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Space-time modulation adds another powerful degree of freedom to the manipulation of classical
wave systems. It opens the door for complex control of wave behavior beyond the reach of stationary
systems, such as nonreciprocal wave transport and realization of gain media. Here we generalize
the transfer matrix method and use it to create a general framework to solve wave propagation
problems in time-varying acoustic, electromagnetic, and electric circuit systems. The proposed
method provides a versatile approach for the study of general space-time varying systems, which
allows any number of time-modulated elements with arbitrary modulation profile, facilities the
investigation of high order modes, and provides an interface between space-time modulated systems
and other systems.

I. INTRODUCTION

Wave propagation in systems where the material parameters or structures are varying in both space and time has
attracted considerable attention in recent years. Such space-time modulation provides an efficient means to break time-
reversal symmetry and has found many applications in the field of integrated circuits (IC), optics, electromagnetics
(EM) and acoustics. For example, time-varying transmission lines (TVTL) have been used to create frequency
converters, multipliers and non-reciprocal devices such as isolators and circulators [1–9]. Recently, the idea of achieving
non-reciprocity through space-time modulation has been applied to modern optical and electromagnetic systems [10–
22]. For mechanical waves, space-time modulated elastic beams have been proposed to create a directional band gap
[23, 24]. Space-time modulated mass-spring systems have also been proposed to study directional wave manipulation
for elastic waves [25, 26]. In airborne acoustics, frequency converters and parametric amplifiers have been demonstrated
in a space-time modulated metamaterial [27]. Acoustic isolators [28], circulators [29–31] and topological insulators
[32] have also been demonstrated with temporally modulated resonators.

Theoretical tools available for studying time-varying wave systems generally fall into several categories. In time
varying transmission lines [1–3], the most commonly used approach is to directly solve the coupled differential equations
by assuming slowly varying envelope, and then solve the coupled equations for the envelope. However, such approach
only considers a small number of interacting waveguide modes and neglects all the higher order modes. Taking these
modes into account will result in additional coupled differential equations and make the system more difficult to solve
efficiently. Space-time Floquet theory [23, 25, 33], on the other hand, calculates the band structure for an infinitely
long system. However, the Floquet theory only predicts which waveguide modes are coupled, and it does not provide
detailed information on how do waves change gradually in such systems. Both theoretical approaches deal with
infinitely long and continuous systems. While in practice, the systems must have a finite length and, in many cases,
the realization for space-time modulated media are discretized [9, 24, 26, 27]. Furthermore, both solving coupled
wave equations directly and space-time Floquet theory deal with wave propagation where the material properties are
modulated sinusoidally and they cannot be applied to more complicated modulation profiles. For discrete systems
with space-time varying boundary conditions, the system can be solved by balancing the harmonics at each order
[14, 28]. Another type of discrete system involves one or more coupled resonators and is generally solved by the
coupled mode theory (CMT) [34, 35]. CMT has been widely applied in mechanical-optical systems [16, 19, 36] and
is recently introduced in acoustics [30, 31]. However, the coupling coefficients are usually not easy to determine or
design in practice. Furthermore, for both harmonic balancing and CMT, as the number of resonators or boundaries
increases, and with the increase of modes taken into account, the coupled equations become complicated to solve.

Here we propose a generalized transfer matrix approach for solving one-dimensional space-time varying systems.
By setting up time-varying boundary conditions and rewriting them into transfer matrix form, the effects of time
variation are localized. Therefore, all the time-varying components can be described individually so that we can
calculate a system with arbitrary number of time-varying elements and arbitrary spatial modulation profile by simply
multiplying their transfer matrices. It is shown that with small number of elements, it reduces to harmonic balancing
method described in [28], while with large number of modulated elements with small spacing, it reduces to the
continuous counterpart [27] and space-time Floquet theory [23, 25, 33]. The results are verified with finite-difference
time-domain (FDTD) simulations. Our approach provides a versatile platform to investigate the behavior of general
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space-time modulated systems. Compared with current available theoretical tools, it has a number of advantages.
First, it handles multiple higher-order waves and arbitrary number of modulated elements without increasing the
computational complexity, therefore provides better approximation. Second, it offers many degrees of freedom and
thus allows the study of arbitrary modulation parameters such as modulation depth and phase for each element,
or even the study of a system with random time modulation, which is difficult for other approaches. Third, it has
no constraint for the element spacing or material properties. Therefore, it facilities the study of interplay of time-
dependent wave behavior with other classical behaviors, such as resonances, multiple scattering and inhomogeneity.
Fourth, by representing the whole system with a transfer matrix, our method provides an interface for the study of
interaction between a space-time modulated system with other stationary and non-stationary systems.

