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The interplay of photon spin and orbital angular momentum (OAM) in the optical fiber (1D
waveguide) has recently risen to the forefront of quantum nanophotonics. Here, we introduce the
fermionic dual of the optical fiber, the Dirac wire, which exhibits unique electronic spin and OAM
properties arising from confined solutions of the Dirac equation. The Dirac wires analyzed here
represent cylindrical generalizations of the Jackiw-Rebbi domain wall and the minimal topological
insulator, which are of significant interest in spintronics. We show the unique longitudinal spin
arising from electrons confined to propagation in a wire, an effect which is fundamentally prohibited
in planar geometries. Our work sheds light on the universal spatial dynamics of electron spin in
confined geometries and the duality between electronic and photonic spin.

I. INTRODUCTION

Confined solutions of Maxwell’s equations exhibit
unique phenomena such as transverse photon spin and
universal spin-momentum locking [1–6]. These effects do
not occur in conventional circularly polarized propagat-
ing plane waves where the spin is always directed lon-
gitudinally along the momentum vector [7]. One strik-
ing example is an optical fiber where Zeeman transitions
in a cold atom shows spin-dependent directional photon
transport [1, 2]. The goal of this paper is to introduce the
concept of Dirac waveguides and understand the intrigu-
ing spin characteristics of confined electronic waves. Our
work is motivated by the Dirac-Maxwell correspondence
[7–9] which studies the relativistic parallels between pho-
tons and electrons.

Here, we introduce the Dirac wire [see Fig. 1(a)], the
fermionic dual of the optical fiber. This system is the
cylindrical generalization of the m > 0, m < 0 domain
wall introduced by Jackiw and Rebbi [10]; the canoni-
cal planar system which spurred the field of topological
materials. Important recent work has shown a null ex-
pectation value for the relativistic electron spin in the
planar Jackiw-Rebbi problem [11]. In stark contrast,
the confined geometry of a cylinder supports longitu-
dinal fermionic spin along its axis [12, 13]. For com-
pleteness, we also mention that the two-dimensional (2D)
photonic dual of the Jackiw-Rebbi domain wall was dis-
covered only recently [14], and is described by the inter-
face of positive/negative gyrotropic media. Comparing
Maxwell’s equations to the 2D Dirac equation, the gy-
rotropic non-reciprocity coefficient was shown to play the
role of photonic mass [15–17].

The radius of the proposed Dirac wire is on the order
of the Compton wavelength of the electron; fundamen-
tally different from the well-known quantum wire limit
[18, 19]. We directly capture the relativistic effects of
spin-orbit coupling and spin quantization in the spatial
dynamics of the electron wavefunction. This allows us
to explicitly show the half-integer quantization of the to-

tal angular momentum in an inhomogeneous waveguide
system. This presents a unique approach to analyzing
spin-orbit coupling in confined geometries, compared to
traditional bulk energy band structure [20, 21]. Solu-
tions of the Dirac equation in a cylindrical geometry have
been studied in the context of quantum chromodynamics
[22], Weyl fermions [12], and electrons in a step poten-
tial [13]. Existence of the longitudinal spin component
as well as the spin-orbit coupling due to the confinement
have been predicted in Refs. [12] and [13]. However the
spatial dynamics of spin, as well as the connection to the
Jackiw-Rebbi problem in a purely relativistic electronic
problem have remained unexplored. Here, we analyze
cylindrical generalizations of both the Jackiw-Rebbi do-
main wall and the minimal topological insulator [23, 24],
which will be of interest in spintronics, majorana physics
[25–27], and electron quantum optics [28]. Our work also
motivates the concept of waveguide spin electrodynam-
ics where the relativistic interaction of confined electrons
and photons are manifested through the spin and OAM
properties [29, 30].

II. DIRAC WIRE

We describe the Dirac wire as a cylinder with an effec-
tive electronic mass m1, surrounded by a medium with
an effective electronic mass m2 [Fig. 1(a)]. The wire ra-
dius a ≈ λc is on the order of the Compton wavelength
of the electron λc = h/(m1vF), where h, m1, and vF
are the Planck constant, electron mass, and Fermi ve-
locity within the wire, respectively. We introduce three
distinct classes of Jackiw-Rebbi (JR) domains labeled as
JR+, JR−, and JR-D [Fig. 1(b)]. We also show impor-
tant fundamental differences between cylindrical JR solu-
tions (Dirac wires) and the conventional planar interface
problem [10] widely studied in the field of topological in-
sulators and majorana physics [27]. The main differences
between the cylindrical and planar JR problems are the
emergence of a longitudinal component of spin and the
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FIG. 1. (a) Schematic of the Dirac wire. (b) The three Jackiw-Rebbi (JR) type domains considered here are JR+ with electron
mass inside (m1) and outside (m2) the wire both positive, JR− with positive mass inside and negative mass outside, and JR-D
with a dispersive electronic mass inside [Eq. (5)] and an arbitrary mass outside. JR-D corresponds to the minimal topological
insulator. Distribution of the probability density, ψ†ψ, for the three problems are shown in the three panels of (b). The fields
are normalized such that

