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By constructing an effective model based on recently calculated ab initio bare interaction parame-
ters, we study the phase diagram of alkali doped fullerides as a function of temperature and internal
pressure. We use a slave-rotor mean-field approach at the weak and intermediate coupling limits
and a variational mean-field approach at the strong coupling limit, and find a good agreement with
experimental phase diagram. We explain the unified description of the phase diagram including
the proximity of s-wave superconducting state and the Mott-insulating state, and the existence of
Jahn-Teller distorted metallic state using orbital selective physics. We argue that the double elec-
tronic occupation of two degenerate orbitals triggers both s-wave superconductivity and Jahn-Teller
distortion. While the orbital ordering of two electrons causes the distortion, the remaining single
electron in the third orbital causes the metal-insulator transition.

I. INTRODUCTION

Alkali-doped fullerides with the composition of A3C60,
doped with A = K, Rb, Cs atoms shows the high-
est critical temperature about 40 K among the molec-
ular superconductors [1–11]. Since the first discovery
of the superconductivity in K3C60, the A3C60 molecu-
lar compounds gain tremendous attention recently due
to their unconventional phase diagram. Fulleride com-
pounds have been synthesized into two structures, face-
centered-cubic (FCC) structure and A15 phase [7, 9, 10].
While C60 molecules are located at the FCC posi-
tions in the FCC structure, they are located at the
body-centered-cubic (BCC) positions in the A15 struc-
ture. Surprisingly, the A3C60 molecular superconductors
share a common electronic phase diagram with that of
unconventional high-temperature cuprate superconduc-
tors. The superconductivity in Alkali-doped fullerides
(ADF’s) also emerges upon chemical pressure from Mott-
insulator ground state. Further, Fermi-liquid metallic
phase emerges from superconducting phase upon rais-
ing the temperature. However, the Alkali-doped ful-
lerides molecular compounds considered to be uncon-
ventional with respect to the cuprate superconductors
due to three main reasons. First, the phase diagram
of the Alkali-doped fullerides violates the common be-
lief that the phonon-driven s-wave superconductivity and
Mott-insulating state are incompatible. Second, the ap-
pearance of an unconventional Jahn-Teller metallic phase
from a Jahn-Teller Mott-insulating phase upon apply-
ing internal pressure. This unconventional Jahn-Teller
metallic phase shows both quasi-localized and itinerant
electronic behavior simultaneously. Upon decreasing the
internal pressure, this lattice distorted Jahn-Teller metal-
lic phase makes a crossover to Fermi-liquid phase. Third,
the phase diagram of the BCC structured fullerides show
the evidence of co-existence of superconductivity and an-
tiferromagnetism. These unexpected observations renew
the fundamental question on the pairing mechanism of
high-temperature superconductors.

The recent exciting experimental findings can be sum-
marized as follows. At low temperatures, the A3C60

molecular compounds show superconductivity with a
dome-shaped critical temperature TC versus the lattice
constant. The lattice constant of both FCC and BCC lat-
tices of C60 molecules, thus the volume per C60 molecule
is controlled by internal pressure with different sizes of
alkali-metal ions. At higher temperatures, the compound
is in either Fermi-liquid phase or Mott-insulating phase,
depending on the internal pressure. The internal pres-
sure can be quantified by the lattice constant or the
C60 molecular volume. While the compounds are con-
ventional metals for smaller values of lattice constant,
they are Mott insulators for larger values of lattice con-
stant. By further lowering the temperature from Mott-
insulating phase, the ADF’s show an anti-ferro mag-
netic phase transition at around 2.2 K and 47 K for
the FCC and BCC structured fullerides, respectively [12–
15]. In addition, the experiments show a lattice distor-
tion over a wide range of C60 molecular volume at lower
temperatures for the FCC lattice. The infra-red spec-
troscopy shows that the Jahn-Teller distortion survives
well into metallic phase and at antiferromagnetic transi-
tion [11, 16–21].

In this paper, we propose an effective theoretical model
for the ADF’s. We use recent bare interaction parameters
calculated from ab initio calculations and a three-orbital
Hubbard model as a basis for our proposed model. In
order to study the emergence of metallic, superconduct-
ing, and Mott-insulating phases due to the competition
between interaction parameters at weak and intermedi-
ate interaction regimes, we use a slave-rotor mean field
theory. For the spin and orbital magnetic phase transi-
tions at stronger interaction regimes, we use an effective
spin-orbital model to construct the two-order parame-
ter Landau energy functional. We find that the driv-
ing force behind the unconventional exotic behavior of
Alkali-doped fullerides is the orbital selective physics.
The renormalization of on-site interactions and Hund’s
coupling due to the electron-phonon interactions induces
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orbital rich collective phenomena. This renormalization
gives orbital dependent behavior for electron dynamics.
Our study shows that the orbital ordering of pairs of
electron in two orbitals drive the Jahn-Teller distortion
and the electron correlation in the remaining singly oc-
cupied degenerate orbital drives the Mott-insulator to
metal transition. Further, we find that the emergence
of s-wave superconductivity due to the local pairing of
electrons in the same orbital critically depends on the
Jahn-Teller phonons. Based on these theoretical ob-
servations, we conclude that the orbital selective elec-
tronic behavior due to the renormalization of on-site in-
teraction parameters by electron-phonon coupling causes
Mott-insulator, Fermi-liquid, Jahn-Teller metal, and s-
wave superconducting phases proximity to be each other
in Alkali-doped fullerides phase diagram.
We summarize our resulting theoretical phase diagram

for the FCC structured fullerides in FIG. 2 in compar-
ison with a schematic experimental phase diagram in
FIG. 1. The schematic experimental phase diagram is
reproduced from the experimental results from Ref. [11]
and Ref. [19]. While FIG. 2 shows the theoretical phase
diagram as a function of scaled temperature and volume
per C60 molecule, FIG. 1 shows the schematic experimen-
tal phase diagram as a function of physical temperature
and volume per C60 molecule [11]. The theoretical phase
diagrams for the BCC structured fullerides are given in
section VII. Notice that we constructed the theoretical
phase diagrams for the weak and strong coupling limits
separately. The realistic phase diagram at intermediate
C60 molecular volume range must result from merging of
these two phase diagrams. As a result, an orbital ordered
Fermi liquid phase and a mixed phase of superconduct-
ing and anti-ferromagnetic can exist in the intermediate
molecular volume range. If a transition from the Mott
insulating phase to the orbital ordered Fermi liquid phase
exists at intermediate molecular volume, it may resem-
ble the experimentally detected phase transition from the
Mott insulating phase to the Jahn-Teller metallic phase.
We dedicate rest of the paper to provide detail deriva-
tion of this theoretical phase diagrams for both FCC and
BCC structured alkaline doped fullerides.

