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We propose to control of an electron-hole superfluid in semiconductor coupled quantum wells and
double layers of two-dimensional (2D) material by an external periodic field. This can either be
created by the gates periodically located and attached to the quantum wells or double layers of
2D material or by the Moiré pattern of two twisted layers. The dependence of the electron-hole
pairing order parameter on the temperature, the charge carrier density, and the gate parameters is
obtained by minimization of the mean-field free energy. The second order phase transition between
superfluid and electron-hole plasma, controlled by the external periodic gate field, is analyzed for
different parameters.

I. INTRODUCTION

The system of spatially separated electrons and holes can be realized in semiconductor coupled quantum
wells (CQWs), where electrons and holes are located in different quantum wells. For low temperatures
and weak attraction the Bardeen-Cooper-Schrieffer (BCS) approach describes the superfluid formed by
coherent Cooper pairs, while in the strong attraction regime the composite bosons, known as indirect
(dipolar) excitons, are formed. An electron-hole plasma (EHP) appears at sufficiently higher temper-
atures. Superfluidity in the two-dimensional (2D) system with spatially separated electrons and holes
was predicted using the BCS mean-field approach [1], which caused intensive theoretical [2–11] as well
as experimental studies [12–23]. Different electron-hole phases, characterized by unique collective prop-
erties, have been analyzed in the system of spatially separated electrons and holes [24]. The BCS phase
of electron-hole Cooper pairs in a dense electron-hole system [1] and a dilute gas of indirect excitons,
formed as bound states of electron-hole pairs, were also analyzed in CQWs [25]. Superfluidity of the BCS
phase, formed by spatially separated electrons and holes, can be manifested as non-dissipative electric
currents and quasi-Josephson phenomena [1, 2]. Besides the superfluid phase a Wigner supersolid state
caused by dipolar repulsion in electron-hole double layers was described [26–29]. The recent theoretical
and experimental achievements in the studies of the superfluid dipolar exciton phases in CQWs were
reviewed in Ref. [30]. Probing the ground state of an electron-hole double layer by low temperature
transport was experimentally performed [31], and the various experimental studies of excitonic phases in
CQWs were described in Ref. [32].
Another physical realization for indirect excitons, formed in an electron-hole double layer, is a wide

single GaAs/AlGaAs quantum well with a finite width [33]. In a wide single QW, the transverse electric
field separates electrons and holes at the different boundaries of the QW [33]. The advantage of a
wide single QW compared with CQWs is the smaller number of the QW boundaries, which leads to
the increase of the electron mobility. Based on the photoluminescence pattern caused by electron-hole
recombination, the evidence for a condensate of indirect excitons, electrically polarized in a GaAs wide
single QW, was achieved experimentally recently for the thickness of 15 nm of the quantum well at the
temperature T = 370 mK [34]. A spontaneous condensation of trapped two-dimensional dipolar excitons
from an interacting gas into a dense liquid state was observed in GaAs/AlGaAs CQWs with an interwell
separation D = 4 nm at the temperatures below a critical temperature Tc ≈ 4.8 K [35]. The transport
of indirect excitons with an interwell separation D = 4 nm in GaAs/AlGaAs CQWs in linear lattices,
created by laterally modulated gate voltage with a lattice period b = 2 µm, was studied experimentally
at the temperatures T = 1.6 K and T = 6 K, and the localization-delocalization transition for transport
across the lattice was observed with reducing lattice amplitude or increasing exciton density [80].
Besides semiconductor CQWs, the superfluid system of spatially separated electrons and holes can ap-
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pear in a graphene double layer [11, 36–39], two opposite surfaces of the film of topological insulators [40],
two layers with composite fermions in the quantum Hall regime at the filling factor ν = 1/2 [41]. Such
systems can be engineered with a WSe2 barrier between the graphene layers to enhance the interlayer
tunneling [23].
Today an intriguing counterpart to gapless graphene is a class of monolayer direct bandgap materials,

