

CHCRUS

This is the accepted manuscript made available via CHORUS. The article has been published as:

Intrinsic interfacial van der Waals monolayers and their effect on the high-temperature superconductor FeSe/SrTiO_{3}

Hunter Sims, Donovan N. Leonard, Axiel Yaël Birenbaum, Zhuozhi Ge, Tom Berlijn, Lian Li, Valentino R. Cooper, Matthew F. Chisholm, and Sokrates T. Pantelides Phys. Rev. B **100**, 144103 — Published 14 October 2019 DOI: 10.1103/PhysRevB.100.144103

Intrinsic interfacial van der Waals monolayers and their effect on the high-temperature superconductor FeSe / $SrTiO_3$

Hunter Sims,^{1,2} Donovan N. Leonard,² Axiel Yael Birenbaum,² Zhuozhi Ge,³ Tom Berlijn,⁴

Lian Li,³ Valentino R. Cooper,² Matthew F. Chisholm,² and Sokrates T. Pantelides^{1,2}

¹Department of Physics and Astronomy, Vanderbilt University, Nashville TN 37235, USA ²Materials Science and Technology Division, Oak Ridge National Lab, Oak Ridge TN 37831, USA ³Department of Physics and Astronomy, West Virginia University, Morgantown, WV 26506, USA ⁴Center for Nanophase Materials Sciences and Computational Sciences and Engineering Division

Abstract

The sensitive dependence of monolayer materials on their environment often gives rise to unexpected properties. It was recently demonstrated that monolayer FeSe on a SrTiO₃ substrate exhibits a much higher superconducting critical temperature Tc than the bulk material. Here, we examine the interfacial structure of FeSe / SrTiO₃ and the effect of an interfacial Ti_{1+x}O₂ layer on the increased T_c using a combination of scanning transmission electron microscopy and density functional theory. We find Ti_{1+x}O₂ forms its own quasi-two-dimensional layer, bonding to both the substrate and the FeSe film by van der Waals interactions. The excess Ti in this layer can reconstruct the FeSe Fermi surface in a manner consistent with experimental observations. Moreover, the interfacial layer introduces symmetry-breaking distortions in the FeSe film that may favor a T_c increase. These results suggest that this common substrate may be functionalized to modify the electronic structure of a variety of thin films and monolayers.

I. INTRODUCTION

In his Nobel lecture, Herbert Kroemer opened with the statement "Often, it may be said that the interface is the device." [1] Nowhere is this more true than in two-dimensional materials. The band gap of graphene provides an apt example. It is on the order of μeV in the freestanding material, [2] arising from spin-orbit coupling, but reaches tens of meV on Cu(111) or hexagonal BN[3] or hundreds of meV in bilayer graphene.[4] The environmental effects are not limited to the band gap. Interactions in a 2D material exhibit a strong dependence on the dielectric environment in neighboring substrate or vacuum layers. [5] Perhaps the most surprising recent example of substrate dependence in a two-dimensional material is the recent discovery of an order-of-magnitude increase in superconducting transition temperature when a single layer of FeSe is grown on $SrTiO_3$ (STO).[6–9] Similar results have been obtained on $BaTiO_3[10]$ and both anatase and rutile $TiO_2[11, 12]$ substrates, but the effect is absent on $Bi_2Se_3[13]$ and on graphene, [14] where T_c instead decreases as the thickness decreases (as is more typical of superconducting thin films such as Pb[15]). Bulk FeSe, the limiting case of the intercalated iron-pnictide/-chalcogenide system, exhibits a T_c of only about 8 K[16] (reaching 37 K under pressure[17]), but in FeSe/SrTiO₃ T_c increases by roughly an order of magnitude to 60 - 80 K, with one report reaching above 100 K.[18]

It is reasonable to conclude that this enhanced superconductivity is directly related to

the interaction between the FeSe monolayer (ML) and the substrate. Theoretical investigations into the role of the substrate have focused on the coupling between electronic states in the FeSe film and phonons in $SrTiO_3[19-22]$ or on charge transfer or doping between the substrate and monolayer. [21] Huang and Hoffman noted however, that the structure of the interface between FeSe and STO has not been definitively established. [23] Li et al. [24] reported scanning-transmission-electron-microscopy (STEM) Z-contrast images that reveal a pair of TiO_x layers (double layer), similar to the previously reported double-layered reconstruction of the bare STO(001) surface. [25, 26] At about the same time, Zou *et al.* [27]proposed that the $\sqrt{13} \times \sqrt{13}$ STO(001) surface reconstruction persists in an interfacial TiO_x double layer, noting that O vacancies can account for the observation that ML FeSe on STO lacks a Γ hole pocket in the angularly resolved photoemission spectroscopy (ARPES) data, [7, 28] supporting this claim with diffraction experiments. As in the work of Cao et al., [29] an oxygen vacancy concentration of 50% is invoked to explain the doping. However, these proposed double-layer interfacial structures do not fully match the features of the Z-contrast images of Ref. 24. More specifically, they do not account for the large spacing that is evident between the proposed pair of TiO_x layers in the STEM images contained therein. The precise atomic structure of the interfacial layer is a necessary component of any explanation of the emergent properties of FeSe/STO.