The paper is organized as follows. In section II, start-
ing with a three-orbital Hubbard model with electron-
phonon interaction term, we construct an effective model
for the ADF’s. This construction is mainly based on
the recent ab initio calculation of bare interaction pa-
rameters. In section III, we use a slave-rotor approach
to convert our model Hamiltonain into a coupled roton
and spinon Hamiltonian. Using a mean-field theory, we
decouple the roton and spinon part of the Hamiltonian
and construct the phase boundaries between Fermi liquid
metallic, Mott-insulating, and superconducting phases.
In sections IV and V, we introduce an effective strong-
coupling spin-orbital model and construct the free energy
using a variational mean-field theory. In section VI, we
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FIG. 1: (color online) Schematic experimental phase
diagram of the FCC structured alkaline doped
fullerides. The phase diagram is constructed in

temperature- C60 molecular volume space. We use the
same abbreviations used by the experiments [11]; MJI:
Mott-Jahn-Teller Insulator, JTM: Jahn-Teller Metal, M:
conventional metal, and SC: superconductor. All solid
lines are phase transitions and the transition between
metal and Jahn-Teller metallic phase is a crossover.
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FIG. 2: (color online) Theoretical phase diagrams of the
FCC structured alkaline doped fullerides for weak
coupling [panel (a)] and strong coupling [panel (b)]

limits. Both panels (a) and (b) has the same
temperature scale in vertical axis. The phase diagrams
are constructed in temperature- C60 molecular volume
space. The temperature is scaled with the hopping

amplitude tf of the FCC structured fullerides. Following
abbreviations are used to classify different electronic
phases; MI: Mott-Insulator, FL: Fermi Liquid metal,
SC: s-wave Superconductor, AFO: Antiferromagnetic
orbital order, and AFM: Antiferromagnetic spin order.

study the spin and orbital ordering transitions by using
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a Landau energy functional constructed from the free en-
ergy. Finally, we present our conclusions with a discus-
sion in section VII.

II. THE EFFECTIVE MODEL

As the C3−
60 molecule has a quasi-spherical structure,

its electronic molecular states are spherical harmon-
ics [22, 23]. The icosahedral symmetry splits these states
into icosahedral representations [22, 23]. The lowest un-
occupied molecular orbitals (LUMO) has three-fold de-
generate orbitals. These LUMO states are separated by
about 1.5 eV from highest occupied molecular orbitals
(HOMO). As the next unoccupied orbital is about 1.2
eV above the LUMO, the three electrons donated by the
alkali-metal ions go to the empty LUMO states.
For these multi-orbital fulleride systems, various types

of interactions between electrons at C60 molecular sites
are possible. These include density-density type inter-
actions such as on-site and off-site Coulomb interac-
tions, and non-density type interactions, such as the pair-
hopping and spin-flip interactions. In general, all these
interaction terms must be included in the microscopic
model. Based on ab initio calculations [24], it has been
shown that the off-site Coulomb interaction strength is
about 25% that of the on-site Coulomb interactions. Fur-
ther, spin-flip interaction is estimated to be much smaller
than that of the Coulomb interactions. It has been shown
that the off-site Coulomb interaction and the spin-flip
interaction do not play an essential role in driving the
superconductivity [25]. Therefore, we neglect both off-
site and spin-flip interactions in our microscopic model.
Therefore by neglecting both off-site and spin-flip inter-
actions terms, the electron dynamics of the alkali-doped
fullerides can be represented by a three-orbital Hubbard
Hamiltonian with an additional electron-phonon coupling
term.

H =
∑

〈ij〉

∑

m

∑

σ

[tij + (ǫm − µ)δij ]a
†
imσajmσ (1)

+
U

2

∑

i

∑

m

∑

σ

nimσnim−σ

+
U ′ − J

2

∑

i

∑

m<m′

∑

σ

nimσnim′σ

+
U ′ + J

2

∑

i

∑

m<m′

∑

σ

nimσnim′−σ

+J
∑

i

∑

m 6=m′

a†im↑aim′↑a
†
im↓aim′↓ +He−p,

where the electron-phonon coupling term is

He−p =
∑

i

∑

mm′

∑

ν

∑

M

λνV
ν
mm′a

†
imσaim′σ[b

†
iνM + biνM ].(2)

Here a†imσ (aimσ) is the electronic creation (annihila-
tion) operator in the orbital m = 1, 2, or 3 with spin

σ =↑, ↓ localized at site i, and nimσ = a†imσaimσ is
the particle number operator. While tij is the hopping
integral between sites i and j, w = ηt is the band-
width, where the number of nearest neighbors η = 12
and 8 for the FCC and BCC lattices, respectively. We
consider only the nearest neighbor hopping tij = tf , tb
between nearest neighbor sites on the FCC and BCC
C60 molecular lattices, respectively. The on-site intra-
orbital interaction U , inter-orbital interaction U ′, and
on-site exchange interaction (bare Hund’s coupling) J ,
all are related to the molecular orbital Wannier func-
tions and the bare on-site Coulomb repulsion, as usual.
The term He−p represents the interaction between excess
electrons and the Jahn-Teller phonons represented by the
creation operator b†iνM , where {ν = 0,M = 1, 2} repre-
sents 2-Ag intra-molecular Jahn-Teller phonons and {ν =
1..5, ,M = 1, ..8} represents the 8-Hg intra-molecular
Jahn-Teller phonons [26–30]. The intra-molecular Jahn-
Teller phonon coupling constants are given by λν . Here
V ν
mm′ are the elements of coupling matrices V ν , which is

determined by icosahedral symmetry [31, 32].

The Jahn-Teller coupling induced electron-phonon
coupling is extremely important for the ADF’s as it favors
formation of local electron-electron pairs at C60 molecu-
lar sites [33, 34]. On the other hand, the bare Hund’s
coupling favors high spin state at a given site. The
competition between the Jahn-Teller coupling and the
Hund’s rule determine the total spin and the possibility
of having local pairs at a molecular site. As the effective
Coulomb repulsion decreases due to the electron-phonon
interactions, the local electron pairing is favorable at C60

molecular sites in ADF’s. This local pairing hypothesis
is confirmed by a quantum monte-Carlo simulations for
two-band degenerate orbital Hubbard model [35]. For
the ADF’s, a dynamical mean-field theory predicts lo-
cal intra-orbital s-wave pairing for larger values of lattice
constants at larger bare Coulomb interactions [25, 36].
This double electron occupancy on each molecule at
larger U values, which opposed for usual Mott-Hubbard
materials, is due to the lower effective interaction due to
the local electron-phonon interactions. As the Hartree-
Fock and many-body perturbation theories unable to pre-
dict whether ADF compunds are metallic or not, these
studies conclude that the ADF compounds are on the
boarder of Mott-insulator metal transition [37]. As the
orbital degeneracy enhances the effective hopping param-
eter, the conductivity depends on both orbital degener-
acy and the filling factors [38–40].
In the atomic limit and the absence of Jahn-Teller

electron-phonon coupling, the electron configuration of
C3−

60 molecule in the ADF’s has three parallel electrons
in LUMO states, favored by the Hunds rule coupling.
However, when the electron-phonon coupling is present,
the bare interaction parameters are modified by renor-
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malizing them due to the electron-phonon interactions.
In the anti adiabatic limit, using a standard perturbation
theory, the phonon variables can be eliminated and the
resulting electron-phonon interaction term can be writ-
ten as [31, 32],

He−p ⇒ Uph

2

∑

i

∑

m

nim↑nim↓ (3)

+Jph
∑

i

∑

m 6=m′

a†im↑aim′↑a
†
im↓aim′↓.