The paper is organized as follows. First, we present the formulation of transfer matrix method for general time-
varying systems. We used acoustic representation and the results can be directly applied to EM waves and ICs,
and the corresponding formulation can be found in the APPENDIX A. The approach is then applied to several
examples to show its capabilities and advantages. In the first case, we present the design of an acoustic diode without
operating at resonance frequencies. The isolation level can be controlled by employing different number of modulated
resonators and modulation strategies. The off-resonance feature makes the design robust to loss and fabrication errors.
In the second case, we will show that when the phase-matching condition is met, parametric mode conversion and
amplification can be achieved with multiple space-time modulated resonators. With this example, we will discuss the
impact of high-order modes, multiple scattering, and how this approach reduces to continuous theory and space-time
Floquet theory under several conditions.

II. MATRIX REPRESENTATION OF A SPACE-TIME VARYING SYSTEM

In this section, we exemplify the derivation with the acoustic representation. The general procedure applies to
the study of EM waves and ICs, where one just need to substitute the pressure and velocity (p, v) with electric and
magnetic field (E,H) or voltage and current (V, I). The details for the EM and IC formulation, and the corresponding
realization approaches are summarized in APPENDIX A.

A. Response of time varying load in series

Consider an acoustic waveguide loaded with a time-varying impedance sheet ZL. Assume the modulation amplitude
is sufficiently small, and the impedance is varying harmonically in the form of

ZL(ω, t) = ZL0(ω)[1 + a cos (Ωt+ φ)], (1)

where Ω is the modulation frequency, φ is the initial phase of the modulation, a denotes the modulation depth
(a � 1), and ZL0(ω) is the impedance without modulation. In general, a can be a function of frequency depending
on the physical parameters under modulation. A plane wave is launched into the waveguide with angular frequency
ω0. We would like to note here that the impedance is defined in frequency domain, such a treatment shall be valid
under the slow and weak modulation. However, as is shown in later sections, such a treatment yields great agreement
between calculation and simulation even when the modulation frequency is twice as the input frequency. Due to the
time-varying load impedance, harmonics will be generated. Therefore, the pressure and velocity on the upstream and
downstream of the load are written as

p∓ =

∞∑
n=−∞

pn∓e
jωnt (2)

v∓ =

∞∑
n=−∞

vn∓e
jωnt, (3)

where ωn = ω0 ± nΩ. The boundary condition at the position of the load should satisfy

p− − p+ =

∞∑
n=−∞

ZnLv
n
+e

jωnt (4)

v− = v+, (5)

where the superscript denotes the impedance at each order of harmonic, i.e., ZnL = ZL(ωn, t) and so on. Put the
expression of the series load, pressure and velocity into Eqs. (4) and (5), equate the terms with ejωnt using the
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relation cos(Ωt+ φ) = 1
2 [ej(Ωt+φ) + e−j(Ωt+φ)], we can rewrite the boundary conditions in terms of each order of the

harmonics:

pn− − pn+ = ZnL0v
n
+ +

aZn−1
L0

2
ejφvn−1

+

+
aZn+1

L0

2
e−jφvn+1

+

(6)

vn− = vn+ (7)

where ZnL0 = ZL0(ωn). The transfer matrix M is defined as

...
pn−1
−
vn−1
−
pn−
vn−
pn+1
−
vn+1
−
...


= M



...
pn−1

+

vn−1
+

pn+
vn+
pn+1

+

vn+1
+
...


. (8)

With the boundary conditions, the transfer matrix at the load can be written as

M =



...
...

...
...

...
...

. . . 1 Zn−1
L0 0

aZn
L0

2 e−jφ 0 0 . . .
. . . 0 1 0 0 0 0 . . .

. . . 0
aZn−1

L0

2 ejφ 1 ZnL0 0
aZn+1

L0

2 e−jφ . . .
. . . 0 0 0 1 0 0 . . .

. . . 0 0 0
aZn

L0

2 ejφ 1 Zn+1
L0 . . .

. . . 0 0 0 0 0 1 . . .
...

...
...

...
...

...


(9)

For waves travelling in an empty waveguide, the transfer matrix can be simply written as

MT =



...
...

...
. . . Mn−1

T 0 0 . . .
. . . 0 Mn

T 0 . . .
. . . 0 0 Mn+1

T . . .
...

...
...

 (10)

where

M i
T =

[
cos(kid) jZ0 sin(kid)
j
Z0

sin(kid) cos(kid)

]
, (i = ...n− 1, n, n+ 1...) (11)

Here Z0 is the characteristic impedance of air, ki is the wavenumber for the i th order wave, and d is the length of
the waveguide. All the coupling terms between each order are 0 since the waveguide is stationary.