namely transition metal dichalcogenides (TMDCs). Monolayers of TMDC such as MoS2, MoSe2, MoTe2,
WS2, WSe2, and WTe2 are 2D semiconductors, which have a variety of applications in electronics and
opto-electronics [42]. The strong interest in TMDC monolayers is motivated by the following facts: a
semiconductor band structure is characterized by a direct gap in the single particle spectrum [43], the
existence of excitonic valley physics, and the possibility of an electrically tunable, strong light-matter
interactions [44, 45]. Monolayers of transition metal dichalcogenides are truly 2D semiconductors, which
hold great appeal for electronics and opto-electronics applications due to their direct band gap properties.
Monolayer TMDCs have already been implemented in field-effect transistors, logical devices, and lateral
and tunneling optoelectronic structures [42]. Like graphene, the monolayer TMDCs have hexagonal
lattice structures, and the nodes (valleys) in the dispersion relations of both the valence and conduction
bands can be found at the K and −K points of the hexagonal Brillouin zone. However, unlike graphene,
these 2D crystals do not have inversion symmetry [42].
High-temperature superfluidity can be studied in a heterostructure of two TMDCmonolayers, separated

by a hexagonal boron nitride (h-BN) insulating barrier [46]. The dipolar excitons were observed in
heterostructures formed by monolayers of MoS2 on a substrate constrained by hexagonal boron nitride
layers [47]. The theoretical study of the phase diagram of 2D condensates of indirect excitons in a TMDC
double layer was reported [48]. The high-temperature superfluidity of the two component Bose gas of A
and B dipolar excitons in a transition metal dichalcogenide double layer was predicted in Refs. [49, 50].
In this paper we study how the BCS-like EHP-superfluid phase transition can be controlled by the

external periodic field, applied to the spatially separated electrons and holes via the gates periodically
attached to CQWs, where a quasi-two-dimensional system of charge carriers is formed. The external
periodic field, applied to the spatially separated electrons and holes can be also produced via the gates
periodically attached to double layers of 2D material or a twisted TMDC double layer, where a truly
2D system of charge carriers is formed. For this purpose we employ a mean-field approximation for the
many-body system of electrons and holes, using the partition function of the grand-canonical ensemble
at the temperature T and the chemical potentials of the electrons and the holes, respectively. The latter
represent the Fermi energies of the electrons and the holes. The logarithm of the partition function gives
us immediately the free energy, whose minimum defines the mean-field solution with a non-vanishing order
parameter of the superfluid phase. The main goal is to analyze the influence of the external periodic
field on the critical temperature of the EHP-superfluid transition in an electron-hole double layer. Here
it should be mentioned that the phase fluctuations of the order parameter can lead to a vortex-pair
dissociation, which results in a non-superfluid Kosterlitz-Thouless phase. Its critical temperature is close
to the mean-field temperature if the exciton-exciton interaction is weak [51].
The paper is organized in the following way. We obtain the free energy of the electron-hole double layer

in the external periodic potential and study the second order EHP-superfluid transition using a Landau
expansion of the free energy in Sec. II. The results of calculations are presented and analyzed in Sec. III.
Finally, the discussion of the results and the conclusions follow in Sec. IV.

II. PHASE TRANSITION IN THE ELECTRON-HOLE DOUBLE LAYER UNDER THE

ACTION OF THE EXTERNAL PERIODIC POTENTIAL

The Hamiltonian of a system of spatially separated electrons and holes in momentum representation
can be written as

H =
∑

p

∑

σ=e,h

εp,σc
†
pσcpσ +

∑

p,p1,p2

Upc
†
p−p1,h

cp−p2,hc
†
p1,e

cp2,e , (1)

where c†p,e (cp,e) is the creation (annihilation) operator for electrons, and c†p,h (cp,h) is the corresponding
operator for holes. The electron and hole single-particle dispersion εp,σ depends on the details of the
material properties. Moreover, it is sensitive to an additional periodic potential, applied to the CQWs
or double layers of 2D material. An example is a periodic potential in form of a square lattice with
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FIG. 1: Schematic electrode pattern in the x− y and z − x planes.