TABLE I: Bare interaction parameters for the FCC
structured fullerides taken from Ref. [24]. The units are

given in meV.

Volume (A3) wf U U′ J Uph Jph

722 502 820 760 31 -152 -50

750 454 920 850 34 -142 -51

762 427 940 870 35 -114 -51

784 379 1020 940 33 -124 -51

804 341 1070 1000 36 -134 -52

TABLE II: Bare interaction parameters for the BCC
structured fullerides taken from Ref. [24]. The units are

given in meV.

Volume (A3) wb U U′ J

751 740 930 870 30

774 659 1020 950 36

791 614 1070 990 36

818 535 1140 1060 37

Notice that the on-site intra-orbital interaction and the
bare Hund’s coupling are modified by these phonon in-
tegrated electron-phonon couplings. The bare interac-
tion parameters, t, U , U ′, J , Uph, and Jph, have al-
ready been estimated with ab initio calculations as a
function of lattice constant [24]. These bare interac-
tion parameters for the FCC and BCC structured ful-
lerides are tabulated in Table. I and Table. II, respec-
tively. In FIG. 3 and FIG. 4, we plot the inter-orbital
on-site interaction (U ′), the effective intra-orbital on-site
interaction (Ue = U +Uph), and the effective Hunds cou-
pling (Jeff = J + Jph) as a function of volume per C60

molecule, taken from Refs. [24]. Notice that the electron-
phonon bare interaction parameters for the BCC struc-
tured fullerides are not available. As evidence from the
Table. I, these have relatively weak sensitivity to the
C60 molecular volume. Therefore, we use same electron-
phonon interaction parameters for both FCC and BCC
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FIG. 3: (color online) The effective inter-orbital
interaction U ′/wf (red, squares) and effective

intra-orbital interaction Ue/wf (green, circles) as a
function of the C60 molecular volume for the FCC
structured fullerides. The inset shows the effective
Hund’s coupling Jeff/wf , as a function of C60

molecular volume. The symbols are the calculation
from bare interaction parameters taken from ab initio
calculations [24]. The lines are the interpolation curves

that we used in our calculations.

lattices. There are three major important observations
can be drawn from FIG. 3 and FIG. 4. The effective
intra-orbital interaction Ue decreases due to the phonon
coupling (Ue < U) and it becomes slightly smaller than
the bare intra-orbital interaction, Ue < U ′. Due to
the phonon-mediated negative exchange interaction, the
effective Hund’s coupling becomes negative, Jeff < 0
for entire parameter region. This inverted Hund’s rule
scenario for the ADF’s has already been proposed be-
fore [41–43]. This effective Hund’s coupling favors local
pairing of electrons as oppose to the high spin state. This
effective parameter interaction scenario suggests that the
electron configuration of a C60 molecular site is with two-
electron in one orbital and the other one is in one of the
remaining two orbitals. As a result, the net spin of a C60

molecular site is one-half. The size of the local spin-1/2
state per C60 molecule in the Mott insulating phase is
confirmed by experiments [8, 10]. Notice that the effec-
tive intra-orbital interaction Ueff curve in FIG. 3 crosses
the inter-orbital interaction U ′ at a low C60 molecular
volume for the FCC structured fullerides even without
changing the sign of the effective Hunds coupling Jeff .
This seems a violation of the condition Ue = U ′ + 2Jeff
below this molecular volume. This is an artifact due to
our independent interpolation of the interaction param-
eters and the neglecting of the other non-density type
interactions, such as the spin-flip term. Since the intra-
orbital interaction U ′ and the effective inter-orbital inter-
action Ue are approximately equal to each other in the
entire volume per C60 molecule range, by approximating
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FIG. 4: (color online) The effective inter-orbital
interaction U ′/wb (red, squares) and effective

intra-orbital interaction Ue/wb (green, circles) as a
function of the C60 molecular volume for the BCC
structured fullerides. The inset shows the effective
Hund’s coupling Jeff/wb, as a function of C60

molecular volume. The symbols are the calculation
from bare interaction parameters taken from ab initio
calculations [24]. The lines are the interpolation curves

that we used in our calculations.

Ueff ≡ U ′ ≃ Ue, the effective Hamiltonian for the ADF
systems can be casted as;

H =
∑

〈ij〉

∑

m

∑

σ

[tij + (ǫm − µ)δij ]a
†
imσajmσ (4)

+
Ueff

2

∑

i

[
∑

m

a†imσaimσ − Ns

2
]2

+Jeff
∑

i

∑

m 6=m′

a†im↑aim′↑a
†
im↓aim′↓,

where Ns = 6 is the total number of local spin-orbital
states. This is our approximated effective model for the
system that includes phonon contributions. We have ne-
glected the spin-flip and exchange terms as it has been
shown that these two terms have no effect on super-
conductivity [25, 44]. The effective interaction param-
eters as a function of C60 molecular volume are given in
FIG. 3 and FIG. 4. The model includes three competing
terms. While the hopping term favors the metallic state,
the effective on-site interaction and the effective Hund’s
coupling compete for the Mott-insulating state and the
superconducting state, respectively. Notice that the ef-
fective Hund’s coupling is negative due to the phonon
contributions, thus the mechanism of the on-site s-wave
pairing is mediated by the phonons. The tunneling of
the pairs by the negative pair-hopping interaction Jeff in
our effective model known as the Suhl-Kondo mechanism
is responsible for the enhancement of superconductivity
due to the inter-band scattering [45–47]. In ADF’s, the

phonons are localized on own C60 molecular sites and
they do not propagate to neighboring molecules as much
as phonon propagation in usual metal [31]. Even though,
the momentum is well defined in the crystal, the phonons
are Holstein phonons and their dispersion is flat. As a re-
sult, the conservation of momentum as the electron move
through the lattice system mainly comes from the bare
electrons. This indicates that the electron-phonon in-
teraction has a weak effect on the mass renormalization
of electrons. The renormalization of the electron mass
in ADF’s dominantly come from the Coulomb interac-
tions. We will treat this mass renormalization through
our slave-rotor approach below.

