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We study the combined effects of fluctuations and frustration in frustrated antiferromagnets de-
scribed by the spin-1/2 easy-axis XXZ model with transverse magnetic fields, and propose its promis-
ing quantum simulation with a coherently coupled binary mixture of Fermi atoms in a triangular
optical lattice. We perform a cluster mean-field plus scaling analysis to show that the ground state
exhibits several nontrivial magnetic phases and a spin reorientation transition caused by the quan-
tum order-by-disorder mechanism. Moreover, we find from Monte Carlo simulations that thermal
fluctuations induce an unexpected coexistence of Berezinskii-Kosterlitz-Thouless physics and long-
range order in different correlators. These predictions, besides being relevant to present and future
experiments on triangular antiferromagnetic materials, can be tested in the laboratory with the
combination of the currently available techniques for cold atoms.

Introduction.— Quantum simulations of solid materi-
als with more flexible systems based on cold atomic gases
have attracted increasing attention as the third platform
to complement the conventional theoretical and exper-
imental studies1–3. In particular, a binary mixture of
Fermi atoms in an optical lattice4–13 is a promising can-
didate to simulate the Hubbard model that describes
strongly correlated electrons in solids. Although Fermi
gases used to suffer from a technical difficulty in cooling
to the regime of magnetic ordering, that is being over-
come by recent innovative experimental5,10,14 and theo-
retical15–18 efforts. There has also been rapid develop-
ment in detection techniques of quantum states, espe-
cially imaging individual atoms by the quantum gas mi-
croscope (QGM)7–12. Owing to them, the observations
of dimerized4, short-ranged5–9,12, string11 and SU(N )13

spin correlations have been achieved in the past few years.
Mazurenko et al. reached the low temperatures at which
the magnetic correlation length exceeded the linear size
of their synthetic system made of two-component Fermi
gases in a square optical lattice10.

In this Rapid Communication, we make a proposal and
provide the necessary theoretical modeling to push the
boundaries of cold-atom simulation towards the study
of a more challenging issue, namely quantum frustrated
magnetism. Motivated by the success of Ref. 10, we
suggest a synthetic Hubbard system of binary Fermi
gases in a triangular optical lattice for studying the frus-
trated magnetism deeply connected to the ongoing ex-
periments on quasi-two-dimensional (quasi-2D) layered
materials of quantum triangular-lattice antiferromagnets
(TLAFs)19–30. Here we consider a synthetic TLAF in
the physically interesting parameter space defined by the
spin-exchange anisotropy of easy-axis type and the mag-
netic field applied perpendicular to the anisotropy axis.
Note that, whereas a classical triangular antiferromag-
netic XY model has been created in cold gases of bosonic
atoms31, there has been no realization of a quantum

TLAF or even a classical one with easy-axis anisotropy.

From the standpoint of real materials, only very
few available compounds have an equilateral triangular-
lattice structure with quantum spin S = 1/220–23,25–27,30

and they typically do not fall into the range of
easy-axis anisotropy (with the possible exception of
Ba3CoNb2O9

26). On the theoretical side, the interplay of
quantum or thermal fluctuations and geometrical frustra-
tion in our proposed system with no U(1) spin-rotational
symmetry is an open problem. The lack of symmetry
inhibits the decomposition of the Hilbert space, mak-
ing numerical calculations with, e.g., exact diagonaliza-
tion and density matrix renormalization group (DMRG)
even more difficult in 2D or higher. Besides, the quan-
tum Monte Carlo (QMC) method suffers from the noto-
rious minus-sign problem32. To overcome this numerical
challenge, here we develop a new framework of the clus-
ter mean-field method combined with a scaling analysis
(CMF+S)33–35 by employing the 2D DMRG algorithm
as a cluster solver. Of particular interest is the drastic
change in the quantum phase diagram from the classi-
cal one due to the order-by-disorder phenomena, which
has been poorly studied so far because of the lack of the
suitable methods.