periodicity b. Then the electron and the hole dispersion reads [52–54]:

εp = δ0 − 2t cos (pxb/h̄)− 2t cos (pyb/h̄) (−π ≤ px,yb/h̄ < π) , (2)

which has a band width 8t and a Fermi energy δ0. The electron-hole attraction potential in momentum
space Up is discussed briefly below. In Eq. (1) the spins of electrons and holes are neglected, because we
are not interested in magnetization effects.
We consider an external periodic potential induced by the gate forming either a 1D or a 2D square

superlattice with the period b applied to the electron and hole quantum wells. As an example, the
particular case related to the phase transition of indirect excitons in a double layer, formed by two
TMDC monolayers that are separated by h-BN, since h-BN monolayers are characterized by relatively
small density of the defects of their crystal structure monolayers. In Fig. 1 a schematic electrode pattern
in the x− y and z − x planes is presented. In our calculations we consider the TMDC monolayers to be
separated by h-BN insulating layers and the separation between two layers of TMDC materials calculated
in steps of DhBN = 0.333 nm, corresponding to the thickness of one h-BN monolayer [46]. Therefore,
the interlayer separation D is presented as D = NLDhBN , where NL is the number of h-BN monolayers,
placed between two TMDC monolayers. It is obvious that the strength of the electron-hole interaction
decreases with the increase of the separation between the layers. We assume that the densities of electrons
and holes are equal in order to have a neutral electron-hole plasma and because the electrons and holes
are created always pairwise by an external laser source. This implies that the corresponding chemical
potentials are also equal. Periodically positioned gates under the same electric potentials create in a turn
the periodical potential in the 2D system under consideration.
When the electron-hole attraction leads to Cooper pairing of electrons and holes, characterized by the

order parameter ∆ [55, 56], the free energy is described within the mean-field approximation (MFA) [1, 57].
Following Ref. [57], and assuming that (i) the order parameter ∆ does not depend on the momentum,
and (ii) the dispersion relation εp,e = εp,h = εp is the same for electrons and holes, the MFA of the
free energy at temperature T (β = 1/kBT , where kB is the Boltzmann constant) as a function of the
dimensionless order parameter γ = β|∆| can be written as

F = −
1

β2u0

γ2 −
1

|B|β

∫

B

ln
[

2
(

1 + cosh
(√

β2ε2
p
+ γ2

))]

d2p . (3)

In Eq. (2) the integration over the momentum p is taken over the Brillouin zone with area |B| and u0 is
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the strength of the electron-hole interaction given by

1

u0

=
1

|B|

∫

B

1

Up

d2p < 0, (4)

which parametrically depends on the interlayer separationD. The effective electron-hole potential Up and
therefore the electron-hole pairing parameter u0 in the general case depend essentially on the screening of
the Coulomb potential. This issue, in particular the different effects of static and dynamical screening in
a many electron and hole system, has been discussed intensively in the literature [58–64]. In particular,
in two-dimensional semiconductors (contrary to the 3D case) the dielectric function is nonlocal, i.e.
it depends on the wave vector [65]. This leads to the Ritova-Keldysh potential between two charges
[66, 67]. The Ritova-Keldysh potential has been widely used to describe the Coulomb interaction of
few-body complexes in monolayer of TMDC and beyond (see review [68] and references therein).
The mean-field free energy (3) indicates that the lattice structure and the additional periodic potential

enters our calculation only through the dispersion εp. In Eq. (5) we will see that the condition for the
critical temperature of the transition to a superfluid state at a given electron-hole coupling parameter u0

depends only on the density of states of particles with dispersion εp and on the Fermi energy δ0.
We can rewrite Eq. (2) in the form of a dimensionless free energy f = −u0F/(kBT )

2 and expand the
latter in terms of the order parameter γ2 as f = f0 + f2γ

2 + f4γ
4 (Landau expansion [69, 70]). The

corresponding coefficients for this expansion are given in Appendix A by Eqs. (A4) - (A6). At the point
of the phase transition we have zero order parameter γ = 0, and the condition for the minimum of the

free energy is ∂f
∂γ2

∣

∣

∣

γ=0

= f2 = 0. Therefore, the critical point is defined by a vanishing coefficient f2.