In this work, we determine the structure of the interface, including a $Ti_{1+x}O_2$ interlayer that is bonded to both the substrate and the FeSe ML by van der Waals (vdW) interactions, accounting for the observed large separation between the interlayer and the substrate. Both $Ti_{1+x}O_2$ and FeSe are essentially two-dimensional monolayers floating above the substrate, making $SrTiO_3/Ti_{1+x}O_2/FeSe$ a van der Waals heterostructure. We show that the interlayer can be best described as a ($\sqrt{2} \times \sqrt{2}$)R45° $Ti_{1.5}O_2$ layer. We demonstrate that the excess Ti in the interlayer contributes to the vanishing of the Fermi surface at the zone center.[7, 28] This change to the electronic structure is significant because changes caused by oxygen vacancies, which have been discussed extensively along with those of excess Fe/Se ratio,[11, 27, 29–31] have been excluded as the primary source of doping.[11] The 50% excess Ti dopes electrons into the Γ hole pocket in the FeSe band structure, with the extent of the doping inversely proportional to the strength of the bonding between the $Ti_{1+x}O_2$ and FeSe layers. Further, we find that the interlayer breaks the in-plane symmetry of the Fe sublattice yielding short and long Fe-Fe bonds of the same order of magnitude as that in superconducting Fe_{1.01}Se. Finally, we show that a floating, van-der-Waals-bonded $\text{Ti}_{1+x}O_2$ monolayer is not unique to FeSe/SrTiO₃. A similar TiO₂-like layer exists in bulk $\text{Cs}_x\text{Ti}_{2-x/4}O_4$.[32] Previous work on bronze-phase VO₂ grown on SrTiO₃ reports an extra titanium oxide layer at the interface,[33] which we now show is the same as that between FeSe and STO.

II. METHODS

A. Experimental

Single layer FeSe films were grown on $SrTiO_3(001)$ substrates by molecular beam epitaxy (MBE) in an ultrahigh vacuum system with a base pressure below 1.0×10^{-10} Torr. Nb-doped STO(001) (0.05 wt%) substrates were first annealed at 950°C for 30 min to produce an atomically flat surface. Then FeSe films were grown with a 0.2 monolayer-per-minute rate under Se-rich conditions (Fe/Se: 1/10) where Fe flux was provided by electron beam evaporation and Se from a Knudsen cell. The FeSe films followed a layer-by-layer growth mode and were post annealed at ~550°C for 2-3 hours to remove excess Se and reach a superconducting state.

STM/STS measurements were conducted in an ultrahigh-vacuum system with a base pressure of 2.0×10^{-11} Torr, which is directly connected to the MBE growth chamber. Electrochemically etched polycrystalline W tips, or mechanically sharpened Pt tips were used for STM imaging at room temperature and liquid helium temperature with the bias voltage applied to the sample. Tunneling spectra were taken at 6 K with a lock-in amplifier (at bias modulation of 0.4 mV at 860 Hz).

A Hitachi NB5000 FIB/SEM was used to prepare electron transparent foils for STEM imaging. To protect the FeSe monolayers from ion beam damage during preparation, the sample was coated with layers of C and Au. Thinning to electron transparency begun with deposition of a 25 micron long, 4 micron wide, ~500nm thick tungsten capping layer to reduce "curtaining" during the final FIB thinning of the specimen. A 40kV focused beam of Ga ions, with a current of 19.5nA, was used to mill material away down into the substrate to a depth of 4-5 microns. The FeSe/SrTiO₃ sample was lifted from the bulk and transferred to a Cu Omniprobe half grid. A series of milling steps was then used to reduce the thickness of the lamella until it was electron transparent (<100nm). The thinning was started with a

40kV, 3.36nA beam and thinned the sample to 1 micron thick. For the final milling step the beam parameters were changed to 20kV, 0.11nA and the sample was thinned to <100nm thick. To minimize Ga implantation effects and amorphous material on the surface of the FIB thinned sample, a Fischione Nanomill was operated at 900eV with a 130pA Ar+ beam for ion milling of the sample at $\pm 10^{\circ}$ for 15min each side.

High angle annular dark field (HAADF) imaging the FeSe/SrTiO₃ interface was performed at 200kV with a Nion UltraSTEM 200 using an illumination half angle of 30 mrad and an inner detector half angle of 65 mrad. Image simulations were carried out using the same parameters within a multislice model[34] including the quantum excitation of phonons model,[35] as implemented in the program μ STEM.[36]

B. Computational

All density functional theory calculations were performed within the PBEsol generalized gradient approximation 37 using the Vienna ab-initio Simulation Package (VASP). 38 We use the projector augmented-wave (PAW)[39] pseudopotentials of Kresse and Joubert[40] and the van der Waals corrections of Tkatchenko and Scheffler. [41] We use the DFT+U method of Liechtenstein *et al.* [42] with U = 3 eV for Ti and 1.5 eV for Fe, taking J = 0.9eV in both cases. To improve the accuracy of our results, we included Sr 4s and 4p and Ti 3s and 3p semi-core states as valence states. U_{Ti} was chosen as a typical value for bulk systems (e.g. Ref. 43), while U_{Fe} was chosen to give a reasonable Fe - Se height. Although reduced dimensionality can affect these parameters, we emphasize that neither the interface properties nor the presence of the in-plane distortion depends on U. Relaxations were performed on a Γ -centered $4 \times 4 \times 1$ k-point mesh using a plane-wave cut-off of 600 eV. Final calculations on the converged structure used an $8 \times 8 \times 1$ k mesh, which was sufficient to converge all reported quantities. Our simulation cell consisted of three layers of SrTiO₃ with both faces terminated in TiO₂, the Ti_{1+x}O₂ interlayer (x = 0.5), a single layer of FeSe, and about 18 Å of vacuum. Terminating the back surface at the SrO layer rather than TiO_2 did not alter the properties of the interface. Structural relaxations were constrained to the experimental in-plane STO lattice parameter (a = 3.905 Å) to reduce the effect of the limited thickness of the STO slab.