We find that a particular quantum selection of the
ground state gives rise to a novel gradual reorientation of
three-sublattice magnetic orders, in addition to the sta-
bilization of nonclassical phases in a wide region of the
quantum phase diagram. Furthermore, performing clas-
sical Monte Carlo simulations to investigate thermal fluc-
tuations, we show that the paramagnetic transition ex-
hibits a two-step behavior through an intermediate phase
with an unexpected coexistence of Berezinskii-Kosterlitz-
Thouless (BKT) physics and long-range order (LRO) in
different correlators. Our theoretical phase diagrams are
meant to play a role in the two-way relationship which
characterizes this early stage of the quantum simula-
tion of frustrated physics: on the one hand, they act
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FIG. 1: Emergence of various quantum magnetic phases
[(b)] due to quantum fluctuation effects on the classical-spin
state [(a)]. The curves with open (filled) circles indicate
first- (second-) order transitions. The broken symmetry in
each phase (for J/Jz < 1) is indicated in parentheses. (c)
Classical (Hcl

s ) and Quantum (Hs) values of the saturation
field strength. The red arrow in (c) marks the estimation
Hs/Jz = 0.825 ± 0.025 of Ref. 49 for the transverse Ising
model.

as a benchmark for future cold-atom experiments; on the
other hand, they can and must be checked with the help
of the quantum simulator.
Synthetic spin-1/2 transverse XXZ system.— The sys-

tem of coherently coupled Fermi mixtures of two hyper-
fine states (σ =↑, ↓) is described by the Hamiltonian

Ĥ = −
∑

〈i,j〉,σ

tσ

(

ĉ†iσ ĉjσ +H.c.
)

+ U
∑

i

n̂i↑n̂i↓

+
Ω

2

∑

i

(

ĉ†i↑ĉi↓ + ĉ†i↓ĉi↑

)

. (1)

In addition to the preparation of triangular optical lat-
tice36,37, the ingredients of this Hamiltonian can be engi-
neered in the laboratory by state-dependent optical lat-
tices38–40 (for t↑ 6= t↓) and by coherent couplings be-
tween two hyperfine states with Raman laser beams or
radio-frequency field created in an atom chip41,42 (for
Ω). The frustrated magnetism for dominant interactions
(U/tσ ≫ 1)43 is described by

Ĥ =
∑

〈i,j〉

(

JŜx
i Ŝ

x
j + JŜy

i Ŝ
y
j + JzŜ

z
i Ŝ

z
j

)

−H
∑

i

Ŝx
i , (2)

where Ŝα
i =

∑

σσ′ ĉ
†
iσσ

α
σσ′ ĉiσ′/2 with the Pauli matri-

ces σ
α plays the role of quantum spin S = 1/2. The

anisotropy in the spin exchange interactions J = 4t↑t↓/U
and Jz = 2(t2↑+t2↓)/U must be of easy-axis type (J ≤ Jz).
The control of the Rabi frequency translates into tuning
a transverse magnetic field, H = −Ω44.
Classical spins.— By treating the spins as classical vec-

tors Si = (sin θi cosϕi, sin θi sinϕi, cos θi)/2, one gets the

classical (mean-field) energy of the system (2). Its mini-
mization with respect to the spin angles θi and ϕi leads
to a three-sublattice

√
3×

√
3 coplanar order in which the

polar angles on the sublattices µ = A, B, and C are given

by θA = π/2, θB = π − θC = θcl ≡ arcsin |2H/3−J|
J+Jz

while
the azimuthal angles are ϕA = 0 and ϕB = ϕC = π
for 0 < H < 3J/2 and ϕA = ϕB = ϕC = 0 for
3J/2 < H < Hcl

s ≡ 3J + 3Jz/2. The ground state has
a six-fold degeneracy corresponding to the sublattice ex-
change and resulting in a S3 symmetry breaking. As
illustrated in Fig. 1(a), the sublattice magnetic moments
form an inverted-Y (resp. Ψ) shape for low (resp. high)
magnetic fields. The inverted-Y and Ψ states are con-
tinuously connected and thus equivalent. Therefore, the
classical ground state experiences no phase transition up
to the magnetic saturation at H = Hcl

s .