Thus from expression (A5) follows that the critical inverse temperature βc satisfies the condition

1

u0

= −
1

|B|

∫

B

tanh(βc|ǫp|)

|ǫp|
d2p = −

∫ E1

E0

tanh(βc|2tE − δ0|)

|2tE − δ0|
ρ(E)dE . (5)

Here we have used the fact that the p integration can be expressed as an energy integration through
the relation d2p/|B| = ρ(E)dE, where ρ(E) is the density of states of the non-interacting Hamiltonian
with dispersion εp. The dimensionless energy parameter E = (δ0 − εp)/2t is derived from the dispersion
which is shifted by the Fermi energy δ0. The integration is restricted to the interval [E0, E1], since
only electronic states are accessible within the main band of the electronic band structure. The specific
values depend on the material and its dispersion, typically for a parabolic dispersion they are given by
E0 ≈ 0 and E1 ≈ h̄2/(λ22m) with the lattice constant λ of the underlying material. According to Eq.
(5) the temperature of the electron-hole pairing is controlled by the electron-hole pairing parameter (i.e.
by the effective electron-hole potential), by the density of states, which is essentially modified by the
external periodic podential, and by the position of the Fermi energy. The relation between u0 and βc in
Eq. (5) indicates that an increasing interaction strength −u0 implies an increasing critical temperature.
Moreover, tanh(βc|2tE − δ0|)/|2tE − δ0| is a monotonically decreasing function of |2tE − δ0| with the
maximum at E = δ0/2t. The density of states ρ(E), on the other hand, distinguishes between the case of
a parabolic dispersion (ρ(E) = const.) and the case of a periodic potential, where ρ(E) is not constant.
Thus the goal is to design the dispersion by adding a superstructure to the material. This can either be
achieved by doping [71], by creating a gated periodic potential on the 2D material [80] (cf. Fig. 1) or by
twisting the two layers relative to each other to create a Moiré pattern [72, 73]. A particular possibility
to tune to a higher critical temperature is to create van Hove singularities near the Fermi level of two
twisted graphene bilayers [74–77]. The van Hove singularities, which appear at the saddle points on the
Brillouin zone, can also be shifted towards the Fermi energy by applying strain to graphene-like materials
[78]. In terms of an additional periodic potential, the effect of strain can be simulated by an anisotropic
potential. Then the density of states can be chosen such that it picks up the maximum value of the
integrand tanh(βc|2tE − δ0|)/|2tE − δ0|. Although this depends on the Fermi energy δ0, the latter can
also be tuned by a uniform external gate to obtain a large value for the integral. The idealized case would
be ρ(E) = δ(E − δ0/2t) which provides the maximal critical temperature

kBTc = −u0 . (6)

If ρ(E) = δ(E − E′), where E′ is a characteristic parameter of the model, we get from Eq. (5)

kBTc = −u0

|2tE′ − δ0|/u0

arctanh(|2tE′ − δ0|/u0)
. (7)
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As an example we consider the tight-binding approximation of Eq. (2). The corresponding density of
states reads [79]

ρ(E) = ρ0
K

(

2−|E|
2+|E|

)

2 + |E|
(−2 ≤ E ≤ 2) , (8)

where K(x) is the complete elliptic integral of the first kind and ρ0 is a normalization factor. In Appendix
B are given the expressions for the coefficients f0, f2 and f4 of the Landau expansion in the case of the
periodical potential. For the dispersion (2) we have derived some results directly from Eqs. (3) and (5),
which will be discussed in the next section.
Instead of the 2D periodic potential we could also consider an anisotropic potential with a 1D pe-

riodicity, which would also affect strongly the density of states. This case corresponds to the system
studied in Ref. [80] and was previously considered for stripes in superconductors [81, 82] and in coupled
graphene nanoribbons [83], where the goal is to create van Hove singularities in the density of states. A
one-dimensional periodic potential has an inverse square root singularity at E = 0, which can result in
an even stronger enhancement of the critical temperature. In that case we must use the density of states
ρ(Ex) for a potential varying in x direction. Then the condition in Eq. (5) becomes