STO surface reconstruction depends sensitively on sample preparation methods (See

FIG. 1. a) HAADF cross-sectional view of the FeSe/SrTiO₃ interface. An additional titanium oxide layer is visible above the standard TiO₂-terminated STO surface. (b) Simulated HAADF image using a multislice code,[34] based on our interface structure (without capping layer). c) Intensity profiles (averaged over a width of 8 pixels or about 13 pm) across the vertical (red) region of the interface layer and d) the same region in the simulated image, both of which show clear indications of a faint atomic column between the bright Ti columns. e) Intensity profile (with the same width) over the interfacial layer (orange) and TiO₂ terminated substrate (blue curve, white dashed rectangle), demonstrating that the additional intensity between the bright columns is again above the noise threshold, and f) the same region in the simulated image, showing good agreement in all respects.

Ref. 44 and additional references contained therein). It follows that the structure of the interfacial monolayer may also depend on the substrate-growth conditions. For example, the substrate in Ref. 27 was grown at atmospheric pressure and annealed under O_2 , leading

to a different pre-deposition STO surface than is observed in the present samples, which were grown under ultra-high-vacuum conditions. Furthermore, the surface undergoes additional reconstruction during the FeSe-monolayer growth (see Figure A1b). The focus of the present work, therefore, is the determination of the structure of the interfacial layer in our samples and investigation of its role in the superconducting properties of the FeSe monolayer.

III. EXPERIMENTAL RESULTS

A. STEM Images and Simulations

In Figure 1a we present a Z-contrast aberration-corrected STEM image of the interface region captured at an acceleration voltage of 200 kV. See Appendix A for the STM/STS images obtained from the sample pre- and post-deposition. The double titanium oxide termination is clearly visible, and one can discern faint features between the Ti columns in the second layer. These features become more apparent when viewing the intensity profile along vertical Ti columns (Figure 1c) and along the $Ti_{1+x}O_2$ layer (Figure 1e). The height of the interfacial $Ti_{1+x}O_2$ layer (IL) above the normal TiO_2 -terminated substrate is 2.55 ± 0.20 Å, which is itself 1.94 ± 0.24 Å above the SrO layer below. Both of these results are within the ranges reported by Li *et al.*[24] The FeSe monolayer is 3.25 ± 0.20 Å above the IL. The STO IL distance represents more than a 30% increase in interlayer spacing compared to 1.95 Å in bulk STO. Comparison of this image and that of Ref. 24 with known reconstructions of the bare STO surface (see Appendix B) prompt us to seek a different atomic structure for this interfacial layer. Ref. 24 attributes some of the additional features between the interfacial Ti columns to excess Se. Although both in this work and in Ref. 24 the samples were annealed so as to remove excess Se (as detailed in the Methods section), we nevertheless observe an additional atomic column between the brighter Ti columns (Fig. 1a). Moreover, we note that Chen et al. [45] showed that excess Se is likely to be bound to substrate O vacancies. Although we cannot conclusively rule out the presence of excess Se in the second titanium oxide layer, we pursue an alternative origin for the signal between the bright Ti columns.

B. Structural Model

Guided by the HAADF images in the present work and those in Ref. 24, we find the following constraints on a structural model for the interface: The alternating dark and bright features require that the symmetry of the IL is reduced compared to the STO substrate. The ubiquity of this feature leads to the conclusion that both in-plane directions possess this lowered symmetry. Although this can be accomplished with a $(\sqrt{2} \times \sqrt{2})$ R45° reconstruction (as seen in the relaxed structure), we chose a 2×2 supercell to allow for additional distortions. The increased interlayer distance suggests that the IL must interrupt the expected Ti - O bonding pattern in the STO substrate, i.e., that the cations in the IL are not registered atop the underlying oxygen sublattice (and vice-versa). Consequently, we have constructed an IL corresponding to a $(\frac{1}{2}, \frac{1}{2})$ shift of the normal TiO₂-terminated surface with additional Ti ions in half of the square cavities (as depicted in Figure 2). The full-intensity Ti columns in the IL always sit above the Sr columns, and we enforce this constraint on both the *a* and *b*-axis projections.

FIG. 2. Structure of the FeSe / $Ti_{1.5}O_2$ / $SrTiO_3$ interface, projected along the [100] direction. a) The interface with all atomic positions relaxed. The interlayer distances (2.49 Å and 3.30 Å) compare well with the experimental values (2.55 ± 0.20 and 3.25 ± 0.20 Å) In addition to the increased distance between the substrate and the interfacial layer (2.49 Å compared to the expected 1.95 Å), we find that the terminal TiO₂ layer pulls closer to the layer below (1.82 Å). The extra Ti atoms in the interfacial layer are raised toward the FeSe film. b) A top view of the three components of the interface: FeSe (top), $Ti_{1.5}O_2$ (middle), and $SrTiO_3$ (bottom).

