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In one dimension (1D), a general decaying long-range interaction can be fit to a sum of expo-
nential interactions e−λrij with varying exponents λ, each of which can be represented by a simple
matrix product operator (MPO) with bond dimension D = 3. Using this technique, efficient and
accurate simulations of 1D quantum systems with long-range interactions can be performed using
matrix product states (MPS). However, the extension of this construction to higher dimensions is
not obvious. We report how to generalize the exponential basis to 2D and 3D by defining the basis
functions as the Green’s functions of the discretized Helmholtz equation for different Helmholtz
parameters λ, a construction which is valid for lattices of any spatial dimension. Compact tensor
network representations can then be found for the discretized Green’s functions, by expressing them
as correlation functions of auxiliary fermionic fields with nearest neighbor interactions via Grass-
mann Gaussian integration. Interestingly, this analytic construction in 3D yields a D = 4 tensor
network representation of correlation functions which (asymptotically) decay as the inverse distance
(r−1
ij ), thus generating the (screened) Coulomb potential on a cubic lattice. These techniques will

be useful in tensor network simulations of realistic materials.

I. INTRODUCTION

To understand the electronic properties of realistic
materials, it is important to account for the effects of
the long-range Coulomb interaction between electrons.
However, solving the many-electron Schrödinger equation
(SE) including the Coulomb potential Vint =

∑
i<j 1/rij

is challenging and typically involves uncontrolled ap-
proximations. A promising approach where there is a
systematic control of accuracy is provided by the den-
sity matrix renormalization group (DMRG) algorithm1,2

and its higher-dimensional extensions such as projected
entangled-pair states (PEPS)3–5, which reduce the ef-
fective dimensionality of the SE by exploiting the lo-
cality typically found in physical systems. In fact, the
DMRG has already been widely applied to solve the SE
for molecules6–8 within a finite basis expansion. How-
ever, to exploit the power of higher dimensional tensor
network states (TNS)9, the standard orbital (or spectral)
basis10 expansion for the SE is not ideal. This is because
whereas the variational freedom in the TNS parametriza-
tion scales only linearly with system size A, the repre-
sentation of the Coulomb operator has a large number of
terms that scales like O(A4).

In our earlier work11, we proposed to combine higher-
dimensional TNS with a real-space lattice discretization
of the SE, which reformulates the SE as an extended
Hubbard model with density-density type long-range in-
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teractions V̂int =
∑
i<j v

ee
ij ninj , where i, j label lattice

sites, veeij = 1/rij , rij = |ri− rj | = |~i−~j|l, l is the lattice
spacing, and ni is the number operator. In this form,
the discretization error can be systematically controlled
by reducing the lattice spacing l. The representation of
the Hamiltonian is also improved for TNS simulations,
as there are now O(A2) interaction terms between the
electron sites. Nonetheless, even with this reduction, a
term-by-term evaluation of the Coulomb interaction en-
ergy 〈Ψ|V̂int|Ψ〉 (in which the values of the potential are
explicitly computed for each term) still leads to an unde-
sirable quadratic computational scaling with system size.

In the one dimensional (1D) case, the above problem
can be overcome by fitting the Coulomb interaction 1/rij
to a sum of exponentials

∑Nt
t=1 cte

−λtrij 12,13, where the
number of terms Nt depends only on the target fitting
accuracy rather than the system size A. Each exponen-
tial interaction V̂ =

∑
i<j e

−λrijninj can then be rep-

resented by a matrix product operator (MPO)12–17 with
bond dimension D = 3,

V̂ = (Ŵ [1]Ŵ [2] · · · Ŵ [N ])11,

Ŵ [i] =

 I e−λl/2ni 0
0 e−λlI e−λl/2ni
0 0 I

 . (1)

In this way, computing 〈Ψ|V̂int|Ψ〉 with |Ψ〉 represented
by a matrix product state (MPS)17 with bond dimen-
sion D scales as O(NtAD

3), that is, linearly with the
system size. In combination with DMRG, this represen-
tation has been used to simulate interacting 1D models
in the continuum limit18–21 with controllable accuracy by
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systematically reducing the spacing l and increasing the
bond dimension D.

Generalizing such a construction for long-range inter-
actions to higher dimensions is, however, nontrivial. In
2D or 3D, the exponential e−λrij cannot be formed as a
product of weight factors e−λl along the path from i to j,
as it is done in 1D. In our previous work11 on the 2D case,
we used the spin-spin correlation functions of the 2D clas-
sical Ising model 〈σiσj〉βt (where σi, σj ∈ {+1,−1} and
βt is the inverse temperature) as a basis to numerically
fit the Coulomb interaction on a square lattice to a sum
of the correlation functions 〈σiσj〉βt at different temper-

atures, viz., 1/rij ≈
∑Nt
t=1 ct〈σiσj〉βt . However, an im-

portant difference between the 1D and 2D cases is that
〈σiσj〉βt at short lattice distances is not a smooth and
radially isotropic function of rij . To control these errors
in 2D, we embedded the physical lattice into a larger un-
derlying Ising lattice, for details, see Ref.11. [NB: In the
experimental setting, a related recent proposal uses aux-
iliary particles on a larger underlying lattice to mediate
the Coulomb interaction between physical particles for
the purposes of building an analog quantum simulation
of Hamiltonians with long-range interactions22.] Then,
since the Ising correlation function 〈σiσj〉βt can be rep-
resented by a classical PEPS with D = 25,23, by using
the finite automata construction13,14,24 to couple opera-
tors ninj with weights 〈σiσj〉βt , the long-range interac-
tion

∑
i<j〈σiσj〉βtninj can be represented by a projected

entangled-pair operator (PEPO) with maximal bond di-
mension D = 2 × 3 = 6 or D = 2 × 4 = 8, depending
on the choice of finite automata rules11 to represent the
operator sum

∑
i<j ninj . Consequently, the long-range

interaction V̂int can be approximated as a sum of PEPOs
with constant bond dimension, which is analogous to the
1D case.

Nonetheless, using a numerically defined basis 〈σiσj〉βt
to expand the interaction in 2D complicates matters sig-
nificantly as compared to using the analytic basis e−λtrij

in 1D. For example, in Ref.11 the performance of the fit in
various limits could only be assessed numerically, and the
analysis was restricted to the 2D square lattice. In this
work, we define an analytic framework which contains the
exponential basis construction in 1D and provides a natu-
ral generalization to lattices in any spatial dimension, al-
though we will focus explicitly only on 2D and 3D. Impor-
tantly, this formulation produces a set of long-range basis
functions with explicit tensor network (TN) representa-
tions with small, constant bond dimensions such that de-
caying long-range interactions can be approximated by a
sum of tensor network operators (TNO) efficiently.