1

u0

= −
1

p1 − p0

∫ p1

p0

∫ E1

E0

tanh(βc|2tEx + p2y/2m− δ0|)

|2tEx + p2y/2m− δ0|
ρ(Ex)dExdpy , (9)

where p0 and p1 are the band edges in y–direction, and E0 and E1 the band edges in x–direction of the
considered model.

III. RESULTS

The free energy F of Eq. (3) with the dispersion in Eq. (2) is calculated as a function of the di-
mensionless order parameter γ. The dependence of the dimensionless free energy f = −β2u0F on tβ
and the order parameter γ is shown in Fig. 2. This result demonstrates that f has a minimum with
respect to the order parameter γ, while the dependence of f on tβ is not strong. The non-zero minimum
of f with respect to the order parameter γ corresponds to the equilibrium value of γ, characterizing
the electron-hole superfluid. The plot in Fig. 2a represents the low-temperature BCS-like superfluid for
electron-hole pairing with a non-zero value of the order parameter γ > 0 at the minimum, while Fig. 2b
shows the high-temperature non-superfluid EHP for the zero value of γ at the minimum. Both cases are
connected via the second-order phase transition, as visualized in Fig. 3, where the normalized free energy
f as a function of the order parameter γ is plotted for different values of βu0 at fixed parameters tβ and
δ0/2t. The curves for βu0 = −50 and βu0 = −60 demonstrate the existence of low-temperature BCS-like
superfluid with electron-hole pairing with a non-zero equilibrium value of the order parameter γ > 0.
The second order phase transition is characterized by the equilibrium value γ = 0, which corresponds to
the values of the parameter βu0 between βu0 = −50 and βu0 = −40, as it is shown in Fig. 3. According
to Fig. 3, for fixed parameters δ0/2t and tβ, the minimal order parameter γ increases with decreasing
βu0 if βu0 < −50. The curves in Fig. 3 for βu0 = −30 and βu0 = −35 represent the high-temperature
non-superfluid EHP with γ = 0. Fig. 4 can be understood as a kBT − u0 phase diagram, in which the
different curves indicate the phase boundaries between the EHP on the left and the superfluid on the
right for different values of the Fermi energy in the case of a periodic potential with dispersion (2). The
critical temperature depends on the interaction strength u0, the chemical potential δ0 and the strength
of the periodic potential t. For a given u0 and a given potential strength t the critical temperature kBTc

can be found in units of 2t for different values of δ0. The critical interaction strength, where the graphs
start at Tc = 0, increases with increasing δ0. Obviously, we need −u0 > 4t to obtain a superfluid phase
of excitons if δ0 > 6t. Since the dispersion must be positive (i.e., εp > 0 in Eq. (2)), we have δ0 > 4t.
On the other hand, the critical temperature increases with t, as we can see in Fig. 4 when we double the
strength of the periodic potential by t → 2t at fixed δ0 = 10t. For large interaction strength the critical
temperature indicates a linear behavior, which is below the ideal relation of Eq. (6) though. As a typical
example, we assume u0 = −8 meV and t = 1meV such that −u0/2t = 4. Together with Fig. 4 we get
Tc = 40K for δ0 = 10meV and Tc = 120K for δ0 = 6meV. Assuming that u0 and t can be independently
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FIG. 2: The normalized free energy f as a function of tβ and the order parameter γ. (a) δ0/2t = 0.15; βu0 = −80.
(b) δ0/2t = 0.15; βu0 = −30.