IV. COMPUTATIONAL RESULTS AND DISCUSSION

We further refined our model using density functional theory, optimizing the full heterostructure with FeSe initialized in the checkerboard antiferromagnetic ordering and all other atomic species unpolarized. We find that it is necessary to introduce van der Waals corrections to prevent the interfacial layer from completely dissociating from the substrate. Applying the Tkatchenko-Scheffler method[41] yields an interlayer distance between the STO substrate and the IL of about 2.49 Å, in excellent agreement with the experimental value of 2.55 ± 0.20 Å (and compared to ~ 3 Å in the absence of vdW forces). We also find that the distance between the terminal TiO₂ layer and the SrO layer below is reduced to 1.82 Å (smaller than but within the error bars of our measurement), in agreement with Ref. 24. See Figure 2 for a detailed view of the calculated structure. The bottom of the FeSe layers sits about 3.3 Å above the IL.

To understand how the capping layer might affect the structure, we performed additional calculations with a FeTe layer on top of the FeSe ML (as is the case in the samples we imaged). Depending on the initial separation of the $Ti_{1.5}O_2$, FeSe, and FeTe layers, we found that we could relax structures with IL-FeSe distances of around 2.15 Å as well as 2.49 Å, with some additional distortion in the interface region in the former case. We therefore note that direct comparison of interlayer distance to superconducting properties must be made cautiously. All STM or ARPES experiments are performed in-situ with a clean FeSe surface, while the STEM samples have been capped and have undergone further preparation. Further, Rooney et al.[46] found that the vdW gaps of monolayer selenides are particularly susceptible to discrepancies between experiment and DFT with vdW due to the presence of impurities or undulations at the interface.

A comparison of the HAADF images with our multislice STEM simulations (Figure 1b) shows that the structure of our proposed interface agrees well with the experimental data. The agreement between the computed and observed structure leads us to conclude that we have accurately determined the FeSe/STO interface. The presence of the film causes the $Ti_{1.5}O_2$ layer to lift off from the STO substrate and form a separate interlayer that forms vdW-assisted bonds to both substrate and film. Gao *et al.*[33] reported a titanium oxide layer between STO and monoclinic bronze-phase VO₂ that possesses similar properties. In Appendix C, we show a relaxed structure using the same methods employed in this study

that gives good agreement with the experimental images. Notably, we find that in that system the IL bonds chemically with the deposited film while still forming vdW bonds with the substrate. Furthermore, layer-resolved electron energy-loss spectra at the interface are consistent with the change in coordination and/or nominal charge state found in our structure (a similar result is obtained by Li *et al.* in FeSe/STO[24]). Given that a floating $Ti_{1+x}O_2$ monolayer also appears between complex oxides with dissimilar symmetries, we hypothesize that such monolayers may provide an alternate path toward epitaxial heterointerfaces that lack a continuous perovskite lattice structure.

The present calculations show that the interlayer in the FeSe/SrTiO₃ system is not merely a passive glue holding substrate and film together. In fact, the interfacial Ti atoms develop magnetic moments of slightly less than 1 μ_B that we calculate to prefer a ferromagnetic orientation. Forcing a (necessarily frustrated) antiferromagnetic ordering in the IL yields an excited state about 1.5 meV / Ti higher in energy, suggesting that there may be competing magnetic states at finite temperature. Long-range magnetic order at the interface is likely to reduce T_c and perhaps give rise to vortices, both of which contradict experiment. To explore other possibilities, we performed additional calculations under the constraint of no net spin. Relaxations yielded a similar atomic structure but a reduction of the IL FeSe interlayer distance to about 2.5 Å. The distance between the IL and the STO substrate is increased to 2.8 Å (just outside the error bars of our measurement). As we emphasize below, both cases give rise to similar trends in the electronic structure of FeSe,

The position of the Γ hole pocket varies with the IL - FeSe distance. Figure 3 illustrates the effect of the IL and of the variation in interlayer spacing on the band structure (note that the bands are backfolded due to the larger unit cell, which means that the M point in ARPES is now also at Γ). We plot the FeSe band structure of a) bare ML FeSe, b) ML FeSe with the Ti_{1.5}O₂ IL (with the observed interlayer spacing), c) FeSe / magnetic IL / STO with the interlayer spacing observed in STEM, and d) FeSe / nonmagnetic IL / STO with the larger interlayer spacing. All band structure calculations are computed in the nonmagnetic case, as is the common practice in Fe-based superconductors due to the inability of a static mean field method such as DFT to capture magnetic fluctuations.[47–52] In the IL/ML structure at the observed spacing (Fig. 3b), the hole pocket is nearly pushed below the Fermi level. In Fig. 3c, the proximity of the STO substrate to the IL leaves the Γ pocket closer to the Fermi level than that of the bare ML (Fig. 3a) but higher than in Figs. 3b,d. In Fig. 3d, the Γ pocket is now well below the Fermi level. The trend from 3c to 3d can be explained by considering the distances between the IL and ML: a shorter distance reflects stronger bonding and thus a greater reconstruction of the bands. Ref. 11 concludes that interfacial oxygen vacancies cannot be the primary mechanism for the doping of the FeSe monolayer grown on anatase TiO₂. Here we have shown that excess Ti in this Ti_{1.5}O₂ interlayer promotes the filling of the hole pocket (to a degree that varies with interlayer spacing), an effect that is likely enhanced by oxygen vacancies.