For a system composed of N equally-spaced cascaded time-varying impedance sheets, the transfer matrix can be
calculated as Mtot = M1MTM2MT . . .MTMN , where Mi(i = 1, . . . , N) denotes the transfer matrix of the impedance
loads, and MT is the transfer matrix of each section of the empty waveguide.

B. Response of time varying load in parallel

For a shunted load on the waveguide, it is more convenient to use the effective admittance, defined as YL =
SL/(SwZL) where Sw and SL denote the cross sectional area of the waveguide and the load, respectively. Note here
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that the admittance is scaled by the ratio between the cross sectional areas to keep the generality of our formulation.
Now we assume the admittance varies in the form of YL(ω, t) = YL0(ω)[1 + a cos (Ωt+ φ)]. In this case, the boundary
condition at the position of the load should satisfy

p− = p+ (12)

v− − v+ =

∞∑
n=−∞

Y nL p
n
+e

jωnt. (13)

The boundary conditions for each order then become

pn− = pn+ (14)

vn− − vn+ = Y nL0p
n
+ +

aY n−1
L0

2
ejφpn−1

+

+
aY n+1

L0

2
e−jφpn+1

+ .

(15)

where the superscript denotes the admittance at each order of harmonic, i.e., Y nL0 = YL0(ωn). In this case, the transfer
matrix at the load becomes

M =



...
...

...
...

...
...

. . . 1 0 0 0 0 0 . . .

. . . Y n−1
L0 1

aY n
L0

2 e−jφ 0 0 0 . . .
. . . 0 0 1 0 0 0 . . .

. . .
aY n−1

L0

2 ejφ 0 Y nL0 1
aY n+1

L0

2 e−jφ 0 . . .
. . . 0 0 0 0 1 0 . . .

. . . 0 0
aY n

L0

2 ejφ 0 Y n+1
L0 1 . . .

...
...

...
...

...
...


(16)

We can see from Eq. (9) and Eq. (16) that the loads in series and in parallel are similar, which is consistent with
the passive cases [37]. With the transfer matrix for the loads and empty waveguide, the transfer matrix for the entire
structure can be calculated by multiplying the transfer matrices for all components. Hence, the transmission and
reflection coefficients can be calculated by converting the transfer matrix into scattering matrix. The conversion from
transfer matrix to scattering matrix is given in APPENDIX B.

With the transfer matrix method we can, in principle, take all the orders of harmonics into account. However,
in practice, the matrix shall be truncated to account only for the orders that are non-negligible. Compared with
existing theories that characterize space-time modulated systems, there are three main advantages for the proposed
method. First, our proposed transfer matrix method takes higher order modes into account. It will be shown in the
following sections that these high-order modes exhibit non-negligible effects on the wave propagation. Second, current
theories focus on the travelling wave-like modulation where the modulation has linear phase gradient along the space,
while with the proposed theory, the transfer matrix for all the time-varying elements can be written independently.
Therefore, by cascading the transfer matrices, we will be able to calculate arbitrary space-time modulation profile.
Third, the generalized transfer matrix method provides an interface between time-varying systems and other systems,
so it can be used to study the interaction between stationary and non-stationary systems.

C. An acoustic case: waveguide loaded with space-time modulated Helmholtz resonators

In this section, we will look into a practical system in acoustics where a waveguide is side-loaded with a series of
Helmholtz resonators whose cavity heights are modulated in both space and time. The schematic diagram is shown
in Fig. 1. Since the resonators are side-loaded, such configuration fits the parallel-load case. The impedance of
a Helmholtz resonator can be represented with Z = jωL + 1

jωC where L = ρl, C = Scavh
SLρc2

. Here ρ and c are the

density and sound speed in air, l is the corrected length of the neck, SL and Scav are the area of the neck and cavity,
respectively.
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FIG. 1: Schematic representation of a waveguide loaded with arbitrary number of space-time modulated resonators

Assume the height of the cavity h varies in the form of h(t) = h0[1 +m cos(Ωt+ φ)], and the modulation is weak,
i.e., m� 1. The impedance of a single Helmholtz resonator can be written as

Z(ωn, t) = Zn[1− mZcn
Zn

cos(Ωt+ φ)] (17)

where Zn = jωnL+ 1
jωnC0

and Zcn = 1
jωnC0

, C0 = Scavh0

SLρc2
is the acoustic capacitance for a resonator without modu-

lation [14, 27, 28]. The impedance variation corresponds to the parallel load case described in Sec. II. Inserting the
impedance into the above formalism, a physical acoustic system can be represented by the transfer matrix framework
described above.