FIG. 3: The normalized free energy f for βu0 = −30, −35, −40, −50, −60, at βt = 0.22 and δ0/2t = 0.175
indicates a second order phase transition between βu0 = −50 and βu0 = −40.

chosen, where u0 is a property of the layer material and t depends on the applied electric gates, is an
oversimplification. In a more realistic consideration these two parameters depend on each other due to
the geometry of the gates and the distance between layers. This can be calculated in a classical capacitor
model, as briefly discussed in App. C.
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IV. DISCUSSION AND CONCLUSIONS

In the framework of the mean-field approach for electron-hole pairing, we applied the tight-binding
approximation for the single electron spectrum of the superlattice created by the external periodic po-
tential and studied the effect of an additional periodic potential on the EHP-superfluid transition. We
have assumed for simplicity that the dispersion and the Fermi surfaces of the electrons and the holes
are the same, and analyzed the phase transition at finite temperatures. Our results clearly indicate the
possibility to control the electron-hole superfluid in CQWs or double layers of 2D material by applying an
external periodic potential due to an attached periodic gate. An alternative approach is to create a tun-
able periodic lattices in two twisted layers of 2D materials (“magic angle” bilayers) [84]. The analogous
effect occurs in a supersolid, where the crystalline long-range order and non-crystalline long-range order
co-exist [85–87]. Contrary to a supersolid, where the crystalline phase is formed due to self-organization,
the band structure in the system under consideration are induced by the external periodic potential.
A periodic potential creates many bands which are typically separated by gaps. (Neighboring bands

can also touch each other at spectral nodes. This case though, is not considered here.) To reduce the
calculation to a single band we have assumed that the order parameter |∆| is smaller than the gap between
the neighboring band. This allows us to use a single band projection, based on a tight-binding model.
The single band has a lower band edge at energy E0 and an upper band edge at energy E1, which are the
boundaries of integration for the condition of the critical temperature in Eq. (5). The k integration is
determined by the Coulomb interaction. In BCS theory of Cooper pairs only a small interval around the
Fermi energy, whose width is given by the Debye energy h̄ωD, contributes to an attractive interaction:
E0 = EF − h̄ωD, E1 = EF + h̄ωD [55, 88]. This is different in the excitonic case because the attractive
Coulomb interaction exists for all energies inside the band.
The critical temperature depends on the interaction strength u0, the chemical potential δ0 and the

strength of the periodic potential t. This is visualized in Fig. 4, where for a given u0 and a given
potential strength t the critical temperature kBTc can be found in units of 2t for different values of δ0.
A critical assumption in our model is that electrons and holes have the same dispersion. If they had

different dispersions we expect a more complex phase diagram (cf. Ref. [57]). It can even affect the
form of the order parameter. In our study we assume that the pumping beam is circularly polarized, and
hence the excitons are formed only in one of the valleys: K or −K [44, 45]. In this study we address
the formation of excitons in one of the valleys. Moreover, we can have two electronic species in TMDC
materials due to the existence of two valleys [89].
It should be of particular interest to extend our MFA approach to a more complex one with the valley

degrees of freedom and the effective coupling between the two valleys included. Another interesting
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extension of the MFA of the present work would be the inclusion of quantum fluctuations. This would
open a wide avenue for measurements of quantum effects near the EHP-superfluid transition as well as
inside the EHP and the superfluid through quantum excitations. A first step in this direction was the
calculation of the density-density correlation and the structure factor, which indicates a characteristic
increase near the transition [90]. Another possibility is to determine quantum transport properties in the
EHP and the superfluid.
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Appendix A: Expansion of free energy with respect to the order parameter in Landau form

From Eq. (3) the dimensionless free energy f = −u0F/(kBT )
2 can be written as

f = γ2 + u0β
1

|B|

∫

B

ln
[

2
(

1 + cosh
(√

β2ε2
p
+ γ2

))]

d2p. (A1)

One can expand the integrant in Eq. (A1) in terms of the power of γ2 as

ln
[

2
(

1 + cosh
(√

β2ε2
p
+ γ2

))]

= ln[2(1 + cosh[β |εp|)] +
tanh

(

1

2
β |εp|

)

2β |εp|
γ2

+
β2ε2

p
− β |εp| sinh (β |εp|)

8β4ε4
p
(1 + cosh[β |εp|])