Quantum phase diagram.— The numerical CMF+S
method33–35 with 2D DMRG solver is used to un-
veil quantum fluctuation effects on the classical ground
state. We consider a triangular-shaped cluster of NC

(= 3, 6, 15, 21, 36) spins placed in the environment of self-
consistent mean fields

(

Jmx
µ, Jm

y
µ, Jzm

z
µ

)

. The sublat-
tice magnetic moments mα

µ characterize the magnetic or-
der. The CMF+S calculations permit the systematic in-
clusion of quantum-fluctuation effects by increasing NC ,
which connects between the classical (NC = 1) and ex-
actly quantum (NC → ∞) regimes. The use of the 2D
DMRG solver instead of the Lanczos diagonalization em-
ployed in the previous works33–35 considerably enlarges
the tractable cluster size NC

45.

The quantum phase diagram is shown in Fig. 1(b). It
surprisingly reveals various ground states that are ab-
sent in the classical counterpart. First, the sequence of
the three magnetic phases – coplanar Y-shaped state,
collinear up-up-down (UUD) state, and coplanar V-
shaped state – is stabilized from low to high fields in
the region bounded by the first-order transition line. Al-
though the quantum-stabilized Y state is equivalent to
the inverted-Y state in terms of symmetry breaking, one
of the sublattice magnetic moments points in the oppo-
site direction to the magnetic field. This quantum sta-
bilization has been studied for the isotropic (J/Jz = 1)
case46–48: The correction to the energy due to the zero-
point quantum fluctuations selects the Y-UUD-V se-
quence from the large classical ground-state manifold46,
resulting in the formation of the magnetization plateau of
the UUD phase46–48. Figure 1(b) shows that this quan-
tum effect actually spreads over a wide region of J/Jz,
especially for high magnetic fields. The phase bound-
aries have been determined by extrapolating the results
of NC = 15, 21, and 3645.

Although the three sublattice moments in the UUD
state are collinear along the field direction in the expecta-
tion values, the U(1) spin rotational symmetry is absent

for J/Jz < 1 [due to
∑

i[Ŝ
x
i , Ĥ] 6= 0] in the full quantum-

mechanical sense. Thus, the magnetization plateau is
not exactly flat, although the slope is quite small [see
Fig. 2(a)]. For the same reason, the saturation field Hs
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FIG. 2: (a) Magnetization curve M(H) = (mx

A+mx

B+mx

C)/3
and its field derivative JzdM/dH for J/Jz = 0.5 (left) and
J/Jz = 0.906 (right). The CMF+S results (solid lines) are
compared to the classical-spin analysis (dashed lines). The
arrows indicate the locations of first-order transitions. (b)
Novel spin reorientation transition in the enlarged view of the
low-field region of Fig. 1(b). The pairs of the Z2 degenerate
states are illustrated in the insets. Besides, the exchange of
the sublattice indices A,B,C is possible in the S3 manifold.
(c) Magnetization curve, the sublattice moments for one of
the states in the degenerate manifold, and the values of θ̄
along J/Jz = 0.3.

is affected by quantum fluctuations and reduced from
the classical value Hcl

s except at J/Jz = 1, as shown in
Fig. 1(c). As shown in Fig. 2(a), the magnetization pro-
cess exhibits a reentrant behavior for 0.43 . J/Jz . 0.68
from the inverted-Y (=Ψ) to V and back to Ψ state.

Fluctuation-driven spin reorientation.— Even more
interestingly, we find the emergence of a novel spin-
reorientation transition in the low-field region of the
quantum phase diagram [see Fig. 2(b)]. This stems from
a quantum order-by-disorder selection from another non-
trivial degenerate manifold of the classical ground state
at H = 0, which has the topology of S1×S150–52. Quan-
tum fluctuations select a specific Y-shape order in which
one sublattice spin moment is directed parallel to the
easy axis, as illustrated in Fig. 2(b); this agrees with the
prediction of the linear spin-wave approximation52.