III. EXAMPLES IN THE DISCRETIZED SPACE-TIME MODULATED SYSTEMS

A. Non-reciprocal sound transport

Non-reciprocal devices that create directional control of the energy flow have numerous applications and, conse-
quently, have attracted significant attention in recent years. Non-reciprocal sound transport using space-time modu-
lation has recently been reported by cascading modulated resonators [28] or forming a circulator [30, 32]. However,
the proposed designs require resonators with high quality factor, and the system has to work close to the resonant
frequency. These features bring challenges in realization, and make the system sensitive to inevitable losses and
fabrication errors. In this section, we will demonstrate the design of non-reciprocal device by cascading multiple
space-time modulated resonators. Different from the existing strategy who derives the requirements for the res-
onators, we start from a physically realizable resonator design, and then determine the number of resonators needed
to generate sufficient non-reciprocal response at off-resonance frequencies.

For the demonstration of these features, we pick an acoustic waveguide with cross section 9.5mm × 9.5mm. The
Helmholtz resonator dimension is shown in Fig. 1. The cavity is cylindrical with radius R = 14mm and height
h0 = 10mm. The neck is also cylindrical with radius r = 4.5mm and neck length l = 1.6mm. With the help of
numerical finite element simulation performed in COMSOL Multiphysics, we calculated the resonance frequency as
2566Hz, which yields an effective neck length l = 4.7mm. The distance between adjacent shunted resonators is 40mm.
We would like to note here that the resonator parameters are chosen for demonstrating the capability of the method
and not optimizing the device performance. The performance is expected to be improved by further optimization
of the geometric parameters, which is not the focus of this paper. Since the calculation deals with slow and weak
modulation, we chose the modulation frequency as 100 Hz and the modulation depth m as 0.15. The modulation phase
of each resonator has a linear gradient, i.e., the modulation phase for the nth resonator can be written as φn = n∆φ
where ∆φ is the phase difference between adjacent resonators. The incident wave is assumed to be sinusoidal with
angular frequency ω0, and is defined as the 0th order. We have studied the same system truncated at different orders,
and found that for this particular system, the transmission coefficients converge after the ±5th order is considered.
The detailed information is summarized in APPENDIX C. In the study, the waves are truncated to ±10th order.

By multiplying transfer matrices and converting the total transfer matrix into scattering matrix, the transmission
and reflection coefficients for such a system can be calculated. Since we truncated the waves to ±10th order, the size
of scattering matrix is 42 by 42, and S22,21 and S21,22 represent the transmission coefficients for the 0th order wave in
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FIG. 2: Transmission ratio for 2, 3, 4 and 5 space-time modulated resonators with the change of input frequency and modulation
phase step. With the increased number of resonators, the range of available transmission ratio can be increased.

the forward direction and backward direction (see APPENDIX B for details). Here we define the transmission ratio
Γ = |S22,21|/|S21,22| as a measure of resulting asymmetry. In Fig. 2, we show the change of Γ by varying the phase
difference ∆φ from −π to π and incident frequency from 1000Hz to 2000Hz, in the cases of 2, 3, 4 and 5 cascaded
resonators.

With two modulated resonators, the asymmetric modulation creates a directional bias, which leads to non-
reciprocity. However, due to the low quality factor of the resonance and that the incident wave is not close to the
resonant frequency, the non-reciprocal effect is very weak. In this case, the maximum value of Γ is 1.022 (0.189dB). As
the number of resonators increases, the maximum transmission ratio reaches 1.274 (2.103dB), 3.585 (11.089dB) and
51.55 (34.245dB) with 3, 4 and 5 modulated resonators. This indicates that with more resonators which introduce
more design degrees of freedom, nonreciprocal transmission can be realized conveniently using this approach.

The analytic model is verified with 1D FDTD simulation implemented in MATLAB [38]. The background media
is lossless air with density ρ0 = 1.21kg/m3 and speed of sound c0 = 343m/s. The time step is 1 × 10−7s and the
grid is 5 × 10−5m. Here we use the 4-resonator case as an example. The dimensions for the Helmholtz resonator
are the same as we used in the analytic calculation. In the simulation, each of the 3D resonator is represented with
a time-dependent harmonic oscillator and they couple into the 1D waveguide by inducing the discontinuity in local
velocity at each position. As an example, the phase step for each resonator and the incident frequency are chosen
as ∆φ = 0.24π and 1550 Hz, respectively. The waveguide before and behind the structure is 0.5m, and radiation
boundaries are applied to eliminate reflection from both sides. Fig. 3 shows the comparison between theoretical
calculated transmission coefficients and the simulation results. We can see excellent agreement between them where
not only the fundamental order, but also all the higher order waves are well captured. The results again confirm
that for multiple resonators, higher-order harmonics need to be considered to accurately represent the system. The
0th order transmission coefficients for the positive direction are 0.2612 and 0.2598 in calculation and simulation,
respectively, and for the negative direction, they are 0.0729 and 0.0860. The small discrepancy may come from the
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FIG. 3: Comparison of the transmission coefficients for each order between theoretical calculation and FDTD simulation. The
amplitudes of all the involved orders agree well. Non-reciprocal sound transport is achieved at the fundamental frequency of
1550 Hz.

first-order truncation in Eq. (17) for impedance approximation.