III. SLAVE ROTOR MEAN-FIELD THEORY

As slave-particle approaches are computationally in-
expensive and capable of accounting particle correla-
tions beyond standard mean-field theories and varia-
tional techniques, they are very popular in tackling
strongly correlated particle systems. In general, the
slave-particle transformation enlarges the original local
Fock space of the system onto a larger local Fock space
that contains more states due to the introduction of aux-
iliary particles. These extra nonphysical states are re-
moved in enlarge Hilbert space by imposing constraints
in an average way. Based on the studies on the first
slave-particle approach [48], it has been argued that
slave-particle approaches are equivalent to a statistically-
consistent Gutzwiller approximation [49–51]. Recently, a
constraint-free, invertible canonical slave-spin transfor-
mation has been proposed for strongly correlated sys-
tems [52, 53]. This slave-spin transformation is more ef-
fective than other slave-particle transformations as the
basis states of the Hilbert spaces of a particle on a single
site has one-to-one mapping. This one-to-one mapping
excludes the additional constraint equations in this slave-
spin scheme [53]. Instead of slave-particle or slave-spin
approaches, here we use the slave-rotor approach as it’s
mean-field theory is economical for strongly correlated
multi-orbital systems and it is constraint free at half-
filling [54–61]. In this approach, the particle operator is
decoupled into a fermion and a bosonic rotor that carries
the spin and the charge degrees of freedom, respectively.
The plan is to find a simpler description of the strongly
correlated nature in terms of new effective degrees of free-
dom.
First, the electron operator aimσ that annihilate an

electron with spin σ =↑, ↓ in orbital m = 1, 2, 3 at site i
is expressed as a product:

aimσ = e−iθifimσ, (5)

where fimσ represents six auxiliary fermions. This auxil-
iary fermion annihilates a spinon with spin σ in orbitalm
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and the local phase degree of freedom θi conjugates to the
total charge through the ”angular momentum” operator
Li = −i∂/∂θi,

[θi, Lj] = iδij . (6)

In this representation, while the rotor operator e−iθi re-
duces the site occupation by one unit, the eigenvalues of
the Li correspond to the possible number of electrons on
the lattice site. Notice that the name ”angular momen-
tum” is given due to the conservation of O(2) variable
θi ∈ [0, 2π] but nothing to do with physical angular mo-
mentum of the electrons. Using the fact that rotons and
spinons commute, one can show that the number opera-
tor of the physical particles coincide with that of spinons;

nimσ = a†imσaimσ = f †
imσfimσ = nf

imσ. (7)

As the eigenvalues of the angular momentum operator
l can have any integer values, one must impose a con-
straint to truncate the enlarge Hilbert space to remove
unphysical states,

Li =
∑

σ,m

nf
imσ − 3. (8)

This constraint glues charge and spin degrees of freedom
and can be taken into account by introducing a Lagrange
multiplier in the formalism. Notice that the angular mo-
mentum operator Li measure the particle number at each
site relative to the half-filling. In terms of new variables,
our Hamiltonian in Eq. (4) becomes,

H = −t
∑

〈ij〉,m,σ

f †
iσfjσe

i(θi−θj) +
∑

imσ

(ǫm − µ− h)f †
imσfimσ

+
Ueff

2

∑

i

L2
i ++Jeff

∑

i,m 6=m′

a†im↑aim′↑a
†
im↓aim′↓,(9)

where we assume nearest neighbor only hopping tij = t
for i and j nearest neighbors. Notice that the constraint
is treated on average so that Lagrange multiplier h is
site independent. While one of the effective on-site in-
teraction term simply becomes the kinetic energy for
the rotons, the other on-site effective interaction term
is still quartic. The hopping term now becomes quartic
in spinon and rotor operators as well. As the slave-rotor
transformation is completed, we can now decouple the
effective Hamiltonian using a mean-field description [55].
We defined three mean-field parameters,

∆m =
Jeff
N

∑

im′ 6=m

〈fi,m′↓fi,m′↑〉f (10)

Qθ =
∑

mσ

〈f †
imσfjmσ〉f (11)

Qf = 〈ei(θi−θj)〉θ ≡ 〈X†
iXj〉θ (12)

where i and j are nearest-neighbor sites and Xi = eiθi .
We will impose the condition |Xi|2 = 1 using a La-
grange multiplier later. The subscript f or θ means that
the quantum and thermal expectation values must be
taken with respect to the spinon and roton sectors, re-
spectively. Here we make the assumptions that these
expectation values are real and independent of bond di-
rections. This mean-field decoupling allows us to trans-
form H → Hf + Hθ, where Hθ represents an interact-
ing quantum XY model and Hf represents an interact-
ing f -particle spinon part. As the ADF’s are half-filling
electronic systems, the chemical potential µ = 0 and
the particle-hole symmetry requires Lagrange multiplier
h = 0. Without loss of generality, we can assume on-site
energy is independent of the orbital and set ǫm = 0, thus
∆m ≡ ∆. The mean-field decoupling scheme leads the
spinon and rotor part of the Hamiltonian to be;

Hf = −tQf

∑

〈ij〉,mσ

(f †
imσfjmσ + h.c)

+
∑

im

(∆†
mf †

im↑f
†
im↓ + h.c) (13)

Hθ = −tQθ

∑

〈ij〉

(X†
i Xj + h.c)− λ

∑

i

X†
iXi

− 1

2Ueff

∑

i

(i∂τX
†
i )(−i∂τXi), (14)

where λ is the Lagrange multiplier to impose the condi-
tion |Xi|2 = 1. Notice that the Hamiltonian is now de-
coupled and the mean field parameter Qf renormalizes
the hopping term and related to the renormalized effec-
tive mass m∗ = mQf . The expectation value of pairing
operator, ∆m represents the pairing of spinons. Notice
that the transformed decoupled Hamiltonians posses two
bosonic fields, X bosons and pair of spinons. As both of
these fields can undergo Bose-Einstein condensation, it
is possible to have two global U(1) broken symmetries,
one with respect to the roton field and the other with
respect to the spinon field. While the metallic phase
corresponds to the ordering of rotors and thus sponta-
neously break the O(2) symmetry, the superconducting
phase corresponds to the ordering of both rotons and pair
of spinons simultaneously. The simultaneous disordered
rotor and the pair of spinons corresponds to the Mott-
insulating phase.
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As the spinon part of the transformed Hamiltonian
Hf is quadratic in f-fermions, it can easily be diagonal-
ized. After performing Fourier transform into the mo-
mentum space and then usual Bogoliubov transforma-
tion, the spinon Hamiltonian Hf has the form,

Hf =
∑

k,m

Ekη
†
kmηkm, (15)

where ηkm represents the Bogoliubov quasiparticle in the
spinon sector and Ek =

√

ǫ2k +∆2 is the degenerate
eigenvalues.

Here, we defined the bare electronic energy dis-
persion for the electron sitting at C60 molecu-
lar sites on the FCC and BCC lattices, ǫk =
−Qfγk, where γk = 4tf [cos(kxa/2) cos(kya/2) +
cos(kxa/2) cos(kza/2)+ cos(kya/2) cos(kza/2)] and γk =
8tb[cos(kxa/2) cos(kya/2) cos(kza/2)], respectively. No-
tice that we set lattice constant to be a and we have
dropped the unimportant constant term in Hamiltonian
Hf . The Bogoliubov quasiparticle dispersion Ek is in-
dependent of the orbital index at half-filling, as we set
ǫm = 0.