Specifically, in Sec. II, we introduce the framework by
defining appropriate basis functions (in any dimension)
as the Green’s function of the discretized Helmholtz equa-
tion. Then, using Grassmann Gaussian integration, the
discretized Green’s functions can be expressed as corre-
lation functions of auxiliary fermionic fields 〈cic̄j〉. This
allows us to show in what sense the 1D geometry is spe-

cial: there are fundamental differences between exponen-
tials in 1D and their higher dimensional extensions. In
1D, both the discretization and finite size errors can be
removed analytically, resulting in a TN representation of
the continuum exponential function, while in 2D and 3D
they cannot be removed in a way compatible with a sim-
ple TN representation of low bond dimension. In Sec. III,
the MPO representation in Eq. (1) is re-derived within
the proposed framework. In Sec. IV and V, we show that
the discretized Green’s functions in 2D and 3D, respec-
tively, also have very compact TN representations. Most
interestingly, the analytic construction in 3D yields a TN
representation of correlation functions decaying as r−1

ij

asymptotically, which generates the (screened) Coulomb
potential on the cubic lattice. The subroutines for con-
structing TN representations and examples for numerical
contractions of the resulting TN are available online25.
Finally, conclusions are drawn in Sec. VI.

II. FITTING BASIS IN ANY DIMENSION

One way to view the exponential e−λ|r−r
′| in 1D is that

it is the Green’s function of the Helmholtz equation in
free space (up to a constant 1

2λ ),

(−∇2 + λ2)G(r, r′) = δ(r− r′), (2)

or in other words, it is the Fourier transform of the
momentum-space kernel (|k|2 + λ2)−1. In 2D and 3D,
the solution to Eq. (2) is given by the modified Bessel
function 1

2πK0(λ|r − r′|) and the screened Coulomb po-

tential e−λ|r−r′|

4π|r−r′| , respectively, both of which decay expo-

nentially at large distance for λ > 0. Therefore, similarly
to in the 1D case, if we are able to find the corresponding
TN representation of these interactions, we can use them
as a basis of functions with which to represent decaying
long-range interactions.

To begin, we consider the discretized version of Eq.
(2) on a d-dimensional cubic lattice with spacing a (see
Figures 1(a) and 1(b)),

(Kd + λ2a2I)V = I, (3)

where Kd/a
2 is the discretized version of (−∇2), which

in the simplest case can be represented by the central
difference scheme with open-boundary conditions (OBC),

K1 =



2 −1 0 · · · 0 0
−1 2 −1 · · · 0 0
0 −1 2 · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · 2 −1
0 0 0 · · · −1 2


N×N

. (4)

Here the length of the lattice is L = (N+1)a, K2 = K1⊗
I+I⊗K1, and K3 = K1⊗I⊗I+I⊗K1⊗I+I⊗I⊗K1. The
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FIG. 1. Lattice discretization in d-dimensional case (a,b) and
rules for writing down local tensors (c) for representing Vij
in Eq. (6). The blue dots refer to the underlying discretized
lattice with spacing a for mediating long-range interactions,
and the red dots refer to the physical lattice with spacing l.

matrix Vij is related to the continuum Green’s function
by

G(ri, rj) = lim
a→0

a−d[(Kd/a
2 + λ2I)−1]

i=
ri
a ,j=

rj
a

= lim
a→0

a−d+2V
i=

ri
a ,j=

rj
a
, (5)

where the factor a−d in the first identity comes from
scaling26. In order to analytically relate Vij to a ten-
sor network, we can use Gaussian integration to express
Vij as the correlation function of an auxiliary bosonic or
fermionic system with nearest neighbor couplings. We
will use Grassmann variables such that Vij can be writ-
ten as

Vij =
1

Z

∫
D[c̄, c]e−c̄

T (Kd+λ2a2I)c(cic̄j) , 〈cic̄j〉,

Z =

∫
D[c̄, c]e−c̄

T (Kd+λ2a2I)c, (6)

where a pair of Grassmann variables {c̄i, ci} is associated
with each lattice site. The advantage of using auxiliary
fermions instead of bosons is that the resulting tensor
network representations for Z and Vij will have finite as
opposed to infinite27 bond dimension (vide post).

The special nature of the 1D geometry can now be ex-
amined: As depicted in Figure 1(a), the physical lattice
(red) with spacing l can be placed on an infinite under-
lying lattice with spacing a with associated Grassmann

variables at each site. The infinite boundary sites can
then be integrated out analytically (N →∞ while keep-
ing a fixed) to remove boundary effects, and the same
can be done for the infinite interior sites (a → 0 while
keeping l fixed) in order to remove the discretization er-
ror. We then obtain an effective matrix K′1 defined only
on the physical lattice that replaces (K1 + λ2a2I) in Eq.
(6),

K′1 =



kb kc 0 · · · 0 0
kc ki kc · · · 0 0
0 kc ki · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · ki kc
0 0 0 · · · kc kb


n×n

,

kb =
1

2
(1 + coth ξ), kc = −1

2
cschξ, ki = coth ξ, ξ = λl.

(7)

It can be easily verified that the inverse of K′1 indeed
gives the exponential interaction on the n-site physical
lattice with spacing l, i.e., (K′1)−1

ij = e−ξ|i−j|. How-

ever, in 2D and 3D (as shown in Figure 1(b)), integrating
out the boundary and interior sites to obtain continuum
limit interactions between the physical sites introduces
couplings among all the physical sites. This results in
a dense matrix K′d, which does not lead to a simple ex-
act TN representation with constant bond dimension, be-
cause every tensor would require a bond to every other
tensor. Therefore, in the following discussion, we will fo-
cus on finding a TN representation for the discrete analog
Vij (6) of the continuum Green’s function in 2D and 3D.
Once this is done, the discretization error and finite size
error in representing continuum interactions can be re-
duced by choosing a suitably large or infinite underlying
Grassmann lattice and embedding the physical sites (red)
in it (blue) as shown in Figure 1(b) to effectively work
with a smaller lattice spacing a in a−d+2V

i=
ri
a ,j=

rj
a

(5),

which is similar in spirit to our previous work11 where
we used an underlying larger Ising lattice to mediate in-
teractions. Interestingly, this construction in 3D yields
a TN representation of correlation functions that decays
as r−1

ij asymptotically for λ = 0.
In order to explicitly represent Vij as a tensor net-

work, we note that the partition function Z introduced
in Eq. (6) is similar to that of the Ising model, which
is easily written as a TN5,23 in any dimension. Here,
however, Grassmann variables are used rather than the
spins σi ∈ {+1,−1}, and Grassmann integration replaces
the summation over spins. Similarly to in the TN repre-
sentation of the Ising Z, by factorizing eβσiσj into local
quantities coupled by a virtual bond11, we can rewrite
the nearest neighbor coupling term in Eq. (6) as

ec̄icj+c̄jci = 1 + c̄icj + c̄jci + c̄icj c̄jci =

4∑
m=1

αi,mβj,m.(8)

The termination of the series for the exponential in the
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first equality is due to the nilpotency of Grassmann vari-
ables, which is the advantage of using fermionic rather
than bosonic Gaussian integration in (6). The decompo-
sition in the second equality can be performed in various
ways. For simplicity, we use the following form for the
local factors αi and βj ,