B. Parametric frequency conversion and parametric amplification

It has been shown that in TVTL, parametric frequency conversion and amplification can be achieved if the phase-
matching condition is met [1, 2, 9]. Similar phenomena have also been demonstrated in acousto-optic effects [16, 19]
and space-time modulated media [27]. However, the realization of space-time modulated effective material usually
means approximating a continuous system. In many practical cases, however, it is difficult to discretize the system
into deep sub-wavelength scales. In these cases, multiple scattering may have significant impact on the wave behavior.
Therefore, our theoretical model has great advantage in characterizing such discretized space-time varying systems
since the scattering is intrinsically built into the model. In this section, we will show that parametric frequency
conversion and parametric amplification can be achieved in such a discrete space-time modulated system. It will also
be shown that as we truncate the model to only considering the fundamental mode and targeted mode, the results
agree well with those obtained with TVTL and space-time modulated metamaterials. On the other hand, as we will
discuss in this section, that in many cases, high-order modes and multiple reflections have non-negligible effects on
the fundamental modes and therefore, neglecting them will not yield accurate predictions.

The system configuration we use in this section is as follows: the cross section of the acoustic waveguide is 20mm×
20mm; the cavity of the Helmholtz resonator is cylindrical with radius R = 10mm and height h0 = 5mm; the neck
is also cylindrical with radius r = 1.5mm and effective neck length l = 3.1mm. These parameters yield a resonance
frequency of 2091 Hz. Note here that we use different set of parameters than the previous case so that the influence
of high-order modes and discretization can be better visualized. The distance between adjacent shunted resonators is
40mm. The modulation depth m is chosen as 0.15. The effective dispersion curve can be obtained in simulation by
effective parameter retrieval [39]. The simulation is done with commercial finite element analysis package COMSOL
Multiphysics.

The first case we show in this section is the realization of parametric frequency conversion. The total length of the
modulated section is 20 m, containing 500 space-time modulated resonators. Two empty waveguides are connected
to both sides of the modulated section. In this case, we use 1600 Hz wave as the fundamental mode (0th order) and
1300 Hz wave as the target mode (-1st order). The wave numbers for the two modes are retrieved as k1 = 32.69
rad/m and k2 = 25.67 rad/m. Therefore, the modulation frequency for each resonator is 300 Hz and the phase step
is ∆φ = (k1 − k2)∆d = 0.28 rad [27]. Assuming a monochromatic wave (0th order) is incident from the empty
waveguide, Fig. 4(a) shows the variation of normalized amplitudes of each mode as the wave propagates along the
system. Here the wave amplitudes are obtained by calculating the transmission and reflection coefficients of the
space-time modulated system. This is done by computing the total transfer matrix and converting it to scattering
matrix by assuming air on both sides. Hence, the pressure and velocity for each mode at the incident port can be
calculated. By doing this, the interaction between the space-time modulated system and two empty waveguides can
be conveniently analyzed. With total pressure and velocity on the input side, the pressure amplitudes for each order,
normalized by the incident wave, at an arbitrary position can be calculated with the help of transfer matrix. FDTD
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FIG. 4: Comparison between theory and simulation for the case of parametric frequency conversion. (a) The wave amplitudes
for 0 to ±5th order waves along the waveguide predicted by the transfer matrix method. The calculation truncated at ±10th
order. (b) Amplitudes for 0 to ±5th order waves obtained from simulation. (c) Wave amplitudes calculated by the transfer
matrix method when only 0th and -1st order is considered, showing that high-order waves have non-negligible effect. (d) The
corresponding calculation using the continuous model as a reference.