The quantum and thermal expectation value of the Eq.
(10) with respect to the Hamiltonian Hf leads to the gap
equation,

1

2Jeff
= − 1

N

∑

k

tanh(βEk/2)

2Ek

, (16)

where N is the total number of lattice sites and β =
1/kBT is the dimensionless inverse temperature with
Boltzmann constant kB and physical temperature T .
Summing over nearest-neighbors and then calculating the
expectation value in Eq. (11) with respect to Hf gives,

ηtQθ =
6

N

∑

k

γk

[

1

2
− ǫk

2Ek

tanh(βEk/2)

]

(17)

where η = 12, 8 is the number of nearest neighbor C60

molecular sites of the FCC and BCC lattices, respec-
tively. The expression in the square bracket is the aver-
age electronic occupation number.

The final self-consistent equation Qf = 〈X†
iXj〉θ, can

easily be calculated using functional integral approach to
the roton part of the Hamiltonian with the constraint
equation |Xi|2 = 1 [55]. Introducing the rotor Green’s

function Gθ(k, τ) = 〈Xk(τ)X
†
k(0)〉, the constraint equa-

tion becomes,

1

N

∑

k

1

β

∑

n

Gθ(k, iνn) = 1, (18)

where νn = 2nπ/β are the bosonic Matsubara frequen-
cies. In coherent state path integral representation, the
rotor Green’s can be written as,

Gθ(k, τ) =

∫
∏

ki

dXkidX
∗

ki

2πi X(τ)X∗
k (0)e

−Sθ

∫
∏

ki

dXkidX
∗

ki

2πi e−Sθ

, (19)

where time index i labeling runs from 0 to ∞ correspond-
ing to τ = 0 and τ = β, respectively. The action in the
momentum space associates with the rotor part of the
Hamiltonian is given by,

Sθ =

∫ β

0

dτ
∑

k

X∗
k (−

1

2Ueff

∂2
τ − λ−Qθγk)Xk. (20)

Following the standard path integral formalism, the rotor
Green’s function for the non-zero wave vector is given by,

Gθ(k, iνn) = [ν2n/Ueff + λ−Qθγk]
−1. (21)

Notice that following the Ref. [54], a renormalization of
Ueff → Ueff/2 has been performed to preserve the exact
atomic limit. Then writing,

1

β

∑

n

Gθ(k, iνn) =
Ueff

β

∑

n

1

iνn +
√

Ueff (λ−Qθγk)

× 1

−iνn +
√

Ueff (λ−Qθγk)
,(22)

and performing a suitable contour integration, we find

1

β

∑

n

Gθ(k, iνn) =
Ueff

2
√

Ueff (λ−Qθγk)

coth[
β

2

√

Ueff (λ−Qθγk)]. (23)

Combining this with Eq. (18) and separating k = 0 term
in metallic phase leads the constraint equation to be,

1 = Z +
1

2N

∑

k

√

Ueff

λ−Qθγk

× coth[
β

2

√

Ueff (λ−Qθγk)], (24)

where 0 ≤ Z ≤ 1 is the rotor condensate amplitude which
represents the quasiparticle weight. As the rotor conden-
sation indicates the transition into the metallic phase,
non-zero quasiparticle weight Z represents the metallic
state. In the non-interacting limit Z → 1. Finally, sum-
ming over nearest-neighbors of Eq. (12) and transform-
ing into Fourier space leads to
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ηtQf = ηtZ +
1

N

∑

k

γk
β

∑

n

Gθ(k, iνn). (25)

Completing the contour integration, our final self consis-
tent equation becomes,

ηtQf = ηtZ − 1

2N

∑

k

γk

√

Ueff

λ−Qθγk

× coth[
β

2

√

Ueff (λ−Qθγk)]. (26)

This Qf is the mass enhancement factor of the quasipar-
ticle, thus it is proportional to the effective mass of the
quasiparticle m∗ = Qfm, where m is the bare mass of
the bare electrons. As the second term in Eq. (26) is
negative, mass enhancement is always greater than the
quasiparticle weight, Qf > Z at the saddle point level,
and remains finite even at rotor disordered phase where
Z = 0 [55]. The self-consistent equations (16), (17), (24),
and (26) allow us to find four unknown self-consistent
parameters, ∆, λ, Qf , and Qθ as a function of temper-
ature for given interaction parameters at different C60

molecular volume. As there are two possible global U(1)
symmetry breaking for the roton and spinon sectors of
the Hamiltonian, the slave-rotor theory for the ADF’s
predicts four distinct electronic phases. These four dif-
ferent phases can be characterized by two order param-
eters, the rotor condensate amplitude Z and the spinon
pairing amplitude ∆. While the rotor condensate am-
plitude Z represents the quasiparticle weight, the spinon
pairing amplitude ∆ represents the phase coherence of
spinons. In the metallic phase rotors are condensed and
the macroscopic fraction of rotor occupy the lowest en-
ergy El = −ηtQθ. As a result, the quasiparticle weight
Z is non-zero and the Lagrange multiplier or the rotor
chemical potential λ = −El is a constant in the metallic
phase. The metallic electronic phase emerges in this rotor
approach is the usual Fermi liquid phase. The quantum
and the thermal phase transition between Fermi liquid
and Mott-insulating phase is then characterized by the
vanishing quasiparticle weight Z at zero spinon pairing
amplitude. In the Mott-insulating phase the quasipar-
ticle weight Z is zero and the rotor chemical potential
λ > ηtQθ must be determined by self consistently. As
the superconducting phase requires both metallic behav-
ior and the phase coherence, the superconducting phase
is characterized by simultaneous non zero values of Z and
∆. In addition to the Fermi liquid, Mott-insulating, and
superconducting phases, another distinct phase can exist
for Z = 0 and ∆ 6= 0. This additional phase may be
similar to the pseudogap phase seen in cuprate systems
as it shows phase coherent, but insulating behaviour [55].
However, we find this additional phase does not exist for
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FIG. 5: (color online) Theoretical phase diagrams of the
BCC structured alkaline doped fullerides for weak
coupling [panel (a)] and strong coupling [panel (b)]

limits. Both panels (a) and (b) has the same
temperature scale in vertical axis. The phase diagrams
are constructed in temperature- C60 molecular volume
space. The temperature is scaled with the hopping

amplitude tb of the BCC structured fullerides.
Following abbreviations are used to classify different

electronic phases; MI: Mott-Insulator, FL: Fermi Liquid
metal, AFO: Antiferromagnetic orbital order, and

AFM: Antiferromagnetic spin order.

the ADF systems in our present study, as it becomes anti-
ferromagnetic phase when we use strong coupling model
in section IV.
The metal-insulator boundary line: The Fermi liquid-