αi = (1, c̄i, ci, c̄ici),

βj = (1, cj ,−c̄j ,−c̄jcj). (9)

Thus, instead of D = 2 for the bond dimension of the
TN representation of Z for the Ising model, we will have
a D = 4 construction here. Now the partition function
Z (6) can be expressed as a product of local “projectors”
and terms for each bond between two sites, e.g., in 3D it
reads

Z =

∫
D[c̄, c]

∏
k

Qk
∏
<i,j>

Bxij
∏

<m,n>

Bymn
∏
<p,q>

Bzpq,(10)

where Qk = e−(Kd+λ2a2I)kk c̄kck = 1 − (2d + λ2a2)c̄kck
with d = 3 here, and Bxij , B

y
ij , and Bzij represent the

decomposed pairs in Eq. (8) in different directions. To
distinguish the pairs in different directions, in the follow-
ing discussion we will use different pairs of Greek letters
for different directions even though they denote the same
vectors as in Eq. (9): α, β for pairs in the X direction;
γ, δ for pairs in the Y direction; and σ, τ for pairs in
the Z directions, see Figure 1(c). That is, Bxij = αiβj ,

Byij = γiδj , and Bzij = σiτj , where the summations over
components have been omitted for simplicity.

The partition function for the Ising model can be writ-
ten in the same form as Eq. (10), and by collecting the
local factors belonging to the same site together, Z can
be represented as a tensor network, and the same strat-
egy applies for the correlation function 〈σiσj〉. However,
in our case, due to the anti-commuting property of Grass-
mann variables, additional sign factors will appear in
moving variables in Eq. (10) to their respective local
site. We note that Eq. (10) for 2D is structurally sim-
ilar to the fermionic PEPS (fPEPS)28,29, and it can be
viewed as a “classical” fPEPS without a physical index.
In Sec. IV and Sec. V we will show how to express Z and
Vij as TN in 2D and 3D, and in particular, how to deal
with the sign factors that appear in different dimensions
by developing graphical rules similar to that for fPEPS30.
However, before this, we will first show how the present
construction in 1D reproduces the MPO in Eq. (1).

III. REVISITING THE 1D MPO
REPRESENTATION

An important simplification in 1D is that the product∏
<i,j>B

x
ij in Eq. (10) is already in the desired form,

viz.,
∏
<i,j>B

x
ij =

∏N−1
i=1 (αiβi+1) = α1

∏N−1
i=2 (βiαi)βN ,

where the subscripts for components in α and β have
been omitted for simplicity. Similarly, for correla-
tion functions 〈cic̄j〉 (i < j), the necessary product

(
∏
<k,l>B

x
kl)(cic̄j) can be arranged into local prod-

ucts α1(β2α2) · · · (βiciαi) · · · (βj c̄jαj) · · · (βN−1αN−1)βN
without introducing any sign factors, because in mov-
ing ci or c̄j , the terms (αiβi+1) that must be passed
over correspond to a bond and are always of even parity,
i.e., products of an even number of Grassmann variables.
Therefore, by defining the following local tensors for K1

(4),

(Ak)lr =

∫
dc̄kdck Qkβk,lαk,r =

 (2d+ λ2a2) 0 0 −1
0 1 0 0
0 0 1 0
1 0 0 0

 ,

(Bk)lr =

∫
dc̄kdck Qkβk,l(ck)αk,r =

 0 1 0 0
0 0 0 0
1 0 0 0
0 0 0 0

 ,

(Ck)lr =

∫
dc̄kdck Qkβk,l(c̄k)αk,r =

 0 0 −1 0
1 0 0 0
0 0 0 0
0 0 0 0

 , (11)

the correlation function Vij (i < j) can be written as

Vij =
1

Z
(A1 · · ·Bi · · ·Cj · · ·AN )11, Z = (A1 · · ·AN )11.(12)

When coupled with the operators ninj via the finite
automata construction13,14,24, this form of Vij gives an
MPO representation for

∑
i<j Vijninj with bond dimen-

sion D = 3 × 4 = 12, that is, the factor Ŵ [i] appearing
in the analog of Eq. (1) reads

Ŵ [i] =

 Ai ⊗ I Bi ⊗ ni 0
0 Ai ⊗ I Ci ⊗ ni
0 0 Ai ⊗ I

 . (13)

This MPO construction for 1D is not optimal in the sense
that it is very sparse and compressible in view of the
sparse structure of Bk and Ck. We illustrate this com-
pression for K′1 (7) in order to eventually recover the
MPO in Eq. (1).

In this case, we can replace c̄ in Eq. (9) by −kcc̄ to
factorize e−kc(c̄icj+c̄jci). Then, the local tensors read

(Ak)lr =

 kb,i 0 0 kc
0 −kc 0 0
0 0 −kc 0
−kc 0 0 0

 ,

(Bk)lr =

 0 −kc 0 0
0 0 0 0
−kc 0 0 0

0 0 0 0

 ,

(Ck)lr =

 0 0 −1 0
1 0 0 0
0 0 0 0
0 0 0 0

 , (14)

where (Ak)11 = ki (kb) for interior (boundary) sites
on a lattice with n sites. It can be found that the
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products (A1 · · ·Ai−1)11 = ( 1
2cschξeξ)i−1 (2 ≤ i ≤ n),

(Aj+1 · · ·An)11 = ( 1
2cschξeξ)n−j (1 ≤ j ≤ n − 2), and

Z = (A1 · · ·An)11 = ( 1
2cschξeξ)n−1. Due to the spar-

sity of the local tensors, we can observe that for Vij
(12), only the element (Bi)12 can contribute and (Bi)31

cannot, because at the boundary (A1)13 = 0 such that
(A1 . . . Ai−1)13 = 0. Similar observations apply to Cj .
Thus, Vij in Eq. (12) can be rewritten as

Vij =
1

Z
(A1 · · ·Ai−1)11(Bi)12(Ai+1 · · ·Aj−1)22

(Cj)21(Aj+1 · · ·An)11

=
( 1

2cschξeξ)i−1(−kc)j−i( 1
2cschξeξ)n−j

( 1
2cschξeξ)n−1

= e−ξ(j−i), (15)

such that the resulting e−ξ(j−i) can be re-factorized into
a product of factors e−ξ between i and j. Therefore, the
bond dimension for representing Vij is reduced from 4 to
1, which, when coupled with the operators ninj , leads to
the MPO (1) with D = 3.

In 2D and 3D, such a simplification is unlikely to be
possible, thus our construction will lead to a TNO with
bond dimension D = 4DO. The factor 4 comes from the
present TN construction for the correlation functions Vij ,
while DO depends on the way that Vij is coupled with the
product ninj to form

∑
i<j Vijninj . It has been shown

that in 2D11, DO = 3 for the snake MPO construction
for

∑
i<j ninj , and DO = 4 using a 2D finite automata

construction13,14,24. In Sec. V, we will show in 3D, DO

can be 3, 4, or 5, depending on whether an explicitly 1D,
2D, or 3D finite automata representation for

∑
i<j ninj

is used.