McQueen et al. [53] observed that bulk $Fe_{1.01}$ Se undergoes a small orthorhombic distortion below 90 K such that two Fe - Fe distances emerge, differing by about 1.5 pm. We find that similar short and long Fe-Fe bond lengths arise from the interface structure (as seen in Figure 4). These distortions are absent from the calculated structure when the FeSe monolayer is placed on the typical TiO₂-terminated STO substrate (i.e. without the interfacial layer). The $Ti_{1.5}O_2$ interlayer breaks the C_4 symmetry of the Fe sublattice, leaving only C_2 symmetry try. Consequently, we find that the Fe atoms shift from their positions in the square lattice, forming alternating "long" and "short" distances differing in length by about 0.03 A (0.2 A)in the magnetic (nonmagnetic) structure. The size of the distortions arising from the magnetic structure is comparable to that seen in bulk $Fe_{1.01}Se$. Calculating the electron-phonon coupling proved infeasible in our 90-atom simulation cell. Recently Coh and coworkers 54 showed that, although the epitaxial strain from STO stabilizes FeSe against shear distortions, the tendency toward such distortions enhances the coupling to certain FeSe phonon modes associated with the M electron pocket. Using a modified semi-local potential and Eliashberg theory, they computed a T_c of 20 - 25 K. In addition, it has been argued that the superconductivity in monolayer FeSe can be enhanced by a coupling between the Fe delectrons and the phonons in the substrate that is peaked at small momenta. [8, 22, 55] Our resolved structure of the interface will allow for a better understanding of this mechanism.

V. SUMMARY AND CONCLUSIONS

In summary, we have determined that the naturally occurring double titanium oxide surface reconstruction on STO(001) forms a $(\sqrt{2} \times \sqrt{2})$ R45° Ti_{1.5}O₂ layer at the interface between SrTiO₃ and monolayer FeSe. This interfacial layer is bonded to both substrate and film by van der Waals forces. Our DFT+TS calculations show that this layer, which

FIG. 3. Fe *d* band structure of the a) a free-standing FeSe monolayer, b) a FeSe monolayer with a neighboring Ti_{1.5}O₂ layer (using the experimental interlayer distance), c) full heterostructure with the same interlayer spacings, and d) full heterostructure with the nonmagnetic interlayer spacings. Due to our 2×2 unit cell both the *M* pockets are folded back to the Γ point. The addition of the interlayer in (b) nearly fills the hole pocket. Reintroducing the substrate reverses this trend somewhat (c). The nonmagnetic structure fully eliminates the hole pocket (d). The amount of hybrid Fe *d* / Se *p* orbital character is indicated by the darkness of the red.

appears and facilitates epitaxy in at least one other complex oxide heterointerface, at least partially fills the Γ hole pocket as observed in ARPES measurements. This layer also supports an in-plane distortion in the FeSe ML that scales inversely with the IL - FeSe interlayer distance. This van-der-Waals-bonded interlayer is therefore essential for a full understanding of the superconducting properties of this system and should be included in future theories. Further theoretical and experimental investigation is required particularly

FIG. 4. View down the [001] direction of the FeSe / $\text{Ti}_{1+x}O_2$ / SrTiO₃ interface, with the ($\sqrt{2} \times \sqrt{2}$)R45° reconstruction indicated with dotted black lines. a) Complete relaxed structure with Fe distortions exaggerated. One notes a distortion of the FeSe lattice such that neighboring diagonals are alternatingly closer or farther apart. In the magnetic (nonmagnetic) structure, for the diagonals along [110], the short distance is 2.75 Å (2.68 Å) and the long distance is 2.78 Å (2.82 Å). Along the perpendicular [110] direction, these distances are 2.75 Å and 2.76 Å (2.72 Å and 2.80 Å), respectively. b) An exaggerated schematic of the distortions between the [110] diagonals.

of the phonon properties of the IL to fully elucidate the role of the $Ti_{1+x}O_{2-y}$ interlayer in the electronic and magnetic properties of FeSe and to see whether its effect can be replicated in other layered superconductors.

ACKNOWLEDGMENTS

DFT calculations and related analysis were supported by U.S. DOE grant DE-FG02-09ER46554 and the McMinn endowment at Vanderbilt University (HS, STP). They were performed at the National Energy Research Scientific Computing Center, a DOE Office of Science User Facility supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. Work at ORNL is sponsored by the U.S. Department of Energy, Office of Science, Basic Energy Sciences, Materials Sciences and Engineering Division (DNL, AYB, TB, VRC, MFC). Work at West Virginia University (ZG, LL) is supported by the U.S. National Science Foundation, Division of Materials Research (DMR-1335215). HS wishes to acknowledge helpful communication with G.-X. Zhang and A. Tkatchenko concerning the application of vdW-TS to PBEsol. We also wish to acknowledge useful conversations with T. A. Maier concerning the theory of superconductivity.

Appendix A: STM/STS Characterization

Figure 5 contains STM and STS data obtained from our pre-growth subtrate (a and b), as-grown film (c), and post-anneal FeSe / STO (d and e). We also present the dI/dV spectrum collected at 6 K, showing a superconducting gap $\Delta = 18$ meV.