Mott insulator boundary in temperature - C60 volume
parameter space is determined by setting ∆ = 0, Z = 0,
and λ = ηtQθ in self-consistent equations. We deter-
mine three unknown parameters; temperature, Qf , and
Qθ from equations (17), (24), and (26). The volume de-
pendence enters in our calculation through the interac-
tion parameters presented in FIG. 3 and FIG. 4. The
solid black line shows this metal-insulator boundary line
in panel (a) of FIG. 2 and panel (a) of FIG. 5 for the
FCC and BCC lattices, respectively.
The metal-superconductor boundary line: The Fermi

liquid-superconductor boundary is determine by setting
∆ = 0 and λ = ηtQθ in self-consistent equations. We
then determine four unknown parameters; temperature,
Qf , Qθ, and Z from equations (16), (17), (24), and (26).
The solid green line shows this metal-superconductor
boundary line in panel (a) of FIG. 2 for the FCC lat-
tice. The Fermi liquid superconductor boundary line for
the BCC structured fullerides is shown in FIG. 6.
When we solve our self-consistent equations for the

boundary lines, we converted momentum summation
into an integral over the first Brillouin zone by intro-
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FIG. 6: (color online) The low temperature Fermi liquid
superconductor transition for the BCC structured
alkaline doped fullerides in the weak coupling limit.

ducing a three-dimensional density of states, D(ǫ) =
1
N

∫

d3k
(2π)3 δ(ǫ+γk). The van Hove singularity of the FCC

lattice at the band edge has no effect on our calculation
as the integration is truncated just before the band edge.
In addition, in order to construct smooth boundary lines,
we use the interpolation curves for each volume in FIG. 3
and FIG. 4 in our calculations.
Notice that the self-consistent equations derived in this

section are valid only for the weak and intermediate in-
teraction parameters. In the following section, we will
use an effective strong coupling model to construct the
phase diagram at larger C60 molecular volume.

IV. STRONG INTERACTION LIMIT: AN

EFFECTIVE SPIN-ORBITAL MODEL

Using a second order perturbation approach, an effec-
tive spin-orbital model has been derived for the half-filled
three orbital Hubbard model relevant for the ADF com-
pounds [62]. In this derivation, it is assumed that the
exchange process for singly-occupied orbital on neighbor-
ing sites are negligible. For the case of Jeff < 0, the
physics is dominated by the same orbital single occupied
sites at neighboring sites. The remaining two orbitals
are either empty or doubly-occupied by the other two
electrons at half-filling. Therefore, a orbital pseudospin
operator ~τi has been introduced to represent the double
occupation at site i. The orbital operator τi at a given
site represents an orbital configuration where one orbital
is doubly occupied, one orbital is singly occupied, while
the remaining one is empty. Thus, τzi = 1/2 when the
given orbital is doubly-occupied and τzi = −1/2 when the
other one is doubly-occupied [62]. In the derivation of
effective spin-orbital model in Ref. [62], the pair-hopping
term and spin-flip terms are neglected. As a result, in the
second order perturbation theory, the exchange between

double-occupied and empty orbitals does not exist so that
τxi or τyi terms do not exist in the effective spin-orbital
model. Therefore, by replacing τzi → ~τi, the effective
spin-orbital model for the stronger coupling limit can be
written as [62],

Heff =
∑

〈ij〉

[Js~Si · ~Sj + Jτ~τi · ~τj (27)

+Jsτ (~τi · ~τj)Sz
i S

z
j + τszS

z
i S

z
j ].

Notice that this Hamiltonian is a simplified version of
the Hamiltonian derived in Ref. [62]. Here we have ne-
glected the coupling between projection operators Pi at
neighboring sites. When the coupling between projection
operators at neighboring sites is negative, the expectation
value of Pi’s are uniform. In this case, the spin-orbital
structures of the system is dominated by the Hamilto-
nian represented by Eq. 27. Using ab initio calculations
for the bare interaction parameters [24], we calculate the
exchange parameters derived in ref. [62] as a function of
C60 molecular volume.
For the entire molecular volume range, we find the

orbital-orbital exchange parameter Jτ is larger than the
spin-spin exchange parameter Js (Jτ > Js). Further, we
find that the other exchange parameters (Jsτ and τsz)
are much smaller than the orbital-orbital and spin-spin
exchange parameters. As Jsτ , τsz ≪ Js, Jτ , the physics
in the strong coupling limit determines by Js and Jτ .
Notice that Jτ > Js for the entire range of C60 molecular
volume, thus one can expect orbital ordering before the
spin ordering as one lowers the temperature.
Notice that the symmetry breaking of the orbital

pseudo spin τ represents the orbital ordering from the or-
bital disordered phase to an orbital ordered phase where
neighboring sites have the same single orbital occupation
and one of the remaining orbitals have a double occupa-
tion. In addition to the spin sector symmetry breaking
state, we are seeking for this orbital sector symmetry
breaking state in the strong coupling limit. In the fol-
lowing two sections, we construct a two-order parameter
Landau energy functional using a variational approach to
study the magnetic phase diagram of the ADF molecular
compounds.

V. VARIATIONAL MEAN FILED THEORY AT

STRONG CORRELATION LIMIT

First, we use a variational mean-field approach to de-
termine the magnetic ground state of a generic spin-
orbital Hamiltonian in the form of Heff . Once we iden-
tify the ground state magnetic structure of ADF’s, we
then construct a two-order parameter Landau energy
functional to study the magnetic phase diagram, origi-
nating from the competition between exchange terms in
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the Hamiltonian Heff and temperature. Experimentally,
a weak long ranged ordered antiferromagnetic phase has
been observed below the Neel temperature TN ∼ 2 K
for the FCC structured fullerides [11]. In contrast, a
strong two-sublattice antiferromagnetic phase has been
observed at a higher temperature TN ∼ 47 K for the
BCC fullerides [13, 14]. In order to study these magnetic
transitions, we wish to break up the original C60 molec-
ular lattices into two sublattices A and B, such that the
molecules in each sublattices are only connected to the
molecules on the other sublattice through the nearest-
neighbor connections. For bipartite lattices, the molecu-
lar lattice can be divided into two sublattices such that
the molecules in each sub-lattices are only connected to
the molecules on the other sublattice. In this notion,
the BCC lattice is a bipartite, however, the FCC lat-
tice is traditionally non-bipartite. For the FCC lattice
structure, we can still divide the lattice into two non-
traditional sublattices as follows. We treat the molecules
sitting at vortices of the FCC lattice belong to the A
sublattice and those sitting at the center of the faces be-
long to the B sublattice. As a result, our variational
mean field theory seeks for a strong two-sublattice mag-
netism for the BCC structured fullerides and a weak non-
bipartite magnetism for the FCC structured fullerides.
Once we divide the molecular lattice into two sublattices,
we take our normalized variational density matrices for
the sublattices A and B as ρXsτ = ρs,X ⊗ ρτ,X , where