IV. 2D FORMULATION

The problem of rewriting Eq. (10) and the correlation
functions in 2D as products of local terms is more com-
plicated than in 1D. To avoid immediately delving into
algebraic details, we will first present the obtained results
in terms of graphical rules, for which Figure 1(c) defines
the local tensor configuration and Figure 2 defines the
correlation functions. Then a sketch of the derivation of
these rules will be given via a simple example.

A. Rules for writing down TN representations

By analogy to Eq. (11) for 1D, the local tensors for
2D are defined in the following way,

(Ok)dlur =

∫
dc̄kdck Qkδk,dβk,lokγk,uαk,r, (16)

where ok can be one of {1, ck, c̄k} for Ak, Bk, or Ck,
respectively. While performing the integration manu-
ally as we did in 1D quickly becomes tedious for the

(a) (b)

(c) (d)

FIG. 2. Tensor network representation of correlation func-
tions 〈cic̄j〉 in 2D: (a) basic representation with parity ten-
sors (green dots) shown explicitly; (b,c) fermionic paths are
deformed from (a) and parity tensors (not shown explicitly
for simplicity) need to be inserted at each cross between the
fermionic line (red) and the lattice. TN representation (d)
differs from (c) by -1 due to the jump over the site containing
c̄j .

different combinations of subscripts (d, l, u, r), the nec-
essary integrals (16) can be easily evaluated using a
simple program25. We can give Eq. (16) a graphical
representation as shown in Figure 1(c), where the fac-
tors (δ, β, o, γ, α) appear in a clockwise order starting
from δ. With this definition, the 2D partition function
Z (10) can be demonstrated to be given by the PEPS
Z = Tr(

∏
k Ak). However, unlike in the 1D case, the cor-

relation function Vij is not simply Tr(
∏
k 6=i,j AkBiCj).

Due to the anti-commutation of Grassmann variables,
some additional sign factors will appear when moving ci
or c̄j to its local site. Assuming the site at position (x, y)
on an N -by-N lattice shown in Figure 2 is indexed by
(y − 1)N + x, one finds that there are additional sign
factors such as (−1)p(γk) (or equivalently (−1)p(δk+N ))
appearing at the position shown by the green dot in Fig-
ure 2(a). Here, p(γk) is the parity of the bond γk and
is 0 if γk contains an even number of Grassmanns and 1
otherwise. It is then seen that when representing Vij as
a Grassmann correlation function some parity tensors,

(Pk)ab = δab(−1)p(γk,a) = diag(1,−1,−1, 1), (17)

need to be inserted on the upward bonds for the sites to
the left of each fermionic site (red dot). The final TN
representation for Vij is given by Figure 2(a) (omitting
the red lines).

From this basic representation, we can derive various
equivalent TN representations for Vij by using the parity
conserving properties of the tensor Ok (16), which means
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that if one of its virtual bonds is odd in parity, then
the total parity of the other virtual bonds must also be,
p(ok) + 1 mod 2, otherwise the Grassmann integration
vanishes. This property allows us to define a jump move
similar to that in fPEPS30. Graphically, we can view
the parity tensors as a result of the crossing between a
fermionic line (red) connecting sites i and j and the bonds
between local tensors, see Figure 2(a). Then, starting
from this graph, one is free to deform the fermionic line
freely, as long as the necessary parity factors are inserted
at the crossings. This degree of freedom can be used
to make the fermionic line coincide with the path used
in the finite automata construction11 to derive rules for
coupling with operators ninj , thus allowing the parity
factors to be inserted by the automata construction itself.
Figures 2(b) and 2(c) are examples of a simple path and
snake path, respectively. This eventually allows for the
construction of the PEPO for

∑
i<j Vijninj , as shown in

our previous work11.
Finally, it should be noted that Figure 2(c) and

Figure 2(d) differ by a minus sign. This is because
when moving from (c) to (d), the jump through Cj
(16) introduces a minus sign as c̄j is odd, such that

(−1)p(δj,d)+p(βj,l)+p(γj,u)+p(αj,r) = −1 for nonvanishing
Grassmann integrations. In summary, we can express
both Z and Vij in 2D as PEPS, with the latter requiring
additional parity factors on certain virtual bonds given
by Figure 2(a).

B. Sketch of the derivations

To illustrate how the above rules for 2D are actually
derived, we consider a simple 4 × 4 example. From Eq.
(10), the partition function Z can be rewritten as

Z =

∫
D[c̄, c](

∏
k

Qk)[(α1β2) · · · ][(γ1δ5) · · · ]

=

∫
D[c̄, c] ([Q1α1(γ1δ5)][Q2β2α2(γ2δ6)] · · · ) ,(18)

where a more instructive way to write the right hand side
is the following 2D representation:

α13 β14α14 β15α15 β16

α9(γ9δ13) β10α10(γ10δ14) β11α11(γ11δ15) β12(γ12δ16)
α5(γ5δ9) β6α6(γ6δ10) β7α7(γ7δ11) β8(γ8δ12)
α1(γ1δ5) β2α2(γ2δ6) β3α3(γ3δ7) β4(γ4δ8)

(19)

with the even-parity factors Qk and the indices for com-
ponents omitted for simplicity. In Eq. (19), one should
read from the bottom-left factor α1 to the upper-right
factor β16 for Z (18). In this representation, it is clear
that in order to move all the factors to their local sites, we
only need to move all δk one row up in Eq. (19) along the
1D sequence for Z. One way we found to be convenient
is to move them column-by-column from left to right.
That is, we first move δ13, δ9, and δ5 sequentially to the
respective upper rows, and then consider moving δ14, δ10,

and δ6, etc. We illustrate this explicitly for δ13. When
moving this past β10 in the second column, the factor
(−1)p(δ13)p(β10) appears due to the exchange of δ13 with
β10. Using the fact that the bond pairs (8) are always
even, i.e., p(γ9δ13) = 1 and p(α9β10) = 1, this factor can
be made local (−1)p(δ13)p(β10) = (−1)p(γ9)p(α9), which can
be further cancelled out by a local exchange from α9γ9

to γ9α9 in the product (19). This is how the ordering
of factors in Figure 1(c) is derived. After exchanging δ13

with β10, we move δ13 past α10(γ10δ14), β11α11(γ11δ15),
β12(γ12δ16), but these can be regrouped into complete
bonds, (α10β11)(γ10δ14) . . . which are all even, thus no
more signs accrue in moving δ13. Once the δ factors in
the first column have been moved to their local sites,
these sites are in their final forms as shown in Eq. (18),
where the product of factors at each site is even and par-
ity preserving. Thus, when moving the factors in the
second column, we can jump over the sites in the first
column without incurring any sign factor. By repeating
this procedure, we can express Z as a PEPS with local
tensors defined in Figure 1(c).