FIG. 5. a, Large scale STM image of a STO(001) substrate after annealing in UHV, showing a step-terrace morphology ($V_s = 1.3$ V, $I_t = 0.1$ nA). b, Close-up view of the surface reveals mostly disordered structures. Nevertheless, partial ordering can be found including the $c(4 \times 4)$ structure, as outlined by a white box ($V_s = 2.0$ V, $I_t = 0.3$ nA). c, STM image of an as-grown monolayer layer FeSe film on STO(001), where the film is conformal to the step-terrace morphology of the STO(001) substrate. Also observed are 2nd layer FeSe islands nucleated on top of the first layer, as well as along the step edges ($V_s = 1.0$ V, $I_t = 0.1$ nA). d, STM image of monolayer FeSe/STO annealed at 550°C for up to 3 hours to remove the excess Se ($V_s = -0.9$ V, $I_t = 0.1$ nA). e, Atomic resolution STM image of FeSe showing a (1 × 1) square lattice with a = 3.9 Å, consistent with a monolayer FeSe film at 6 K, indicating a superconducting gap of $\Delta = 18$ meV (half of the spacing between the coherence peaks).

FIG. 6. Simulated HAADF images of the view down the a and b crystallographic directions of the (2×1) surface reconstruction of Reference 56 (top left and right, respectively, with the line profiles across the second Ti - O layer appearing below). The view along b is roughly consistent with the full/half intensity pattern of the STEM images presented in the main text, although the partial-intensity columns are larger in magnitude than in our images (both real and simulated). However, the view along a does not agree with the experimental images (requiring an explanation for why only one orientation is observed); the full-intensity column appears over the Ti atoms and not the Sr atoms, meaning that the Ti - O bonding is not interrupted and there is no significant van-der-Waals-assisted bonding and thus no increased interlayer distance.

Appendix B: Image simulations of known STO surface reconstructions

In addition to the interface structure presented in this work, we considered other double titanium oxide layers based on STO surface reconstructions. In Figure 6 we present μ STEM simulations of the (2 × 1) STO surface reconstruction of Reference 56. Simulations of the (4x2)[57] and $\sqrt{13} \times \sqrt{13}$ [58] reconstructions are found in Figures 7 and 8. Note that all simulated images are generated and presented using the same scale.

Appendix C: Bronze-phase VO₂ on SrTiO₃

While investigating the double titanium oxide layer in the FeSe / STO system, we became aware of another heterostructure with a similar interfacial structure. Gao *et al.*[33] reported epitaxial growth of bronze-phase VO₂ on STO despite the significant structural mismatch

FIG. 7. Simulated HAADF images of the view down the *a* and *b* crystallographic directions of the (4×2) surface reconstruction of Reference 57 ((top left and right, respectively, with the line profiles across the second Ti - O layer appearing below). Again, the view along b agrees somewhat with the FeSe / STO interface, but the same caveats apply as in the (2×1) structure.

FIG. 8. Simulated HAADF images of the R33.7° ($\sqrt{13} \times \sqrt{13}$) surface reconstruction of Reference 58 (top, with the line profile across the second Ti–O layer appearing below). In this case, although there are similarities between the appearance of this layer and that seen experimentally in the FeSe / STO interface, neither the periodicity nor the magnitude of the Ti column intensities agree with the latter.

between the two materials. They presented HAADF images revealing the existence of an extra atomic layer between the TiO₂-terminated STO surface and the VO₂ film that closely resembles that in the present work. We modeled this interface using the same ($\sqrt{2} \times \sqrt{2}$) IL as in FeSe / IL / STO and found that the pattern of Ti atoms in the IL closely matches the bottom O layer in VO₂ (B). Relaxation of the structure yields a similar van-der-Waals-

FIG. 9. Relaxed structure of the VO₂ (B) / $Ti_{1+x}O_2$ / SrTiO₃ interface, based on the experimental results of Ref. 33. The buckling of the interfacial layer is more pronounced here, as the $Ti_{1.5}O_2$ layer partially conforms to the structure of the layer above. Unlike in FeSe / STO, the interfacial layer forms chemical bonds with VO₂, allowing the monoclinic bronze-phase to grow epitaxially on cubic STO.

assisted interface, albeit one with stronger bonding between the IL and film. The structural model of this interface can be seen in Figure 9.

- [1] H. Kroemer, Rev. Mod. Phys. 73, 783 (2001).
- [2] M. Gmitra, S. Konschuh, C. Ertler, C. Ambrosch-Draxl, and J. Fabian, Phys. Rev. B 80, 235431 (2009).
- [3] G. Giovannetti, P. A. Khomyakov, G. Brocks, P. J. Kelly, and J. van den Brink, Phys. Rev. B 76, 073103 (2007).
- [4] Y. Zhang, T.-T. Tang, C. Girit, Z. Hao, M. C. Martin, A. Zettl, M. F. Crommie, Y. R. Shen, and F. Wang, Nature 459, 820 (2009).
- [5] D. Y. Qiu, F. H. da Jornada, and S. G. Louie, Phys. Rev. B 93, 235435 (2016).
- [6] W. Qing-Yan, L. Zhi, Z. Wen-Hao, Z. Zuo-Cheng, Z. Jin-Song, L. Wei, D. Hao, O. Yun-Bo, Deng Peng, C. Kai, W. Jing, S. Can-Li, H. Ke, J. Jin-Feng, J. Shuai-Hua, W. Ya-Yu, W. Li-Li, C. Xi, Ma Xu-Cun, and X. Qi-Kun, Chin. Phys. Lett. 29, 037402 (2012).
- [7] D. Liu, W. Zhang, D. Mou, J. He, Y.-B. Ou, Q.-Y. Wang, Z. Li, L. Wang, L. Zhao, S. He, Y. Peng, X. Liu, C. Chen, L. Yu, G. Liu, X. Dong, J. Zhang, C. Chen, Z. Xu, J. Hu, X. Chen,