∫
ψ†ψ = 1 when integrated over the entire cross section. Notice that the probability amplitude of

the JR− state is localized around the perimeter of the wire ρ = a. Also, in the case of the JR-D problem, the wave function is
identically zero at the boundary and outside the wire ψ(ρ ≥ a) = 0.

existence of confined solutions for all-positive electronic
mass.

For a cylindrical Dirac waveguide, the difference in
electronic mass inside and outside the wire gives rise to
bound fermionic waves. These solutions can be derived
from the time-independent Dirac equation,

Hψµ =
(

vF ααα · ppp+mv2Fβ
)

ψµ = Eψµ. (1)

Eigenstates of the Dirac equation can be identified by five
good quantum numbers which correspond to five com-
muting operators. In cylindrical coordinates, these op-
erators are the Hamiltonian H , longitudinal total angu-
lar momentum Jz, longitudinal momentum pz, transverse
momentum p2⊥, and the transverse helicity h⊥ [22, 31].
The quantum numbers corresponding to these operators
respectively are E, ~µ, ~kz , ~k⊥, and s = ±1, where
µ ∈ Z + 1

2 is half-integer due to the fermionic nature
of electrons. The two solutions corresponding to the
two eigenvalues of transverse helicity s = ±1 are (see
Supplemental Material [32] and, also, references [31, 33]
therein),

u
(±)
µ,M (k)=

Cµe
ikzzeiµφ√
2









Zn+(k⊥ρ)e
−iφ/2

±Zn−
(k⊥ρ)e

+iφ/2

∓i~vF k⊥+ikz

M Zn+(k⊥ρ)e
−iφ/2

i~vF
k⊥+ikz

M Zn−
(k⊥ρ)e

+iφ/2









(2)

where Cµ is the normalization factor, M = E + mv2F,
k⊥ =

√

k2 − k2z , and n+ − 1
2 = n− + 1

2 = µ. Here, ~2k2

are the eigenvalues of total momentum operator ppp2, and
n± ∈ Z are integers. The s = ±1 signs appearing in

Eq. (2) refer to the eigenvalues of the transverse helicity
operator, h⊥. Zn(k⊥ρ) is a Bessel function of order n
and argument k⊥ρ, where ρ is the radial coordinate.

The vector spin operator of the Dirac equation is de-
fined as

Σ̂ΣΣ =
~

2

(

σσσ 0
0 σσσ

)

, (3)

where σσσ = (σx, σy , σz) are the Pauli matrices expressed
in vector operator form. The longitudinal component of
the orbital angular momentum (OAM) operator is

L̂z = −i~
∂

∂φ
. (4)

Together with the spin operator, we obtain the longitu-
dinal total angular momentum Ĵz = Σ̂z + L̂z. In the
subsequent sections we will use these operators to find
the expectation values of the spin and orbital angular
momentum of the modes.

A. Cylindrical Jackiw-Rebbi domain wall

We now solve the cylindrical wire geometry with an
effective electronic mass m1 surrounded by a medium
with an effective electronic mass m2. This is the cylindri-
cal analogue of the 1D Jackiw-Rebbi (JR) domain wall
[10, 23, 24]. Unlike the 1D problem, however, solutions of
the cylindrical geometry are not limited to the condition
m1m2 < 0. Therefore, we analyze two separate cases;
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FIG. 2. Spin and orbital angular momentum densities for the
three Jackiw-Rebbi (JR) domains (Fig. 1). As an example,
a = 20 Å, µ = 1

2
, and kz = 0. |m1|v

2
F and m2v

2
F are 1 eV and

2 eV, respectively. For the JR-D problem, m0v
2
F = 1 eV and

B~
2 = 50 eVÅ2 [35]. In all three scenarios we have assumed a

Fermi velocity of vF ≃ 1.52 × 105 m/s, such that the Comp-
ton wavelength is λc ≃ 8 Å. The values at the bottom of each
figure are the integrated quantities of the respective distribu-
tion over the entire cross-section of the problem. Note that
the spin and OAM are not individually conserved but their
summation (Jz = Sz + Lz) is. Although not individually
conserved, the difference in the distribution of spin and OAM
makes them locally distinguishable. This means that one can,
in principle, couple exclusively to spin or OAM locally.

the case when m1,m2 > 0 and label it as JR+, and the
case when m1 < 0, m2 > 0 and label it as JR−.