The same process applies to the correlation functions.
In this case, taking 〈c7c̄10〉 as an example, the counter-
part of Eq. (19) is

α13 β14α14 β15α15 β16

α9(γ9δ13) β10c̄10α10(γ10δ14) β11α11(γ11δ15) β12(γ12δ16)
α5(γ5δ9) β6α6(γ6δ10) β7c7α7(γ7δ11) β8(γ8δ12)
α1(γ1δ5) β2α2(γ2δ6) β3α3(γ3δ7) β4(γ4δ8)

(20)

The task is again to move the δ factors to their local
sites, and we can apply the same procedure for Eq. (20).
However, one can see that moving δ13 will involve an ad-
ditional exchange with c̄10, which results in an additional
sign factor (−1)p(δ13). A similar situation occurs when
moving δ9 and δ10 due to the exchanges with c7. These
additional sign factors give the rule for parity tensors
(Pk)ab (green dots) in Figure 2(a). Thus, the long-range
interaction Vij = 〈cic̄j〉 is given by the quotient of the
TN diagram in Figure 2(a) and that for Z.

V. 3D FORMULATION

A. Rules for writing down TN representations

Similar to the 2D graphical representation, the local
tensors in 3D can be written down according to Figure
1(c), viz.,

(Ok)dblutr =

∫
dc̄kdck Qkδk,dτk,bβk,lokγk,uσk,tαk,r,(21)

where ok ∈ {1, ck, c̄k} for Ak, Bk, or Ck, respectively, and
where the Grassmann integral can be conveniently eval-
uated via the same program25. However, the partition
function Z in 3D (10) is not simply given by Tr(

∏
k Ak)

as in 1D and 2D. The correct TN representation is given
in Figure 3(a), where a swap tensor (black dot, see also
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Figure 4),

Swxyz = δwzδxy(−1)p(w)p(x), (22)

needs to be introduced at each crossing between a verti-
cal bond and a horizontal bond, when the 3D network is
viewed as a projection onto 2D. The necessity for these
swap tensors is explained in Sec. V B 1. [NB: The special
case of an N × N × 2 3D network is structurally iden-
tical to the network for the overlap 〈Ψ|Ψ〉 between two
fPEPS30.] For correlation functions, the rule for the TN
representation can still be summarized by the fermionic
line (red) in Figure 3(a). We will discuss the derivation
of this rule given by Figure 5 in the next section.

Before closing this section for the 3D rules, we mention
that the resulting N × N × N 3D network can also be
viewed equivalently as a N2 × N2 2D network, see Fig-
ure 3(b), which can be readily contracted using standard
algorithms for 2D PEPS. This mapping also implies that
to construct the 3D TNO for

∑
i<j Vijninj , we can use

the same finite automata rules used in 2D11 (either the
explicitly 2D rules with DO = 4 or the 1D snake MPO
rules with DO = 3) to construct the tensor network rep-
resentation of the operator sum

∑
i<j ninj . This can be

seen by indexing the physical site at the position (x, y, z)
by (z − 1)N2 + (y − 1)N + x, such that the relative or-
dering of physical sites is unchanged when mapped into
2D. In addition to these rules for the operators, one can
also use a set of “3D” rules with DO = 5 to construct the
TNO representation of

∑
i<j ninj , which explicitly uses

the 3D lattice structure, see Appendix B. Thus, the final
3D TNO representation for

∑
i<j Vijninj will have bond

dimension D = 4DO, where DO can be chosen to be 3,
4, or 5.

B. Sketch of the derivations

While the above rules for expressing Vij as a TN may
look familiar to readers who have previously worked with
fPEPS, in this section, for a more general audience, we
will give a pedagogical explanation of two of the main in-
gredients in the derivations: (1) in the TN representation
of Z in 3D (10) (Figure 3(a)), how we obtain the order
of factors in Eq. (21) for the local tensors, and how the
swap tensors arise, (2) in the TN representation of Vij ,
how the rule for the fermionic line (red) is derived.

1. Partition function, local tensors, and swap tensors

For simplicity, we consider a simple 3 × 3 × 2 lattice
shown in Figure 4. From Eq. (10), the partition function
Z can be rewritten as

Z =

∫
D[c̄, c](

∏
k

Qk)[(α1β2) · · · ][(γ1δ4) · · · ][(σ1τ10) · · · ]

=

∫
D[c̄, c] ([Q1α1(γ1(σ1τ10)δ4)β2] · · · ) , (23)

(a) Tensor network (TN) representation for Vij in 3D

(b) One way to contract 3D TN as PEPS

FIG. 3. Tensor network representation of correlation func-
tions 〈cic̄j〉 in 3D: (a) 3D TN representation for Vij , (b) An
N×N×N 3D network can be mapped to an N2×N2 2D net-
work with N = 5 for contractions using algorithms for PEPS,
where the diagonal bonds between physical sites have been
folded into the square lattice as highlighted by the bold black
lines.

where the integrand can be written simply as

α16 β17α17 β18

α13(γ13δ16) β14α14(γ14δ17) β15(γ15δ18)
α10(γ10δ13) β11α11(γ11δ14) β12(γ12δ15)
α7(σ7τ16) β8α8(σ8τ17) β9(σ9τ18)
α4(γ4(σ4τ13)δ7) β5α5(γ5(σ5τ14)δ8) β6(γ6(σ6τ15)δ9)
α1(γ1(σ1τ10)δ4) β2α2(γ2(σ2τ11)δ5) β3(γ3(σ3τ12)δ6)

(24)

which, similarly to Eq. (19), should be read from bottom-
left to upper-right. Now to move all factors to local sites,
apart from the need to move δ up one row as in the
2D case, the τ factors also need to be moved up one
layer, which increases the complexity of finding the TN
representation of Z in 3D.

Similarly to in the 2D case, we found the most conve-
nient way to move factors in 3D to be face-by-face from
left to right. The δ factors (δ4, δ7, δ13, δ16) can first be
moved to their respective local site in the same way as in
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1 2          3

4 5          6

7 8          9

10 11          12

13 14         15

16 17          18

x

w

z

y

Swx
yz

FIG. 4. Example for the partition function Z of a simple
3×3×2 lattice, including the swap tensors (black dots). The
swap tensors near the bottom-left corner tensors, which are
elaborated on in Sec. V B 1, are represented by larger black
dots.