When a transverse field H is applied, a generic three-
sublattice state breaks a S3 ×Z2 symmetry (correspond-
ing to the permutation of sublattice indices and the re-
flection about the field axis). Our CMF+S analysis shows
that a quantum phase that indeed breaks such symmetry
completely is realized with a coplanar spin order in the
Sz-Sx plane [see Figs. 2(b) and 2(b)]. However, when
H exceeds a threshold value Hr, the classical inverted-Y
phase (which breaks S3 symmetry) is recovered. Conse-
quently, the structure of the sublattice moments is grad-
ually changed from a Y shape to another Y shape with

FIG. 3: (a) Thermal phase diagram for J/Jz = 0.3, ob-
tained by the Monte Carlo simulations. (b) Scaled correlation
lengths of the Sz-Sz, Sx-Sx, and chirality-chirality correla-
tions at H/Jz = 1.5. (c) The inverted-Y states with positive
and negative values of chirality.

different orientations via the intermediate S3×Z2-broken
phase, which does not occur in the classical case. The be-
havior of this reorientation transition can be character-
ized by a parameter θ̄ ≡ θA + θB + θC , which is indepen-
dent of the sublattice exchange. The two branches in the
bottom panel of Fig. 2(c), one of which is spontaneously
chosen, correspond to the remaining Z2 degeneracy.
Thermodynamic phase diagram.— Finally, let us ex-

plore novel thermal-fluctuation effects and provide the
estimation of the ordering transition temperature. We
replace the spin operators in the Hamiltonian (2) with
vectors Si of length 1/2 to perform classical Monte
Carlo simulations on L × L rhombic clusters with L =
24, 48, 72, 96 under periodic boundary conditions45. This
is expected to provide a reasonable approximation away
from the low-temperature quantum region.
The thermal phase diagram for the representative

value J/Jz = 0.3 (away from the isotropic case53,54) is
summarized in Fig. 3. Supposing the inverted-Y order,
we estimate the correlation length for the three-sublattice
order in the Sz and Sx spin components (ξzz , ξxx) and for
the uniform order in the y component of the vector chiral-
ity κ (ξκκ) illustrated in Fig. 3(c). As shown in Fig. 3(b),
ξzz/L exhibits a finite critical range, Tc1 < T < Tc2, with
a constant value independent of L, indicating a BKT
phase with algebraic decay ∼ |ri − rj|−η55,56 of the Sz-
Sz correlation function, despite the absence of continu-
ous symmetry in the model (2). This can be explained
from the discrete but high degree of degeneracy of the
inverted-Y ground state; the critical exponent η at Tc1

(∼ 1/9) and at Tc2 (∼ 1/4) shown in Fig. 4(a) are indeed
consistent with the expectation for the universality of the
2D 6-state clock model57,58, whose Z6 symmetry group
has six elements, same as the S3 symmetry of the present
case.
Coexistence of BKT and LRO.— Interestingly, how-

ever, ξxx/L and ξκκ/L show an isolated critical point,
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FIG. 4: (a) Critical exponent η for the Sz-Sz component. (b)
Example of the scaling analyses on the chirality order param-
eter Oκκ45 for the transition at Tc1. The scaled temperature
is defined by t ≡ (T − Tc1)/Tc1. The extracted critical ex-
ponents for the transitions at Tc1 [(c)] and at Tc2 [(d)] are
plotted as a function of H/Jz. The scales of the upper and
lower horizontal axes for the blue and red data points are
slightly shifted from each other for convenience.

unlike ξzz/L, as seen in Fig. 3(b) as the crossings of the
curves for different L59. The critical points for Sx and
κ are coincident or very close to the upper and lower
endpoints of the BKT behavior in Sz, respectively. Con-
sequently, in the intermediate phase for Tc1 < T < Tc2,
BKT-type quasi-LRO in the field-perpendicular compo-
nent (Sz) and LRO in the field-parallel component (Sx)
coexist while the chirality is disordered. This particular
coexistence of BKT and LRO should be attributed to the
difference of S3 from Z6; the nonabelian symmetric group
S3 is formed by the cycles and transpositions of {A,B,C}
and has two generators, while Z6 is just formed by the
cycles of six elements and has one generator. In fact, the
breaking of the even and odd permutation symmetries is
detected by Sx and κ, respectively. The Sx component
of the magnetic moments in the inverted-Y order takes
the same value on two of the three sublattices, and thus
all exchanges generating three elements can be obtained
only by cyclic permutations of the sublattice indices while
the chirality changes its sign by transposing two sublat-
tice indices.