simulation is performed to verify the theoretical results. In the simulation, the time step and space step are 1× 10−7s
and 5 × 10−5m, respectively. Radiation boundaries are applied on both ends of the empty waveguides to eliminate
reflection. Sinusoidal wave is incident from the air section, and we wait 0.4 seconds for the system to reach its steady
state. The waveform along the modulated section from 0.3s to 0.4s is recorded and Fourier Transform is performed to
analyze its spectrum. Figure. 4(b) shows how energy transfers back and forth among each modes while propagating
in the system. The simulation results are in good agreement with the theoretical predictions. The theoretically
calculated distance needed for one cycle of such transition is 9.426 m, while in simulation, the measured distance is
9.069 m. We can see that apart from the incident mode and the target mode, the +1st mode and ±2nd modes all
have non-negligible amplitudes. The small oscillation in the amplitudes is a result of interaction with higher order
modes. This can be confirmed by truncating the model to only account for the fundamental mode and the target
mode, with all other modes neglected. The mode amplitudes calculated from the simplified model are shown in Fig.
4(c) and we can see that the small oscillation disappears when the high order modes are turned off. This confirms
our conclusion that high-order modes cannot be neglected while treating the time-varying systems. As a comparison,
the corresponding results calculated from a continuous effective material model[27] is shown in Fig. 4(d). We can see
the energy swapping between two modes, but the amplitudes of two modes are not accurate and the prediction of the
distance needed for a cycle of transition is 7.357m, which is 18.9% off from the simulation results. This is because in the
continuous model, plane wave solutions are assumed. Therefore, with the effective medium approximation, the unit
cells are required to be subwavelength. However, this assumption no longer holds near the resonant frequency range,
as the wave velocity becomes very slow such that the wavelength is comparable to the spacing between resonators.
In our case, the wavelength for the −1st, 0th and 1st modes are 24.5cm, 19.2cm and 14.1cm, respectively. They are
comparable to the separation of 4cm and don’t satisfy the subwavelength condition. In principle, if the separation
is reduced to infinitesimal, the effective medium approximation will become valid again. However, in practice, it is
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FIG. 5: Comparison between theory and simulation for the case of parametric amplification (non-Hermitian gain media). (a)
The wave amplitudes for 0 to ±2nd order waves along the waveguide predicted by the transfer matrix method. The calculation
truncated at ±10th order. (b) Amplitudes for 0 to ±2th order waves obtained from simulation.

very hard to achieve due to the following reasons. First, as we have demonstrated above, higher order harmonics
have non-negligible effects on the system performance. To meet the effective medium approximation, the separation
has to be much smaller than the smallest wavelength (highest order) taken into account. Second, as the frequency
approaches the bandgap, the effective sound speed will become extremely slow. Such effect will make the wavelength
even smaller for these frequency ranges, so that the requirement of effective medium approximation becomes very
hard to meet. Therefore, to better predict the wave behavior in a practical system, the Bragg scattering needs to be
considered.

The same resonator geometry is used for the parametric amplification case. To better show how the waves grow
gradually, the length of modulated section is shortened to 10m. In this case, the modulation frequency is set as
2500 Hz. The frequencies for the incident wave and generated wave are 1000 and 1500Hz, corresponding to wave
numbers k1 = 19.46rad/m and k2 = 30.18rad/m, respectively. Therefore, the phase step between each resonator
is ∆φ = (k1 + k2)∆d = 1.99rad[27]. The comparison between theory and simulation is given in Fig. 5, where
exponential growth for both waves are observed, following the form of cosh(αx) for 1000Hz wave and sinh(αx) for
1500Hz wave, where α represents the growth rate. α is obtained by fitting the data to the function, and is found to
be 0.2056rad/m and 0.2036rad/m for theory and simulation, showing excellent agreement. The small oscillation in
the growing amplitude is the result of discretization. In both theoretical calculation and simulation, the high-order
waves are small because these modes are far from the allowed modes in the system, so that the coupling is very weak.

IV. DISCUSSION AND CONCLUSION

In this paper, we proposed a framework to solve one dimensional wave propagation problems in time-varying
acoustic, EM and IC systems through a generalization of the transfer matrix method. By analyzing the boundary
conditions for time-varying impedance in series and in parallel, the boundary conditions can be set up by balancing
the harmonics. The boundary condition is converted to a generalized transfer matrix form which facilitates the
computation process. With this step, the influence of a time-varying element to the whole system is completely
localized. Localization provides the advantage of making the time-varying components to serve as individual building
blocks, and thus allows the study of time-varying system with complicated modulation profiles by simply multiplying
individual pieces.