γ4 + ... (A2)

Here to obtain the final expression for the coefficients of the expansion we have used the following
identities:

sinh 2u = 2 sinhu coshu, 1 + cosh 2u = 2 cosh2 u. (A3)

Substituting (A2) into Eq. (A1) we present the dimensionless free energy in the Landau form [69, 70]

f = f0 + f2γ
2 + f4γ

4 + ...,

where

f0 = u0β
1

|B|

∫

B

ln[2(1 + cosh[β |εp|)]d
2p, (A4)

f2 = 1 + u0β
1

|B|

∫

B

tanh
(

1

2
β |εp|

)

2β |εp|
d2p, (A5)

f4 = u0β
1

|B|

∫

B

β2ε2
p
− β |εp| sinh (β |εp|)

8β4ε4
p
(1 + cosh[β |εp|])

d2p. (A6)

Appendix B: Free energy in the case of the periodic potential

The the case of the periodic potential the integration in (A1) as well as in Eqs. (A4) - (A6) is taken
over the Brillouin zone, implying |B| is the area of the Brillouin zone (for the square superlattice of the
period b: |B| = (2πh̄)2/b2, and, therefore, the limits of the integration over px and py are given by −πh̄/b



9

and −πh̄/b. Assuming that in (A4) - (A6) the single-particle energy dispersions versus momentum for
electrons and holes are the same we can calculate f0, f2 and f4

f0 = u0β

∫ 2

−2

ln[2(1 + cosh[β |δ0 − 2tE|)]K
(

2−|E|
2+|E|

)

2 + |E|
dE, (B1)

f2 = 1 + u0β

∫ 2

−2

tanh
(

1

2
β |δ0 − 2tE|

)

K
(

2−|E|
2+|E|

)

2 |δ0 − 2tE| × (2 + |E|)
dE, (B2)

f4 = u0β

∫ 2

−2

β2(δ0 − 2tE)2 − β |δ0 − 2tE| sinh (β |εp|)

8β4(δ0 − 2tE)4 (1 + cosh[β |(δ0 − 2tE|])

K
(

2−|E|
2+|E|

)

(2 + |E|)
dE, (B3)

where K(k) is the complete elliptic integral of the first kind.

Appendix C: Effective interaction strength u0

We consider a classical approximation of a layered system, using a capacitor model which is based
on the schematic electrode pattern of Fig. 1. This allows us to calculate t and u0 as a function of the
applied gate voltage and the distance between the layers. Indirect excitons in CQWs are formed by two
TMDC monolayers that are separated by h-BN, since h-BN monolayers are characterized by a relatively
small density of defects of their crystal structure monolayers. The separation between two layers of
TMDC materials is calculated in steps of DhBN = 0.333 nm, corresponding to the thickness of one h-BN
monolayer [46]. Using the values of the periodic potential and the interlayer distance D, we obtain from
the capacitor model the values of t of the electron-hole dispersion in Eq. (2) as

t =
1

2

εε0A

D
V 2 ,

where V is the potential difference applied to the electrodes, A is the area of the electrodes and ε (ε0)
is the relative (vacuum) dielectric constant. The corresponding interaction parameter u0 for the square
electrodes with a = 5 nm and applied voltage V = 20 mV for the square lattice period b = 20 µm along
with values of t are given in Table I. It is interesting to note that the coupling strength u0 as well as the
critical temperature decrease with the number of layers.

[1] Yu. E. Lozovik and V. I. Yudson, Sov. Phys. JETP Lett. 22, 26 (1975); Sov. Phys. JETP 44, 389 (1976).
[2] S. I. Shevchenko, Phys. Rev. Lett. 72, 3242 (1994).
[3] X. Zhu, P. B. Littlewood, M. S. Hybertsen and T. M. Rice, Phys. Rev. Lett. 74, 1633 (1995).

TABLE I: Results for physical parameters t, δ0 and u0 at the critical temperature. The latter is obtained from
the calculation of Sect. III, where a phase transition occurs when βt = 0.22 and δ0/t = 0.35.
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