X. Ma, Q. Xue, and X. J. Zhou, Nat. Commun. 3, ncomms1946 (2012).

- [8] J. J. Lee, F. T. Schmitt, R. G. Moore, S. Johnston, Y.-T. Cui, W. Li, M. Yi, Z. K. Liu, M. Hashimoto, Y. Zhang, D. H. Lu, T. P. Devereaux, D.-H. Lee, and Z.-X. Shen, Nature 515, 245 (2014).
- [9] P. Zhang, X.-L. Peng, T. Qian, P. Richard, X. Shi, J.-Z. Ma, B. B. Fu, Y.-L. Guo, Z. Q. Han, S. C. Wang, L. L. Wang, Q.-K. Xue, J. P. Hu, Y.-J. Sun, and H. Ding, Phys. Rev. B 94, 104510 (2016).
- [10] R. Peng, H. C. Xu, S. Y. Tan, H. Y. Cao, M. Xia, X. P. Shen, Z. C. Huang, C. H. P. Wen, Q. Song, T. Zhang, B. P. Xie, X. G. Gong, and D. L. Feng, Nat. Commun. 5, ncomms6044 (2014).
- [11] H. Ding, Y.-F. Lv, K. Zhao, W.-L. Wang, L. Wang, C.-L. Song, X. Chen, X.-C. Ma, and Q.-K. Xue, Phys. Rev. Lett. **117**, 067001 (2016).
- [12] S. N. Rebec, T. Jia, C. Zhang, M. Hashimoto, D.-H. Lu, R. G. Moore, and Z.-X. Shen, Phys. Rev. Lett. 118, 067002 (2017).
- [13] A. Eich, N. Rollfing, F. Arnold, C. Sanders, P. R. Ewen, M. Bianchi, M. Dendzik, M. Michiardi, J.-L. Mi, M. Bremholm, D. Wegner, P. Hofmann, and A. A. Khajetoorians, Phys. Rev. B 94, 125437 (2016).
- [14] C.-L. Song, Y.-L. Wang, Y.-P. Jiang, Z. Li, L. Wang, K. He, X. Chen, X.-C. Ma, and Q.-K. Xue, Phys. Rev. B 84, 020503(R) (2011).
- [15] M. M. Ozer, J. R. Thompson, and H. H. Weitering, Nat. Phys. 2, 173 (2006).
- [16] F.-C. Hsu, J.-Y. Luo, K.-W. Yeh, T.-K. Chen, T.-W. Huang, P. M. Wu, Y.-C. Lee, Y.-L. Huang, Y.-Y. Chu, D.-C. Yan, and M.-K. Wu, Proc. Natl. Acad. Sci. 105, 14262 (2008).
- [17] S. Medvedev, T. M. McQueen, I. A. Troyan, T. Palasyuk, M. I. Eremets, R. J. Cava, S. Naghavi, F. Casper, V. Ksenofontov, G. Wortmann, and C. Felser, Nat. Mater. 8, 630 (2009).
- [18] J.-F. Ge, Z.-L. Liu, C. Liu, C.-L. Gao, D. Qian, Q.-K. Xue, Y. Liu, and J.-F. Jia, Nat. Mater. 14, 285 (2015).
- [19] B. Rosenstein, B. Y. Shapiro, I. Shapiro, and D. Li, Phys. Rev. B 94, (2016).
- [20] S. Zhang, J. Guan, X. Jia, B. Liu, W. Wang, F. Li, L. Wang, X. Ma, Q. Xue, J. Zhang, E.
 W. Plummer, X. Zhu, and J. Guo, Phys. Rev. B 94, (2016).
- [21] Y. Zhou and A. J. Millis, Phys. Rev. B **93**, (2016).
- [22] L. Rademaker, Y. Wang, T. Berlijn, and S. Johnston, New J. Phys. 18, 022001 (2016).

