)ψ̃jβσ′ (r2)

V ′
αβ =

∫∫

drd1dr
d
2W (|r1−r2|) ψ̃iβσ(r1)

∗ψ̃jασ′ (r2)
∗

ψ̃iασ(r1)ψ̃jβσ′ (r2)

K ′
αβ =

∫∫

drd1dr
d
2W (|r1−r2|) ψ̃jασ(r1)

∗ψ̃iβσ′ (r2)
∗

ψ̃iασ(r1)ψ̃jβσ′ (r2) , (A10)

and transform them to the original basis, resulting in
Eq. (20) in the main text.

Appendix B: Evaluation of the Integrals

The algebraic representations of the model parameters
Eq. (18) and (20) concentrate all integration calculations
in the evaluation of Ξµ1ν1

µ2ν2
in the single-well basis. This

evaluation is not trivial, since the direct expression
Eq. (17) contains a 2×d-dimensional integral with singu-
larities, which cannot be computed efficiently even with
supercomputers93. However, taking advantage of the
rotational symmetry of the quantum well, the calculation
can be significantly simplified.
Let us first look at the dominant part – the one-center

integral, where all four wavefunctions are centered in the
same well. Taking advantage of the rotational invariance
of W (|r1−r2|), one can simplify the integral through the
Wigner-Eckart theorem. Specifically, for a Coulomb-type
interaction, we have the Laplacian expansion

1

|r1 − r2|
=

1

r>

∑

l≥0

(

r<
r>

)l

Pl

(

cos (θ1 − θ2)
)

, (B1)

in which Pl(x) is the Legendre polynomial. WithW (|r1−
r2|) = e2/4πǫ|r1 − r2|, we can simplify the one-center
integral to a sequence of two-dimensional integrals as

Γ
(l)
µ1ν1
µ2ν2

=

∫ +∞

0

∫ r1

0

dr2dr1
1

r1

(

r2
r1

)l

χµ1(r1)χν1(r1)

χµ2(r2)χν2(r2)

Θ
(l)
µ1ν1
µ2ν2

=

∫∫ 2π

0

dφ1dφ2Pl

(

cos (φ1−φ2)
)

ϕµ1(φ1)ϕµ2 (φ2)

ϕν1(φ1)ϕν2 (φ2), (B2)

then Eq. (17) is expanded as

Ξµ1ν1
µ2ν2

=
e2

4πǫ

∞
∑

l=0

(

Γ
(l)
µ1ν1
µ2ν2

+ Γ
(l)
µ2ν2
µ1ν1

)

Θ
(l)
µ1ν1
µ2ν2

. (B3)

Note, Θ
(l)
µ1ν1
µ2ν2

is symmetric under exchange of 1 and 2

indices, while Ξµ1ν1
µ2ν2

is usually not symmetric except in

special cases where {µ1, ν1} = {µ2, ν2}. The integral
decays rapidly with the increase of l. With fine enough
spatial grids and angular momentum truncation, the one-
center integral can be evaluated up to machine precision.
In contrast, the two-center integral involves more

computational complexity. Here, rotational symmetry is
not maintained; therefore, there is no direct separation
of variables. However, we know that the ground state
and the norm of low-lying excited-state wavefunctions
can be well estimated by different Gaussian functions.
This provides a way to estimate the density-density
correlation among the two-center integrals. If the density
distribution is written as

n(r;R, σ) =
1

2πσ2
e−

(r−R)2

2σ2 , (B4)
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the two-center integral can be decomposed in the center-
of-mass frame

∫∫

n(r1;R1, σ1)
1

|r1 − r2|
n(r2;R2, σ2)dr

2
1dr

2
2

=
1

4π2(σ2
1 + σ2

2)
2

∫∫

e
− (r̄−R̄)2

2(σ2
1
+σ2

2
)

1

|∆r|e
− (∆r−∆R)2

2(σ2
1
+σ2

2
) dr̄2d∆r

2

=
1

2π(σ2
1 + σ2

2)

∫∫

1

|∆r|e
− (∆r−∆R)2

2(σ2
1
+σ2

2
) d∆r

2 . (B5)

Now, the integral is reduced to a two-dimensional in-
tegral in the reduced coordinates ∆r, which can be
solved by using the Riemann integral or the Laplacian
expansion as mentioned above. Note that the Gaussian
integral provides only an estimation of the realistic two-
center interaction. A more precise treatment involves
the decomposition of multiple Gaussian bases and its
derivatives110, which forms the foundation of electronic
structure theory and is beyond the scope of this work.
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