2D, viz.,

δ16α16 β17α17 β18

δ13γ13α13 β14α14(γ14δ17) β15(γ15δ18)
γ10α10 β11α11(γ11δ14) β12(γ12δ15)
δ7α7(σ7τ16) β8α8(σ8τ17) β9(σ9τ18)
δ4γ4α4(σ4τ13) β5α5(γ5(σ5τ14)δ8) β6(γ6(σ6τ15)δ9)
γ1α1(σ1τ10) β2α2(γ2(σ2τ11)δ5) β3(γ3(σ3τ12)δ6)

(25)

where we have exchanged the γ and α factors in the first
column to compensate for the introduced sign factors.
Next, we move the τ factors in the order τ16, τ13, and
τ10, which is essential for simplifying the manipulations,
to the upper layer, leading to

τ16δ16α16 β17α17f β18

τ13δ13γ13α13 β14α14(γ14δ17) β15(γ15δ18)
τ10γ10α10 β11α11(γ11δ14) β12(γ12δ15)
δ7α7σ7 β8α8(σ8τ17) β9(σ9τ18)
δ4γ4α4σ4 β5α5(γ5(σ5τ14)δ8) β6(γ6(σ6τ15)δ9)
γ1α1σ1 β2α2(γ2(σ2τ11)δ5) β3(γ3(σ3τ12)δ6)

(26)

Note that after moving τ16 to the upper row, the
factors in site 7 are complete, such that when
moving τ13, no additional sign factors due to the
jump over this site need to be considered. Thus,
the net sign factors introduced are (−1)p(τ16)p(β8),
(−1)p(τ13)[p(β5)+p(β8)], and (−1)p(τ10)[p(β2)+p(β5)+p(β8)],
respectively. Again by noting the even parity of bonds,
the factors such as (−1)p(τ16)p(β8) can be made lo-
cal (−1)p(τ16)p(β8) = (−1)p(σ7)p(α7), and further ab-
sorbed locally by exchanging α7 and σ7 in the local
product δ7α7σ7. These local exchanges to compen-
sate the local sign factors determine the order of fac-
tors in Eq. (21) or equivalently Figure 1(c). The re-
maining signs that cannot be absorbed are given by
(−1)p(τ13)p(β8)(−1)p(τ10)p(β5)(−1)p(τ10)p(β8). These non-
local terms can be exactly represented/decomposed in
terms of swap tensors (black dots) shown in Figure 4.
The whole process for moving δ and τ factors can be re-
peated for the other faces/columns such that the final TN
representation of Z is given by a 3D network composed
of local tensors Ai and swap tensors.

2. Correlation functions and fermionic line

For the correlation functions 〈cic̄j〉 in 3D, the intro-
duced parity factors can be found in the same manner
following the logic for 2D. Thus, we only describe the ba-
sic idea here, assuming cic̄j (even parity and i < j) is first
placed on site i, which means c̄j needs to be moved to site
j. One can show that the additional parity factors intro-
duced by the fermionic variables ci (c̄j) can be classified
into three groups for ci (c̄j), as shown in Figures 5(a,b,c),
for crossings with different bonds. Specifically, the in-
plane parity factors for ci (c̄j) in Figure 5(a) are the
same as those in 2D, see Figure 2(a), while Figures 5(b,c)
are new due to the existence of bonds in the z-direction.
Summarizing all parities and swaps together leads to Fig-
ure 5(d), which can be greatly simplified into a single
rule of a fermionic line (red) in Figure 5(f) by moving
certain parities upwards using the exchange rule shown
in Figure 5(e), viz.,

∑
w′ Pww′S

w′x
yz = (−1)p(w)Swxyz =

(−1)p(z)Swxyz =
∑
z′ S

wx
yz′Pz′z following from the defini-

tions in (17) and (22). Therefore, the final rule shown
in Figure 5(f) for half of the fermionic pair and Figure
3(a) for the whole pair cic̄j is the same as that for 2D,
see Figure 2(a).

(a) (b)

(c) (d)

x

w

z

y
w’

x

w

z

yz’=

(e) (f)

FIG. 5. Illustration of the derivation of rules for representing
correlation functions in 3D: (a,b,c) three sets of parity ten-
sors appear in the 3D case due to the odd parity of ci (or
c̄j); (d) all parity tensors together with swap tensors on the
line intersections (not explicitly shown for simplicity); (e) the
exchange of swap and parity tensors; (f) the transformation
of (d) into an equivalent rule for fermionic crossing by moving
certain parity tensors upwards using the exchange rule (e).
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VI. CONCLUSIONS

In this work we have presented an analytic construc-
tion of the tensor network representations of the dis-
cretized Green’s function Vij of the Helmholtz equation
in 2D and 3D using Grassmann Gaussian integration.
The resulting TN representation is very compact, with
bond dimension D = 4. Interestingly, in 3D it gives an
analytic TN representation of correlation functions de-
caying as r−1

ij asymptotically, which yields the discretized

(screened) Coulomb interaction on the simple cubic lat-
tice. The TN representation can be made compatible
with the rules for finite automata by properly deforming
the associated fermionic lines, such that we can construct
a TNO representation for

∑
i<j Vijninj . These interac-

tions with different Helmholtz parameters can be used as
basis functions to fit decaying long-range interactions in
higher dimensions, as an analog of the exponential fitting
procedure used in TN algorithms in 1D.

The resulting TN operators can readily be used in sim-
ulations of continuum systems, such as the uniform elec-
tron gas (UEG), via the combination of a discretized lat-
tice representation and tensor network algorithms. An-
other possible direction is the simulation of the effective
low-energy sectors of lattice gauge theory31 using higher
dimensional TNS. Integrating out gauge degrees of free-
dom leads to Hamiltonians with non-local or long-range
terms. In fact, this is precisely how the Coulomb inter-
action in Nature arises.
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APPENDIX A: ILLUSTRATIVE EXAMPLES FOR
FITTING POWER-LAW DECAYING

INTERACTIONS

As an illustration of the usage and performance of the
fitting basis introduced in this work, we fit the interac-
tions v(r) = 1/r, 1/r3, and 1/r6 on an L-by-L 2D lattice
with L = 199. In the previous work11, a fit with Ising
model correlation functions 〈σiσj〉 with 12 different tem-
peratures was employed for the Coulomb interaction (see
Appendix B in Ref.11). The corresponding fitting errors
|vfit(r)− v(r)| for all data points (red) are shown in Fig.
6 as a reference. For comparison, we followed the same
fitting procedure but used Vij (6) to replace 〈σiσj〉 as
the fitting functions. For 1/r and 1/r3, a geometric se-
ries of 12 values of λ was used with λmin = 10−2 and
λmax = 102, while for 1/r6, λmin = 10−1 and λmax = 103

were used. A weight function r2n
ij (n = 1, 3, 6) was used

for interactions with different powers of n. The fitted
interaction vfit(r) versus the exact interaction and the
fitting errors |vfit(r)− v(r)| for all data points are shown
in Figs. 6(a) and (b), respectively.

From Fig. 6(b), it is seen that the new basis functions
perform quite similarly to the previous Ising basis. Thus,
it can be expected to be applicable to the same settings
where the previous basis works. Note that for small rij ,
the fitted interactions show visible deviations from the
exact ones for 1/r6. However, since the error decays very
quickly as rij increases (see Fig. 6(b)), just as in the
previous work, we can define the real physical distance
to be two points separated by about 5-10 (Nf + 1 in the
previous work11) grid points, then the error is reduced to
about 10−3. The same behavior was also observed in the
previous work11. Importantly, the fitting basis Vij can
here be constructed in a straightforward way from the
spectral representation of the discrete Green’s function,
which is advantageous in larger systems.
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rij (lattice units)
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10 2
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(a)
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1/r (Ising)

(b)

FIG. 6. Fitting power-law decaying interactions v(r) on an
L-by-L 2D lattice with L = 199 using the fitting basis in-
troduced in this work. (a) Fitted interaction vfit(r) (cross)
versus the exact interaction (black line). (b) Fitting errors
|vfit(r)− v(r)| for all data points on a logarithmic scale. Red
points are the corresponding results from previous work11 us-
ing Ising model correlation functions at different temperatures
as the basis.