For the case of m1,m2 > 0 (JR+), solutions of Eq. (1)
only exist when m2 > m1 which requires a larger mass
(bandgap) outside the wire to confine the waves. This
condition is analogous to total internal reflection in an
optical fiber, which necessitates a lower refractive index
outside the fiber [34]. For the JR+ problem, the solu-
tions are characterized by k⊥1 real and k⊥2 imaginary
where k⊥i

=
√

k2i − k2z are the transverse (to the z-axis)
propagation constants. k1 and k2 being the characteristic
wavelengths inside and outside of the wire, respectively.
Being comprised of evanescent waves outside the wire
and standing waves inside, we denote these solutions as
hybrid modes Hµ,ν . The subscripts µ and ν correspond
to the total angular momentum eigenvalue and the order
of the radial zero of the Bessel function.

Figure 1(b) (left panel) shows the amplitude of the

wavefunction, ψ†ψ, for the dominant H 1
2 ,1

mode. Note
that for the JR+ problem, the solutions vanish at ρ→ ∞
as the wavefunction is evanescent outside the wire. Fig-
ure 2 (first row) displays the spatial distribution of lon-
gitudinal spin and orbital angular momentum densities
for this mode. Note that the azimuthal φ̂ and radial ρ̂
components of the spin and OAM are identically zero –
the angular momentum is purely longitudinal (directed
along ẑ). The integrated values of spin and OAM over the
entire x − y plane is recorded at the bottom of each fig-
ure. For the H 1

2 ,1
mode these values are not quantized,

Sz ≃ 0.49~ and Lz ≃ 0.01~, respectively. Their sum,
however, gives the half-integral value of Jz = Sz + Lz =
~

2 = µ~ of the total angular momentum. These results
show that while the spin and OAM are not separately
conserved quantities, their sum, the total angular mo-
mentum, is conserved with an eigenvalue ~µ. In other
words, the wavefunctions ψµ are also eigenfunctions of
the Ĵz operator [36].

Solutions for the Jackiw-Rebbi Dirac wire with m1 < 0
andm2 > 0 (JR−) are similar to that of the JR+ problem
with the difference that, in addition to the hybrid Hµ,ν

modes, another set of solutions exists. These are charac-
terized by decaying solutions outside and inside the wire
(k⊥1 and k⊥2 both imaginary). We label these waves as
decaying Dµ modes. In contrast to the hybrid modes,
the decaying modes have only one possible solution for
a given µ and are therefore labeled by only one quan-
tum number [32]. As shown in Fig. 1(b) (middle panel),
the wavefunction of this mode is predominantly concen-
trated around the perimeter of the wire and is therefore
the cylindrical analogue of the surface states in the pla-
nar Jackiw-Rebbi domain [10]. In fact, as shown later,
the gapless edge states of the planar geometry emerge
when a → ∞. The second row in Fig. 2 shows the spa-
tial distribution of longitudinal spin and orbital angular
momentum densities of the dominant mode, D 1

2
, for the

JR− problem. Here also, the spin and OAM are purely
longitudinal due to the confinement. This is in stark
contrast with the plane wave solutions of Dirac equa-
tion where the propagation direction of the electron does
not put any constraint on the direction of spin. In the
Dirac wire, however, the direction of spin of the electron
is fixed by the axis of the wire. The integrated values of
spin and OAM give Sz ≃ 0 and Lz ≃ 0.5~, respectively,
which again produces Jz = Sz + Lz = ~

2 .

B. Dispersive Jackiw-Rebbi
(topological insulator)

We now solve the Dirac Hamiltonian in Eq. (1) when
the electronic mass inside the wire is dispersive [23, 37],

m1v
2
F = m0v

2
F −B~

2k2, (5)