Compared with currently available models for studying general space-time varying systems, our approach has many
advantages. First, it enables the study of complicated spatial modulation strategies instead of simple sinusoidal
travelling wave-like modulation. While dealing with travelling wave-like system, it can reduce to the continuous
counterpart, such as solving the coupled partial differential equations (as used in TVTL and space-time modulated
metamaterials) and space-time Floquet theory, with much more precise details. Second, high-order modes are taken
into consideration, and we showed the influence of high-order harmonics with two examples: designing non-reciprocal
sound transporting device and parametric mode conversion. Third, the computational complexity does not grow with
the system complexity, therefore, it is effective in studying large systems, while produces the same results as [28] when
the size of the system is small. Fourth, it allows the study of the interaction between space-time varying behavior
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and other classical wave behaviors, such as multiple scattering. Fifth, it enables the study of the interaction between
a time-varying system and other existing systems, and thus offers possibilities for more advanced and complex wave
control. Note here that the approach proposed in this paper is a close approximation instead of an accurate result. To
the best of our knowledge, there are two main sources for the inaccuracy. The first one is by taking the first term of
the Taylor expansion while representing the time-varying impedances, this is valid only when the modulation depth
is small enough. Another source of inaccuracy is the truncation of higher order modes. To predict a system with
sufficient accuracy, one should include sufficient number of modes in calculation, as illustrated in Appendix C.

Space-time modulation puts a new twist to controlling wave behaviors, and opens the door for unprecedented
wave manipulation capabilities that are not possible for stationary systems. The possibility offered by modulation
is much richer than nonreciprocal wave transport, frequency conversion and the realization of gain media. It will be
important that future research explore richer phenomena enabled by various modulation profiles instead of the simple
travelling wave-like modulation. It will also be beneficial to extend the transfer matrix framework by investigating
more complicated modulation waveform, such as square wave, saw tooth wave, etc. Additionally, we would like to
note that even in a 1D system, there remains a lot of room to explore which require more insights on the system
behaviors under space-time modulation, extension of such a theory into 2D or 3D systems could prove quite beneficial
to the literature. We hope this theory will serve as a powerful tool and versatile platform for studying the general
space-time modulated systems.
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APPENDIX A: ELECTROMAGNETIC AND IC FORMULATION OF THE SPACE-TIME MODULATED
SYSTEMS

Here we use TE-polarized EM waves as an example. Assume the
#»

E field is pointing in the x̂ direction and the
wave is propagating along ẑ axis. The waves on the upstream and downstream of a thin impedance sheet connected
in series with the waveguide can be written as

#»

E∓ =

∞∑
n=−∞

#»

En∓e
jωnt (A1)

#»

H∓ =

∞∑
n=−∞

#»

Hn
∓e

jωnt, (A2)

If the impedance sheet only have an electric response and no magnetic response, the boundary conditions for electro-
magnetic waves can be expressed as

#»

E− =
#»

E+ (A3)

ẑ × (
#»

H+ −
#»

H−) =

∞∑
n=−∞

Y nL
#»

En−e
jωnt. (A4)

where YL is the admittance of the sheet. Now if we assume the admittance varies in the form of YL(ω) = YL0(ω)[1 +
a cos (Ωt+ φ)], the boundary conditions for each order then become

#»

En− =
#»

En+ (A5)

(−ẑ × #»

Hn
−)− (−ẑ × #»

Hn
+) = Y nL0

#»

En− +
aY n−1

L0

2
ejφ

#»

En−1
−

+
aY n+1

L0

2
e−jφ

#»

En+1
− .

(A6)
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TABLE I: Analogy of acoustic, EM and IC systems and the corresponding realization for series and parallel cases

System type Discontinuity Realization

Series case
Acoustics p Membranes and plates

EM
#»
E Impedance sheets that create magnetic current

IC V Impedance in series

parallel case
Acoustics v Side-loaded resonators

EM −n̂× #»
H Impedance sheets that create electric current

IC I Impedance in parallel

A

B

C

D

- +

p-

v-

p+

v+

Upstream Structure Downstream

FIG. B1: Schematic of the system for matrix conversion.

Comparing Eqs. (A3,A4) and Eqs. (12,13), we can see that they take the same form, where
#»

E corresponds to p

and −ẑ × #»

H corresponds to v. This corresponds to the parallel impedance case in acoustics. By converting these
equations into the transfer matrix form, all the field terms will be isolated so that the transfer matrix is exactly the
same as we derived in Eq. (16). Similar equations can be found for an impedance sheet with time-varying magnetic
responses.

For IC systems, the analogy is straightforward. By replacing p with V and v with I, all the matrices can be obtained
and remain the same form as in the acoustic formulation. Here V and I denote voltage and current.

The analogy of acoustics, EM and IC systems in the series case and parallel case, and the corresponding realization
approaches are summarized in Table I.

APPENDIX B: CONVERSION FROM TRANSFER MATRIX TO SCATTERING MATRIX

The schematic diagram is shown in Fig. B1. The transfer matrix and scattering matrix of the structure are defined
as 

...
pn−1
−
vn−1
−
pn−
vn−
pn+1
−
vn+1
−
...