APPENDIX B: FINITE AUTOMATA RULES FOR
COUPLING WITH OPERATORS IN 3D

In this section, we discuss how to construct a 3D PEPO
representation for the distance-independent interaction
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operator,

V̂ =
∑
i<j

ÂiB̂j , (27)

with a bond dimension DO = 5. In other words, we will
build V̂ as V̂ = Tr(

∏
k P̂k) with (P̂k)Lk,Uk,Dk,Rk,Tk,Bk =

O
[k]
nkn′k

being a local operator on site k. This PEPO repre-

sentation can be combined11 with the 3D PEPS represen-
tation for correlation functions Vij described before (Sec.

V), resulting in a PEPO representation of
∑
i<j VijÂiB̂j

with D = 4DO = 20.

The finite automata (also known as finite state ma-
chine) picture13,14,24 of a PEPO views each tensor as a
node in a graph, and each virtual bond of dimension DO

as a directed edge in the graph that can pass DO different
signals (or has DO different possible states). By conven-
tion we have chosen our directed edges to point in the +x̂,
+ŷ, and +ẑ directions, where the axes are defined in Fig-
ure 7. This allows us to impose an ordering of the sites,
where we traverse the x direction most quickly, then y,
then z, starting from the bottom left corner. With this
convention, the tensor at position k has its Uk, Rk, and
Tk indices (corresponding to +ŷ, +x̂, and +ẑ respec-
tively) pass “outgoing” signals while its Lk, Dk and Bk
indices (corresponding to −x̂, −ŷ, and −ẑ) receive “in-
coming” signals (see the first tensor in Fig. 7(b)). When
a tensor has certain specific combinations of incoming
and outgoing signals, that tensor’s two physical indices
nk and n′k (not shown in Fig. 7 for simplicity) encode a

local operator O
[k]
nkn′k

, which is either a physical operator

(Â, B̂) or the identity operator (I). These special com-
binations of index values precisely correspond to the set
of rules which generate a finite state machine (PEPO)
which encodes all the terms in the sum (27). In order
to avoid encoding any additional unwanted terms, the

value of O
[k]
nkn′k

is the zero operator 0̂k when the states of

the six virtual indices do not match any rule which gen-
erates the desired machine. In other words, unwanted
configurations of the state machine (and thus unwanted
configurations of the local operators) are prevented by

causing such a configuration to trigger the action of 0̂k
on at least one site of the machine, rendering the entire
term null.

The complete list of the rules that define the full
3D PEPO which generates all pairwise interactions in
Eq. (27) with bond dimension DO = 5 is given in Ta-
ble I. The presentation is in the style of Ref.24. In the
following, we will provide an intuitive explanation for
the derivation of these rules, assuming some familiarity
with the simpler constructions in 1D and 2D11,14,24. The
present 3D construction can be viewed as a generaliza-
tion of the 2D rules by incorporating an additional set
of rules to include interactions between sites in different
layers.

Rule number
Index values

(Lk, Uk, Dk, Rk, Tk, Bk)
O

[k]

nkn
′
k

1 (0,0,0,0,0,0) Ik
2 (0,2,2,0,1,0) Ik
3 (2,1,0,2,1,0) Ik
4 (0,0,0,0,2,2) Ik
5 (1,1,0,1,1,0) Ik
6 (0,1,1,0,1,0) Ik
7 (0,0,0,0,1,1) Ik
8 (0,2,0,0,0,0) Âk
9 (0,1,0,2,0,0) Âk
10 (0,0,0,0,2,0) Âk
11 (0,1,2,1,1,0) B̂k
12 (2,1,0,1,1,0) B̂k
13 (0,1,0,1,1,2) B̂k
14 (0,1,2,2,1,0) Ik
15 (0,2,0,0,1,2) Ik
16 (0,1,0,2,1,2) Ik
17 (3,1,0,3,1,0) Ik
18 (3,1,2,1,1,0) Ik
19 (0,1,0,3,1,0) B̂k
20 (3,1,0,1,1,2) Ik
21 (0,1,4,0,1,2) Ik
22 (0,4,4,0,1,0) Ik
23 (3,4,0,1,1,0) Ik
24 (0,4,0,2,1,0) Ik
25 (0,4,0,1,1,0) B̂k
26∗ P upper right top corner

0,0,0,0,0,0 0̂k

TABLE I. The rules for the full 3D PEPO that generates all
pairwise interactions in Eq. (27) with DO = 5. All com-
binations of indices not listed in this table correspond to

O
[k]

nkn
′
k

= 0̂k, while Ik is simply the identity operator. Note

that the local operators Âk and B̂k do not have to be the
same, although in our case from the main text they would
both be the number operator nk.

A. Basics

A useful way to reason about the construction of finite
state machines is to assign some verbal meaning to each
of the DO possible signals that can be passed between
the nodes. In the present case we have DO = 5, meaning
that each virtual bond of a tensor can take index values of
(0, 1, 2, 3, and 4). The meanings that we assign to these
signals are used to describe the different “messages” of
information that they pass to the adjacent tensor that
the bond is connected to. The “0” signal is the default
signal, which generally means that the machine is in its
initial state along that signal path and no physical op-
erators have been applied yet. “1” is the “stop” signal
which, when received, generally tells a tensor to avoid
acting with a physical operator but instead to act with
the identity operator. This is used when another tensor
along that signal path has applied a physical operator
and does not want an interaction to be generated along
the direction that it sends the “1” message. “2” is the
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“start” signal, which is passed along the directed edges
starting with the action of Â on site i and terminating
with the action of B̂ on site j. The path of this signal
can be thought of as the “interaction path.”

With these signals, we can encode all the terms in
Eq. (27) for which j lies in the +x̂/+ŷ/+ẑ direction (or
along the edges of this sector, for which ∆x, ∆y, or ∆z
can be zero) with respect to site i. The rules which gen-
erate these terms are 1-16. Rules 1-7 encode the propa-
gation of the “0”, “1”, and “2” signals along the directed
edges in straight lines. Rules 8-13 encode the action of
the physical operators, which begin and terminate “1”
and “2” signals. Rules 14-16 allow for the “2” signal to
“turn” in allowed directions. Specifically, 14 allows a “2”
which is travelling in the +ŷ direction (and is thus re-
ceived by the Dk index) to turn and propagate along the
+x̂ direction. Rule 15 encodes a turn from +ẑ to +ŷ
and 16 allows a turn from +ẑ to +x̂. Note that other
turns which do not violate the directions of the edges,
such as +x̂ to +ŷ and +ŷ to +ẑ, are not allowed in or-
der to prevent double counting. This illuminates a more
subtle convention that we have chosen: for interactions
ÂiB̂j in which sites i and j do not lie along a straight
line, the “2” signal first propagates in the +ẑ direction,
then +ŷ, then +x̂ (when i and j are in the same plane
but not along a straight line, one of the directions in this
ordering is skipped). Figure 7 provides a characteristic
example of a set of tensor configurations which encodes
one “basic” interaction term.