ργ,i =
1

2
+

mγ

2
(sinαγσ

x
γ ±

√
2 cosαγ cosβγσ

z
γ), (28)

where σγ ’s are components of usual Pauli matrices for
spin and orbital sectors, γ = s, τ and 1 is the identity
matrix. The upper sign is for the sublattice i ∈ A and
the lower sign is for the sublattice i ∈ B.
This choice of density matrix gives us the sublattice

spin-magnetization (mγ=s) and orbital-magnetization
(mγ=τ ) for sublattices i ∈ A (upper sign) and i ∈ B
(lower sign), mγ,i = Tr(ρisτ ~σγ) ≡ ±ξγ±

√
2mγ cosαγ ẑ +

mγ sinαγ x̂, where ξγ+ = cosβγ , ξγ− = sinβγ . Here
Tr(L) represents a trace of a matrix L. The four vari-
ational parameters αγ and βγ are determined by min-
imizing the energy E = Tr(ρs,τHeff ). The different
combination of these variational parameters provide 16
different combinations for the spin-orbital model, de-
pending on the set of four variational values of the each
sector γ = s, τ . These 16 different combinations pro-
vide four distinct ordering patterns for each spin and
orbital sectors. While mγ = 0 represents the disor-
dered or para-γ ordering, non zero γ-order parameter
mγ represents a γ-ordering phase. The three γ-ordered
pases are XY -ferromagnetic-γ ordering (αγ = π/2), z-
antiferromagnetic-γ ordering (αγ = 0 and βγ = π/4),
and z-ferromagnetic-γ ordering (αγ = 0 and βγ = −π/4).
The values of the variational parameters depend on the

ground state energy that determines by the exchange in-
teraction parameters in the effective spin-orbital Hamil-
tonian Heff .

E =
Nη

8

[

Jsm
2
s[sin

2 αs − cos2 αs sin(2βs)] (29)

+Jτm
2
τ [sin

2 ατ − cos2 ατ sin(2βτ )]

−Jszm
2
s cos

2 αs sin(2βs)

+
Jsτ
4

m2
sm

2
τ cos

2 αs cos
2 ατ

× sin(2βs) sin(2βτ )

]

.

The entropy contribution to the free energy −TS =
kBTρs,τ ln ρs,τ ≡ kBT

∑

aγ
λaγ

lnλaγ
, where the four

eigen values of the density matrix is given by,

λaγ
=

1

2
± mγ

2

√

1 + cos2 αγ cos(2βγ). (30)

In general, the minimization of Helmholtz free energy
F = E − TS for given exchange interaction parameters
allows one to determine the variational parameters, thus
the spin and orbital structures on the FCC and BCC
lattices.

VI. LANDAU ENERGY FUNCTIONAL FOR

MAGNETIC AND ORBITAL ORDERS

For the exchange interaction parameters relevant for
the FCC and BCC structured fullerides, we find that the
ground state of ADF compounds are antiferromagnetic-
spin (AFM-S) and antiferromagnetic-orbital (AFM-O).
The ground state energy for this both spin and orbital
AFM ordered state is given by,

E =
Nη

8

[

− (Js + Jsz)m
2
s − Jτm

2
τ +

Jsτ
4

m2
sm

2
τ

]

. (31)

The entropy contribution to the free energy −TS =
kBT

∑

aγ
λaγ

lnλaγ
is then determines using the eigen

values of the density matrix, λaγ
= 1

2 (1±mγ). The free
enegy F = E−TS is now a function of two-order param-
eters, ms and mτ for AFM-spin order and AFM-orbital
order. In order to find the critical temperatures for the
spin and orbital ordering, we construct a Landau energy
functional by expanding the free energy in powers of ms

and mτ and keeping only the powers upto quartic order.
The two-order parameter Landau energy functional or
the free energy per site f = F/N up to the quartic order
is then given by,

f =
1

2
Asm

2
s +

1

2
Aτm

2
τ +

1

4
Bsm

4
s (32)

+
1

4
Bτm

4
τ +

1

2
Gm2

sm
2
τ ,
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where the temperature dependent constants are given by
As = −η(Js + Jsz)/4 + 2kBT , Aτ = −ηJτ/4 + kBT ,
Bs = Bτ = 2kBT/3, and G = ηJsτ/16. The spin-
orbital phase diagram can be constructed analytically by
minimizing the Landau energy functional for order pa-
rameters ms and mτ . By defining three new variables,
Xs = As/

√
Bs, Xτ = Aτ/

√
Bτ , and Λ = G/

√
BsBτ , we

find the paramagnetic phase is stable when both Xs > 0
andXτ > 0. For the AFM-spin and paramagnetic-orbital
phases requireXs to be negative. Similarly, for the AFM-
orbital and paramagnetic-spin phases require Xτ to be
negative. For the AFM-S and para-O phase requires
Λ > Xτ/Xs or Λ < max(−1, Xs/Xτ) when Xτ > 0
and Λ < min(Xs/Xτ , Xτ/Xs) or Λ < −1 with X2

s > X2
τ

when Xτ < 0. Likewise, for the para-S and AFM-O
phase requires Λ > Xs/Xτ or Λ < max(−1, Xτ/Xs)
when Xs > 0 and Λ < min(Xs/Xτ , Xτ/Xs) or Λ < −1
with X2

s < X2
τ when Xs < 0. If non of the above con-

ditions satisfy, we find both AFM-spin and AFM-orbital
phases, simultaneously. For the simultaneous spin and
orbital ordered phase requires both or one of the param-
eters Xs or Xτ to be negative. Using this criteria for the
exchange interaction parameters, we construct the mag-
netic phase boundaries for the ADF’s. These boundary
lines are shown in panel (b) of FIG. 2 and FIG. 5. While
the dashed red line shows the para magnet to antiferro-
orbital transition, the dashed blue line represents the
transition into antiferro-spin state.

VII. CONCLUSIONS AND DISCUSSION

The phase diagrams obtained by solving the
weak/intermediate coupling effective Hamiltonian and
the strong coupling effective Hamiltonian are shown in
FIG. 2, FIG. 5, and FIG. 6. Our phase diagrams
show all the features seen in experimental phase dia-
grams [8, 11, 13, 14].
As we have discussed above, both s-wave supercon-

ductivity and orbital ordering originate from the double
occupation of electrons in two-degenerate orbital. The
metal-insulator behavior originates from the singly oc-
cupied electron in the remaining orbital. As a result,
the metallic behavior can survive even below the or-
bital ordering temperature. Even though, ADF com-
pounds show Jahn-Teller distortion, there is no evidence
for structural transition across the metal-insulator tran-
sitiion [7, 8, 10]. Based on our understanding on tran-
sition metal oxides, when there is an orbital ordering, it
accompanies by the Jahn-Teller distortion [63]. The two
co-operative phenomena in transition metal oxides; elec-
tronic orbital ordering and structural Jahn-Teller distor-
tion are concurrent [64, 65]. In other words, both Jahn-
Teller distortion and orbital ordering occurs simultane-
ously in transition metal oxides. It is therefore, extremely
difficult to distinguish the cause and effect. The par-