- [23] D. Huang and J. E. Hoffman, Annu. Rev. Condens. Matter Phys. 8, 311 (2017).
- [24] F. Li, Q. Zhang, C. Tang, C. Liu, J. Shi, C. Nie, G. Zhou, Z. Li, Wenhao Zhang, C.-L. Song, K. He, S. Ji, S. Zhang, L. Gu, L. Wang, X.-C. Ma, and Q.-K. Xue, 2D Mater. 3, 024002 (2016).
- [25] N. Erdman, K. R. Poeppelmeier, M. Asta, O. Warschkow, D. E. Ellis, and L. D. Marks, Nature 419, 55 (2002).
- [26] G. Zhu, G. Radtke, and G. A. Botton, Nature **490**, 384 (2012).
- [27] K. Zou, S. Mandal, S. D. Albright, R. Peng, Y. Pu, D. Kumah, C. Lau, G. H. Simon, O. E. Dagdeviren, X. He, I. Božović, U. D. Schwarz, E. I. Altman, D. Feng, F. J. Walker, S. Ismail-Beigi, and C. H. Ahn, Phys. Rev. B 93, 180506(R) (2016).
- [28] S. He, J. He, W. Zhang, L. Zhao, D. Liu, X. Liu, D. Mou, Y.-B. Ou, Q.-Y. Wang, Z. Li, L. Wang, Y. Peng, Y. Liu, C. Chen, L. Yu, G. Liu, X. Dong, J. Zhang, C. Chen, Z. Xu, X. Chen, X. Ma, Q. Xue, and X. J. Zhou, Nat. Mater. **12**, 605 (2013).
- [29] H.-Y. Cao, S. Tan, H. Xiang, D. L. Feng, and X.-G. Gong, Phys. Rev. B 89, (2014).
- [30] K. V. Shanavas and D. J. Singh, Phys. Rev. B 92, (2015).
- [31] M. X. Chen, Z. Ge, Y. Y. Li, D. F. Agterberg, L. Li, and M. Weinert, Phys. Rev. B 94, (2016).
- [32] I. E. Grey, C. Li, I. C. Madsen, and J. A. Watts, J. Solid State Chem. 66, 7 (1987).
- [33] X. Gao, S. Lee, J. Nichols, T. L. Meyer, T. Z. Ward, M. F. Chisholm, and H. N. Lee, Sci. Rep. 6, 38168 (2016).
- [34] L. J. Allen, S. D. Findlay, M. P. Oxley, and C. J. Rossouw, Ultramicroscopy 96, 47 (2003).
- [35] B. D. Forbes, A. V. Martin, S. D. Findlay, A. J. D'Alfonso, and L. J. Allen, Phys. Rev. B 82, 104103 (2010).
- [36] L. J. Allen, A. J. D'Alfonso, and S. D. Findlay, Ultramicroscopy 151, 11 (2015).
- [37] J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).
- [38] G. Kresse and J. Furthmller, Comput. Mater. Sci. 6, 15 (1996).
- [39] P. E. Blöchl, Phys. Rev. B 50, 17953 (1994).
- [40] G. Kresse and D. Joubert, Phys. Rev. B 59, 1758 (1999).
- [41] A. Tkatchenko and M. Scheffler, Phys. Rev. Lett. **102**, 073005 (2009).
- [42] A. I. Liechtenstein, V. I. Anisimov, and J. Zaanen, Phys. Rev. B 52, R5467 (1995).
- [43] Z. Hu and H. Metiu, J. Phys. Chem. C **115**, 5481 (2011).
- [44] S. Gerhold, Z. Wang, M. Schmid, and U. Diebold, Surface Science 621, L1 (2014).

- [45] M.X. Chen, Zhuozhi Ge, Y.Y. Li, D.F Agterberg, L. Li, and M. Weinert, Phys. Rev. B 94, 245139 (2016).
- [46] A. P. Rooney, A. Kozikov, A. N. Rudenko, E. Prestat, M. J. Hamer, F. Withers, Y. Cao, K. S. Novoselov, M. I. Katsnelson, R. Gorbachev, and S. J. Haigh, Nano Lett. 17, 5222 (2017).
- [47] A. Subedi, L. Zhang, D. J. Singh, and M. H. Du, Phys. Rev. B 78, 134514 (2008).
- [48] Y. Xia, D. Qian, L. Wray, D. Hsieh, G. F. Chen, J. L. Luo, N. L. Wang, and M. Z. Hasan, Phys. Rev. Lett. 103, 037002 (2009).
- [49] K. Nakayama, T. Sato, P. Richard, T. Kawahara, Y. Sekiba, T. Qian, G. F. Chen, J. L. Luo, N. L. Wang, H. Ding, and T. Takahashi, Phys. Rev. Lett. 105, 197001 (2010).
- [50] M. Yi, D. H. Lu, R. G. Moore, K. Kihou, C.-H. Lee, A. Iyo, H. Eisaki, T. Yoshida, A. Fujimori, and Z.-X. Shen, New J. Phys. 14, 073019 (2012).
- [51] W. Malaeb, T. Yoshida, A. Fujimori, M. Kubota, K. Ono, K. Kihou, P. M. Shirage, H. Kito, A. Iyo, H. Eisaki, Y. Nakajima, T. Tamegai, and R. Arita, J. Phys. Soc. Jpn. 78, 123706 (2009).
- [52] I. Nishi, M. Ishikado, S. Ideta, W. Malaeb, T. Yoshida, A. Fujimori, Y. Kotani, M. Kubota, K. Ono, M. Yi, D. H. Lu, R. Moore, Z.-X. Shen, A. Iyo, K. Kihou, H. Kito, H. Eisaki, S. Shamoto, and R. Arita, Phys. Rev. B 84, 014504 (2011).
- [53] T. M. McQueen, A. J. Williams, P. W. Stephens, J. Tao, Y. Zhu, V. Ksenofontov, F. Casper,
 C. Felser, and R. J. Cava, Phys. Rev. Lett. 103, 057002 (2009).
- [54] S. Coh, M. L. Cohen, and S. G. Louie, New J. Phys. 17, 073027 (2015).
- [55] D.-H. Lee, Chin. Phys. B **24**, 117405 (2015).
- [56] N. Erdman, K. R. Poeppelmeier, M. Asta, O. Warschkow, D. E. Ellis, and L. D. Marks, Nature 419, 55 (2002).
- [57] N. Erdman, O. Warschkow, M. Asta, K. R. Poeppelmeier, D. E. Ellis, and L. D. Marks, J. Am. Chem. Soc. 125, 10050 (2003).
- [58] D. M. Kienzle, A. E. Becerra-Toledo, and L. D. Marks, Phys. Rev. Lett. 106, 176102 (2011).