where m0 is the electron rest mass in the wire and B is
the dispersion factor. Denoted by JR-D, the dispersive
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mass gives rise to solutions satisfying open boundary con-
ditions (ψµ = 0) on the surface of the wire, irrespective
of the mass outside. This is confirmed by the plot of the
probability density [right panel in Fig. 1(b)], where the
wavefunction is identically zero for ρ ≥ a. The dispersive
mass considered here is the simplest model that produces
the gapless edge states on the surface of a topological in-
sulator [37, 38]. The dispersive mass in Eq. (5) gives
rise to non-trivial topological properties in the bulk [23]
which, according to the bulk-edge correspondence [39],
results in the appearance of gapless edge states. Exis-
tence of these edge states, irrespective of the surrounding
material, implies the open boundary condition where the
edge states vanish at the boundary of the topological in-
sulator [40]. It can be shown that the bulk Z2 invariant
is nontrivial (−1)ζ = sgn(−m0B) whenever m0B > 0.
Hence, the medium ρ < a is a topological insulator ζ = 1.
Note, we do not consider the inverse problem in this pa-
per, where the medium ρ > a is topological and the wire
is treated as a cylindrical defect.

In the JR-D case, the eigenfunctions are of similar form
as Eq. (2) with the difference that instead of two, there
are four eigenfunctions:

u
(+)

µ,M(1)(k
(1)), u

(−)

µ,M(1)(k
(1)),

u
(+)

µ,M(2)(k
(2)), u

(−)

µ,M(2)(k
(2)),

(6)

where M (i) = E+m0v
2
F −B~

2(k(i))2 and u
(±)

µ,M(i)(k
(i))’s

are given by Eq. (2). Here k
(i)
⊥ =

√

(k(i))2 − k2z with
k(i) being two possible propagation constants within the
wire, resulting from the dispersive mass [32],

k(1,2)=
vF√
2B~

[

(2m0B−1)±

√

(1−4m0B)+
4B2E2

v4F

]

1
2

. (7)

Unlike 1D solutions of the topological insulator [23, 24],
solutions of the cylindrical JR-D problem exist irrespec-
tive of the sign of m0B. In this paper, however, we only
consider the scenario when m0B > 0 since the solutions
of the trivial case ζ = 0 are similar to the JR+ domain
and are not particularly interesting.

Like the JR± states, we can label the modes depend-
ing on whether the two transverse propagation constants,
k
(1)
⊥ and k

(2)
⊥ are real or imaginary. Note that k(1)⊥ and

k
(2)
⊥ both belong to the interior of the wire ρ < a as

there are now two characteristic wavelengths [Eq. (7)].
In addition to Hµ,ν and Dµ, two other types of modes la-
beled as Rµ,ν and Cµ,ν exist in the JR-D problem. These
modes refer to real (Rµ,ν) and complex (Cµ,ν) solutions
for k(1,2)⊥ , respectively. The third row of Fig. 2 shows the
spin and orbital angular momenta densities for the dom-
inant mode, R 1

2 ,1
, of the JR-D problem. Here also, the

azimuthal and radial components of the spin and OAM
are identically zero – only the longitudinal part is non-
vanishing. Due to spin-orbit coupling, the spin and or-
bital angular momentum are not individually conserved.

This means it is difficult to distinguish between the sep-
arate contributions of the total angular momentum in an
experiment. The spatial distributions of spin and OAM
in Fig. 2, however, suggest a way to observe the spin or
orbital parts locally. Analyzing the spin and orbital parts
of R 1

2 ,1
for the JR-D problem, for instance, we observe

that while the spin is dominantly at the center of the
wire, the orbital angular momentum is zero here and is
distributed closer to the perimeter. This shows that using
a point contact at the center of the wire, one can exclu-
sively couple to the local spin of the R 1

2 ,1
mode where

the orbital angular momentum vanishes. This method
is in analogy to the approach used in Refs. [2] and [1]
where a trapped atom is used to probe the local spin of
the photonic field in an optical fiber.

III. DISPERSION OF DIRAC WAVEGUIDES

The dispersion relation E = E(kz) of the dominant
modes is presented in Fig. 3(a) and shows significantly
larger group velocities for JR− and JR-D compared to
JR+, which implies higher conductivity. Anomalous dis-
persion for JR-D can be explained by the fact that, due to
the dispersive electronic mass, charge transport is dom-
inated by holes rather than electrons. This means that,
in the regions where the group velocity becomes negative
[inset of Fig. 3(a)], charge currents propagate along the
negative ẑ direction for kz > 0 [32].

As shown in Fig. 3(b), the bandgap in the JR+ prob-
lem plateaus to m1 (1 eV) for large radii. Since the Hµ,ν

modes of the JR+ domain wall are mostly distributed
within the bulk of the wire [Fig. 1(b)], these modes trans-
form into bulk modes when a→ ∞. Note, however, that
the spin dynamics in a fully bulk problem would be dif-
ferent from the spin in the JR+ problem due to the differ-
ent rotational symmetries of the systems. The rotational
symmetry around the z−axis in the Dirac wire problem
would be replaced by the full rotational symmetry in the
bulk problem in the limit a→ ∞. This means that a de-
terministic electronic spin along any particular direction
would disappear.