= M



...
pn−1

+

vn−1
+

pn+
vn+
pn+1

+

vn+1
+
...


(B1)



...
Bn−1

Cn−1

Bn

Cn

Bn+1

Cn+1

...


= S



...
An−1

Dn−1

An

Dn

An+1

Dn+1

...


(B2)
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The calculation strategy of transfer matrix is given in Sec. II., and can be expressed as

M =



...
...

...

. . . M
′

n−1,n−1 M
′

n−1,n M
′

n−1,n+1 . . .

. . . M
′

n,n−1 M
′

n,n M
′

n,n+1 . . .

. . . M
′

n+1,n−1 M
′

n+1,n M
′

n+1,n+1 . . .
...

...
...

 , (B3)

where

M
′

i,j =

[
M2i−1,2j−1 M2i−1,2j

M2i,2j−1 M2i,2j

]
(B4)

Using An, Bn, Cn and Dn to represent pn−, vn−, pn+ and vn+, we can rewrite Eq. B1 as



...
...

...
. . . Soutn−1,n−1 Soutn−1,n Soutn−1,n+1 . . .
. . . Soutn,n−1 Soutn,n Soutn,n+1 . . .
. . . Soutn+1,n−1 Soutn+1,n Soutn+1,n+1 . . .

...
...

...





...
Outn−1

Outn

Outn+1

...

 =



...
...

...
. . . Sinn−1,n−1 Sinn−1,n Sinn−1,n+1 . . .
. . . Sinn,n−1 Sinn,n Sinn,n+1 . . .
. . . Sinn+1,n−1 Sinn+1,n Sinn+1,n+1 . . .

...
...

...





...
Inn−1

Inn

Inn+1

...

 , (B5)

where

Outn =

[
Bn

Cn

]
(B6)

Inn =

[
An

Dn

]
(B7)

Souti,j =


δij −

(
M
′

i,j(1, 1) +
M
′

i,j(1, 2)

z0

)

−δij
z0
−

(
M
′

i,j(2, 1) +
M
′

i,j(2, 2)

z0

)
 (B8)

Sini,j =


−δij

(
M
′

i,j(1, 1)−
M
′

i,j(1, 2)

z0

)

−δij
z0

(
M
′

i,j(2, 1)−
M
′

i,j(2, 2)

z0

)
 (B9)

δij is the Kronecker delta. Then, we can get the scattering matrix of the structure as

S =
[
Sout

]−1
Sin. (B10)

From the definition of the scattering matrix (Eq. B2), we can see that the transmission and reflection coefficients
for each order can be directly obtained from the corresponding elements in the scattering matrix. For simplicity, we
represent the scattering matrix as

S =



...
...

...

. . . S
′

n−1,n−1 S
′

n−1,n S
′

n−1,n+1 . . .

. . . S
′

n,n−1 S
′

n,n S
′

n,n+1 . . .

. . . S
′

n+1,n−1 S
′

n+1,n S
′

n+1,n+1 . . .
...

...
...

 , (B11)
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FIG. C1: Transmission coefficients for 0 to ±5 order modes as we increase the number of orders taken into account. (a) and (b)
showed the scenario when the incident wave is from positive direction and negative direction, respectively. The results remain
unaffected after accounting for the ±5 order.

where

S
′

i,j =

[
r+
i,j t−i,j
t+i,j r−i,j

]
(B12)

with each element in S
′

i,j represents the reflection and transmission coefficients for positive direction and negative
direction, corresponding to the ith order output and jth order input.

APPENDIX C: CONVERGENCE OF THE RESULTS AS MORE ORDERS ARE TAKEN INTO
ACCOUNT

One of the main advantages for our proposed method is that it takes high order waves into account. Then it
comes to the question of what kind of truncation gives reliable results. Here we pick the 4-resonator non-reciprocal
sound transmission case as an example. Fig. C1 shows the convergence of transmission coefficient amplitudes for 0
to ±5 order waves as we increase the number of modes taken into account during the truncation process. Here the
transmission coefficient for each order is defined as the ratio between the complex amplitude for each order and the
incident wave amplitude. They can be directly obtained from the corresponding components in the scattering matrix.
From Fig. C1 we can see that high order harmonics do play a role, and sometimes they are higher than the 0th order,
therefore, omitting them during calculation will lead to inaccurate results. In our example case, the amplitudes of
harmonics higher than ±5th order are lower than 0.01, and therefore can be neglected. The amplitudes of 0 to ±5
orders remain essentially unchanged after the 5th order is taken into account. This justifies our calculation where we
truncated the matrix at ±10 order.
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