Possible new universality class.— It is noteworthy that
the critical exponents associated with diverging ξxx and
ξκκ have no correspondence in the known universality
classes. From the standard scaling analyses45, we ex-
tract the values of the correlation-function (η), order-
parameter (β), and correlation-length (ν) exponents for
the transitions in Sx at Tc2 and in κ at Tc1, respectively
[see Figs. 4(b-d)]. The blue and red symbols in Figs. 4(c)
and (d) are the critical exponents extracted with two
different ways to estimate Tc2 (Tc1), namely from the
crossings in the scaled correlation length ξxx/L (ξκκ/L)
and from the condition η = 1/4 (η = 1/9) for the Sz

correlation function. Note that the latter estimation of
the critical points has less finite-size effect. As shown

in Fig. 4(d), the values of η and β/ν for Sx are roughly
constant (at ∼ 1 and ∼ 0.5) for varying H/Jz, preserv-
ing the 2D hyperscaling law η = 2β/ν, which indicates
the existence of a new weak universality60. Moreover, the
individual exponents β and ν might also be constant (im-
plying a new universality in the usual sense), although we
cannot reach a final conclusion with the given numerical
data. The critical exponents associated with the chiral
transition at Tc1 also have a similar behavior as shown in
Fig. 4(c). In both transitions at Tc2 and Tc1, the critical
exponents are clearly distinguished from the naively ex-
pected 2D three-state Potts (η = 4/15, β = 1/9, ν = 5/6)
and Ising (η = 1/4, β = 1/8, ν = 1) ones, which means
that the two-step transition and the emergent BKT-LRO
coexistence are not a simple sequence of standard Z3 and
Z2 symmetry breaking transitions.

Conclusions.— We studied the quantum and ther-
mal phase transitions in the easy-axis triangular XXZ
model under transverse magnetic fields and proposed
their quantum simulation with coherently-coupled binary
gases of ultracold fermionic atoms. In the ground state,
the order-by-disorder effects induced by the quantum
fluctuations give rise to several nontrivial phase transi-
tions, including a novel spin reorientation. Moreover, the
transition from the paramagnetic to the ordered state
with S3 symmetry breaking was found to exhibit a par-
ticular two-step behavior via an intermediate phase with
coexisting BKT and LRO correlations. The temperature
scale of the transitions was estimated from the Monte
Carlo analysis to be at most of order 0.1Jz [see Fig. 3(a)],
with little sensitivity to the variation of J/Jz. With the
caveat that quantum fluctuations can actually lower this
temperature to some extent, this estimation should serve
as a reference for future cold-atom quantum simulation
of novel frustrated magnetism.

The different magnetically ordered phases found here
could be detected by the QGM7–12. As well as the Sz

components, it is also possible to measure the transverse
components by inserting a radiofrequency pulse that ro-
tates the spins by π/212,61. For finite-size optical lattice
systems, the order parameter and the correlation length
for each phase can be extracted from the structure factor
for the corresponding spin component and wavevector,
which is obtained by gathering many QGM shots, just
like in the Monte Carlo simulations45.

In addition, very recently, a two-step thermal transi-
tion has been observed in the easy-axis TLAF compound
Ba2La2NiTe2O12

62. Although the anisotropy is of single-
ion type, the physics is expected to be deeply related to
the present system, and thus it should be interesting to
apply tranverse fields to single crystals of that material.

Finally, we emphasize that using a 2D DMRG solver
within the CMF+S scheme significantly expands the
scope of the method to broader areas of quantum frus-
trated systems, thanks to the tractability of series of
larger clusters.
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