B. Remaining terms

There are additional terms in the sum (27) for which
site j does not lie in the +x̂/+ŷ/+ẑ direction with respect
to site i. Specifically, there are six additional cases:

1. {−x̂,+ŷ,∆ẑ = 0},

2. {−x̂,∆ŷ = 0,+ẑ},

3. {−x̂,+ŷ,+ẑ},

4. {∆x̂ = 0,−ŷ,+ẑ},

5. {+x̂ = 0,−ŷ,+ẑ},

6. {−x̂,−ŷ,+ẑ}.

Since j lies in at least one negative direction with respect
to i, the “2” signal that starts at site i cannot propagate
all the way to j because at some point it will need to go
against the direction of a directed edge. To account for
these terms, the “3” and “4” signals can be introduced
to propagate from site j towards site i along the +x̂ and
+ŷ directions, respectively. To complete the interaction,
these new signals can then meet up with the “2” that
began propagating from site i towards site j along the
+x̂/+ŷ/+ẑ directions via the introduction of new state
machine rules. Below we will explain case-by-case how
this is done.

Case 1: −x̂ ,+ŷ ,∆ẑ = 0 direction (see Figure 8)
In this case, the “2” signal starts at site i and propagates
in the +ŷ direction according to some of the basic rules
(8 and 2). Since j lies in the −x̂ direction, the “3” sig-
nal starts at site j (rule 19) and propagates in the +x̂
direction (rule 17). These two signals meet at their inter-
section point, and the interaction is completed by a new
type of “turning” tensor given by rule 18.

Case 2: −x̂ ,∆ŷ = 0 ,+ẑ direction (see Figure 9)
In this case, the “2” signal starts at site i and propagates
in the +ẑ direction according to basic rules 10 and 4.
Since j lies in the −x̂ direction, the “3” signal starts
at site j (rule 19) and propagates in the +x̂ direction
(rule 17). These two signals meet at their intersection
point, and the interaction is completed by a new type of
“turning” tensor given by rule 20.

Case 3: −x̂ ,+ŷ ,+ẑ direction (see Figure 10) In
this case, the “2” signal starts at site i and first propa-
gates in the +ẑ direction (rules 10 and 4). It then “turns”
to the +ŷ direction (rule 15) and propagates (rule 2).
Since j lies in the −x̂ direction, the “3” signal starts at
site j (rule 19) and propagates in the +x̂ direction (rule
17). These two signals meet at their intersection point,
and the interaction is completed by the “turning” tensor
given in rule 18.

Case 4: ∆x̂ = 0 ,−ŷ ,+ẑ direction (see Figure 11)
In this case, the “2” signal starts at site i and propagates
in the +ẑ direction according to basic rules 10 and 4.
Since j lies in the −ŷ direction, the “4” signal starts
at site j (rule 25) and propagates in the +ŷ direction
(rule 22). These two signals meet at their intersection
point, and the interaction is completed by a new type of
“turning” tensor given by rule 21.

Case 5: +x̂ ,−ŷ ,+ẑ direction (see Figure 12)
Since our convention is to propagate the “interaction
path” first in the ẑ direction, then ŷ, then x̂, this case is
a bit less intuituve than the preceding ones. In our previ-
ous analysis, we have pictured the “4” as originating from
site j and propagating in the +ŷ direction. However, the
present case is more easily understood if we adopt a dif-
ferent (but equivalent) picture in which the “4” signal is
a special component of the interaction signal propagating
from site i to site j which is allowed to travel in the −ŷ
direction, against the directed edge.

Using this new picture, we start as usual with the “2”
signal originating at site i and propagating in the +ẑ
direction according to basic rules 10 and 4. Next, the
signal “turns” from the +ẑ direction to the −ŷ direc-
tion, becoming a “4” (rule 21, as in the previous case).
The “4” then propagates in the −ŷ direction (rule 22, as
above). Finally, the “interaction signal” must turn and
travel in the +x̂ direction and end at site j. Since the
“2” can already go in the +x̂ direction and terminate
at j according to basic rules 3 and 12, it can be reused
instead of introducing additional rules. Thus, the “4”
propagating along −ŷ “turns” to +x̂ and becomes a “2”
again according to rule 24, and then basic rules 3 and 12
complete the interaction.
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Case 6: −x̂ ,−ŷ ,+ẑ direction (see Figure 13) In
this final case, we combine the two pictures for the “3”
and “4” signals used in previous cases. First, the “2”
signal starts at site i and propagates in the +ẑ direc-
tion according to basic rules 10 and 4. Next, the signal
“turns” from the +ẑ direction to the −ŷ direction, be-
coming a “4” (rule 21) and then propagates in the −ŷ
direction (rule 22). Since j lies in the −x̂ direction, the
“3” signal starts at site j (rule 19) and propagates in the
+x̂ direction (rule 17). The “3” and “4” then meet at
their intersection point, and the interaction is completed
by a new type of “turning” tensor given by rule 23.

Final rule: Up to this point, all the rules in Table I
have been utilized except rule 26. This is a special rule
that only applies to the tensor in the top right corner
of the top plane of the network, where the finite state
machine terminates. This rule is included to disallow the
state of the machine where all tensors have virtual index
values (0, 0, 0, 0, 0, 0) and a spurious 1 is added to Eq. (27)

so that the final operator is 1+
∑
i<j ÂiB̂j instead of the

target
∑
i<j ÂiB̂j .

(a)

(b)

FIG. 7. This figure and those that follow are examples of
the set of rules needed to construct the operator-valued 3D
finite automata that encodes the pairwise interaction PEPO∑
i<j ÂiB̂j for arbitrary operators Â and B̂. The color of the

tensor in (a) corresponds to the index configuration of the
equivalently colored tensor in (b). In (b), the local operator
corresponding to the given index configuration is given to the
top-right of each tensor, and the rule number of each tensor is
given to its bottom-left. For tensors along the boundary, the
relevant legs are simply removed from the corresponding dia-
gram in (b). This specific case shows an interaction between

Âi (red) and B̂j (dark blue), where the signal path between
the two sites is shown in red.
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(a)

(b)

FIG. 8. Case 1: {−x̂,+ŷ,∆ẑ = 0}.

(a)

(b)

FIG. 9. Case 2: {−x̂,∆ŷ = 0,+ẑ}.

(a)

(b)

FIG. 10. Case 3: {−x̂,+ŷ,+ẑ}.

(a)

(b)

FIG. 11. Case 4: {∆x̂ = 0,−ŷ,+ẑ}.
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(a)

(b)

FIG. 12. Case 5: {+x̂ = 0,−ŷ,+ẑ}.

(a)

(b)

FIG. 13. Case 6: {−x̂,−ŷ,+ẑ}.
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