ent compound of the colossal magneto-resistance man-
ganites LaMnO3 and the cubic perovskites KCuF3 are
considered as two classic text-book examples for these
co-operative simultaneous phenomena [66–69]. Here we
argue that the Jahn-Teller distortion detected in exper-
imental phase diagram is a result of the double electron
orbital ordering in FCC ADFs. However, unlike tran-
sition metal oxides, single occupied electron in one of
the orbitals does not participate in the orbital ordering.
Therefore, the ADF systems can show metallic behavior
in the Jahn-Teller distorted phase too. In this notion,
the Jahn-Teller metallic phase in experimental phase di-
agram resembles our antiferro-orbital ordered metallic
phase. As our strong coupling theory is not valid for the
weak coupling regime, we are unable to find the crossover
transition from the orbital ordered metallic phase to the
usual Fermi liquid phase. In a different note, one can
argue that the interpretation of Jahn-Teller metal phase
is due to the fact that the time scale of lattice dynam-
ics. When the time scale of lattice dynamics becomes
slow, the molecules can look distorted within the time
scale of experimental probe. In addition to antiferro-
orbital order, we find antiferro-spin ordering transition
at a lower temperature. As a result, the ADF systems at
stronger coupling limit is in a both spin and orbital or-
dered phase. Experimentally, the antiferromagnetism for
the FCC ADF’s has been observed at extremely low tem-
peratures [12]. Even below the Neel temperature TN ∼ 2
K, the specific heat measurements suggest that the sup-
pression of antiferromagnetism, thus the weak long-range
magnetic order [70]. This suppression of Neel’s order may
be partly attributed to the frustration caused by the non-
bipartite nature of the FCC lattice and the orbital order-
ing. As our sublattice division for the FCC lattice is not
a traditional sublattice division due to the non-bipartite
nature of the FCC lattice, the antiferromagnetism in our
theory is a weak one, but not well defined two-sub lattice
antiferromagnetism. On the other hand, the well defined
two sublattice antiferromagnetism for the BCC ADF’s
has been observed at a higher temperatures [13, 14]. This
observation is consistent with our strong coupling theory
for the BCC structured ADF’s.

Surprisingly with our mean-field approaches, we find
that when the s-wave superconducting states ends at
the metal-insulator transition line for the FCC struc-
ture, the system becomes orbital ordered antiferromag-
net. Notice that these two different states are discov-
ered by using two different effective Hamiltonians with
different approximate theoretical approaches. As our
theoretical scheme is incapable of detecting, we cannot
rule out the simultaneous existence of superconductiv-
ity and antiferromagnetism around the superconductor-
AFM transition line. Indeed, the experimental results
suggest that the simultaneous co-existence of antiferro-
magnetism and superconductivity in the BCC structured
fullerides [8, 13]. Further, based on our investigation, it is
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not surprising to see both s-wave superconductivity and
Mott-insulator proximity in the phase diagrams. This
is because these two phases emerge due to the electron
occupation of orbital selective scenarios. Using our ef-
fective theoretical model and its solution, we were able
to recover all four electronic phases discovered in exper-
imental phase diagram [11]. In addition to the common
Fermi liquid metallic phase and s-wave superconducting
phase, the experimental Jahn-Teller metallic (JMT) and
Jahn-Teller Mott-insulating (MJI) phases resemble our
orbitally ordered Fermi liquid phase and orbitally ordered
Mott-insulator, respectively. Moreover, we discover two
more additional phases in the temperature-C60 molecu-
lar volume space. The high-temperature Mott-insulator
(MI) and the low-temperature orbitally ordered antifer-
romagnetic (AFM) phases discovered in our theoretical
phase diagram have not been extensively investigated in
experimental phase diagrams [8, 11, 13]. However, it is
not surprising to expect high-temperature regular Mott-
insulator for the ADF compounds. The low-temperature
antiferromagnetic phase at larger C60 molecular volumes
has already been detected in experiments [12–14]. Notice
that we have neglected the possible charge density wave
stabilization in our study as the strong on-site Coulomb
repulsion dominates over the weak off-site Coulomb re-
pulsion in ADFs. The absence of charge density wave
state is experimentally confirmed by the NMR stud-
ies [13]. Further, the absence of the instability in the
charge sector can be justified by the existence of Mott
insulating phase due to the strong on-site Coulomb re-
pulsion where the charge degrees of freedom is frozen
and the total electronic occupation per site is fixed to be
at three. As the effective interorbital interaction U′ is
greater than the effective intraorbital interaction Ue, the
ADF compounds show orbital instability.

The boundary lines between different phases in
temperature-C60 molecular volume space are also in qual-
itative agreement with experiments. Notice that the we
have scaled temperature in our theoretical phase dia-
grams with the hopping amplitudes tf and tb for the
FCC and BCC structured fullerides, respectively. In ad-
dition to the Coulomb interaction parameters, the hop-
ping amplitudes also changes upon applying the inter-
nal pressure [24]. This is the reason why we have con-
structed our theoretical phase diagrams as a function of
dimensionless temperature kBT/tf and kBT/tb. In or-
der to a get a quantitative comparison, we use few spe-
cific known tf values for the FCC structured fullerides
from ref. [24] and calculate the physical temperatures
on the metal-insulator line. We find our theory slightly
over estimate the transition temperature. For example,
the metal-insulator transition occurs at about 860 K and
563 K at the C60 molecular volumes 750 A3 and 762 A3,
respectively. The overestimation of the theoretical metal-
superconductor transition temperature is bit higher than
that of the metal-insulator transition temperature. Sev-

eral factors, such as the crudeness of mean-field theo-
ries, the re-normalization of electron mass due to the
phonon contribution which we assumed to be negligible,
and the longer-range orbital dependent hopping may be
attributed to this overestimation. Regardless the quan-
titative agreement of the critical temperature, we man-
age to recover all other features in experimental phase
diagrams using our effective theoretical model. We are
unable to make a quantitative comparison for the BCC
structured fullerides as some bare interaction parame-
ters, such as phonon mediated couplings are not known.
Note that we use the same phonon mediated coupling
parameters for both FCC and BCC structured fullerides.
Therefore, our weak coupling phase diagram for the BCC
structured fullerides must be considered as qualitative.

In conclusion, by using recently calculated ab initio
interaction parameters we have proposed an effective
theoretical model for the alkali-doped fullerides com-
pounds. Employing a slave-rotor and an effective spin-
orbital mean field theories, we recovered all the domi-
nant features in experimental phase diagrams. We find
that the proximity of various electronic phases includ-
ing the Mott-insulator, the s-wave superconductor, and
the Fermi liquid and the existence of Jahn-Teller metallic
phase trigger from the orbital selective electronic occu-
pations.
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