For JR−, on the other hand, the bandgap closes when
a→ ∞. This can be explained by the fact that the mode
is predominantly distributed around the perimeter of the
wire [middle panel of Fig. 1(b)]. Therefore, the D 1

2
mode

transforms into the edge states of the conventional 1D
Jackiw-Rebbi problem [10] when a → ∞. The opening
of the bandgap in the JR− problem, for small wire radius,
can be explained by the hybridization of the edge state
modes [41].

More interesting is the bandgap of the topological in-
sulator (JR-D) where for some finite values of radii, the
bandgap closes and re-opens in an oscillatory fashion
with a [inset of Fig. 3(b)] . For JR-D, spin also exhibits
oscillatory behavior and passes through regions of pos-
itive and negative Sz upon increasing the wire radius
[Fig. 3(c)]. However, as a → ∞, angular momentum is
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FIG. 3. (a) Dispersion and group velocities (inset) for the dominant modes of JR+ (dashed blue), JR− (dotted red), and JR-D
(solid black). Group velocities are normalized to the Fermi velocity vF ≃ 1.52 × 105 m/s. Wire radius dependence of (b)
bandgaps, (c) spin, and (d) OAM for the three problems at kz = 0. Here µ = 1

2
, kz = 0, |m1|v

2
F = 1 eV, m2v

2
F = 2 eV, and

λc ≃ 8 Å. The insets show the zoomed in region of the corresponding figure for wire radius between 1nm and 5nm. For the
topological insulator (JR-D), m0v

2
F = 1 eV and B~

2 = 50 eVÅ2. Due to confinement in the cylindrical geometry, the bandgap
is opened for all three problems. For JR-D, however, the bandgap closes and reopens for certain values of a as seen in the inset
of panel (b). Note that the summation Jz = Sz + Lz produces the conserved value of 1

2
in all three cases. In the limit a→ ∞,

OAM vanishes Lz → 0 for JR+, while spin vanishes Sz → 0 for JR− and JR-D.

dominated by spin for the JR+ problem and conversely
dominated by OAM for JR− and JR-D. This means the
dominant JR− and JR-D modes behave like edge states
in the limit a → ∞ and circulate around the perime-
ter of the material. Another important observation in
Fig. 3(c) is that, although the spin is not conserved in
any problem, its absolute value never exceeds 1

2 . This
holds for all higher orders of µ and ν as well [32]. Note
also, for all three cases, the total angular momentum is
still conserved irrespective of the value of the wire radius.

IV. CONCLUSION

Our results show important differences between the 1D
JR [10, 23] and the cylindrical JR domain walls. In con-
trast to the 1D problem, the confined geometry of JR±

and JR-D display non-zero longitudinal spin and orbital
angular momentum. Moreover, we have shown that a

sign change in mass is not necessary for the existence of
confined cylindrical solutions of the Dirac equation. La-
beled by JR+, these Dirac waveguide solutions are the
electronic analogue of the guided modes of an optical
fiber [34]. This observation makes wire geometry an ex-
cellent candidate as a Dirac waveguide, where electronic
wave packets can propagate inside the wire with high
confinement.

While the experimental observation of these effects is
challenging for a wire of this radius, we believe our re-
sults will push current techniques further due to their
importance in spintronics and electron transport. Topo-
logical insulator nanowires of radius a = 20 nm have
been reported in the literature [42]. Although the JR-D
problem has the simplest model for topological insula-
tors, the parameters used here are within the range of
real materials. For Bi2Se3, for instance, a Fermi veloc-
ity of vF ≃ 5.0 × 105m/s, a bandgap of about 0.28 eV,
and dispersion factor of 56.6 eVÅ2 has been reported [35].
The parameters for other topological insulators such as
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Bi2Te3 and Sb2Te3 show that the Dirac wire is realizable
using available materials [38]. The surrounding environ-
ment can be either vacuum or another material with a
bandgap larger than that of the wire. While the differ-
ence between the bandgap in vacuum and these materi-
als can be very large, the solutions still exist only with
a higher confinement inside the wire. Smaller effective
mass ratios between the cladding and core of the wire can
be achieved by placing, for instance, the Bi2Se3 wires of
0.28 eV bandgap inside or on top of a bulk Bi2Te3 mate-

rial of 0.3 eV bandgap. The study of such possibilities is
the subject of more comprehensive future research.
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