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We present experimental measurements and ab initio simulations of the crystalline and amorphous
phases of P2O5. The calculated Raman, infrared and vibrational density of states (VDOS) spectra
are in excellent agreement with experimental measurements and contain the signatures of all the
peculiar local structures of the amorphous phase, namely, bridging and non-bridging (double-bonded
or terminal) oxygens, and tetrahedral PO4 units associated with Q2, Q3, and Q4 species (Qn denotes
the various types of PO4 tetrahedra, with n the number of bridging oxygen atoms that connect the
tetrahedra to the rest of the network). In order to reveal the internal structure of the vibrational
spectrum, the characteristics of vibrational modes in different frequency ranges are investigated
using a mode-projection approach at different symmetries based on the Td symmetry group. In
particular, the VDOS spectrum in the range from ∼ 600 to 870 cm−1 is dominated by bending
(F2b) motions related to bridging oxygen and phosphorus (∼ 800 cm−1 band) atoms, while the high
frequency doublet zone (∼ 870–1250 cm−1) is associated mostly with the asymmetric (F2s) and
symmetric (A1) stretching modes, and most prominent peaks around 1400 cm−1 (exp. 1380 cm−1)
is mainly due to asymmetric stretching vibrations supported by double-bonded oxygen atoms. The
lower frequency range below 600 cm−1 is shown to arise from mixture of bending (E and F2b)
and rotation (F1) modes. The scissors bending (E) and rotation (F1) modes are well localized
below 600 cm−1, whereas the F2b–bending modes spread further into the range ∼ 600–870 cm−1.
The projections of the eigenmodes onto Q2, Q3, and Q4 species yield well defined contributions at
frequencies in striking correspondence to the positions of the Raman and infrared bands.

I. INTRODUCTION

The phosphate glass family exhibits many attractive
properties depending on the glass composition. In par-
ticular, phosphate glasses possess excellent optical prop-
erties and ion exchangeability, and fiber drawing abil-
ity1,2. Furthermore, phosphate glasses can sustain a high
rare-earth ion loading enabling to produce compact laser
sources and amplifiers in fiber form3. Not only that, at
variance with silica-based glasses, phosphate glasses have
suitable photodarkening properties4,5. Despite the im-
portance of P2O5 glasses in industry and nature, and
the many theoretical and experimental studies of P2O5

phases6–13, spectroscopic observations pertinent to the
optical and vibrational properties are few14–17. This may
explain to some extent why no consensus exists yet about
the structure and vibrations of pure P2O5 glass10. The
power of Raman and infrared (IR) spectroscopies for in-
vestigating glasses has been recognized by many scien-
tists. However, in order to exploit at their best these
vibrational spectroscopies, it is necessary to possess a

reliable theoretical modeling approach to correctly inter-
pret the relevant features of the vibrational spectra. By
contrast to our knowledge a modes assignment in vitre-
ous P2O5 (v–P2O5) has been explored by numerical sim-
ulations for only specific cluster models14,15,17,18. Essen-
tially, it was implied that typical features of the Raman
spectrum of v–P2O5 are three bands14–19: i) the phos-
phoryl stretch band, whose maximum is at ∼1380 cm−1,
ii) the symmetric stretch of bridging oxygen band at
∼640 cm−1, and iii) the bending mode band appearing
at a lower frequency range 300–500 cm−1. However, the
cluster model approach is hardly applicable in network
glasses due to impossibility to account for the cooperative
effects, the description of which requires more realistic
glass models which allow for a proper treatment of long-
range effects20–26. Thus, till now there are no available
theoretical investigations of vibrational spectra, relying
on realistic models of v–P2O5 network, that can provide
the attributions of vibrational modes.

In this paper, we generate realistic v–P2O5 mod-
els and present a comprehensive analysis of vibrational
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Figure 1. (a) Elementary cell of o’–P2O5
27, (b) the network

of v–P2O5 RMC1 model.
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Figure 2. Qn distribution of v–P2O5. Distributions are pre-
sented for RMC1/RMC2 models obtained by Kohara’s RMC
approach28,29, and for CMD model obtained by Classical
MD30. Qn species for PO4 structural unit are shown schemat-
ically in the inset.

spectra based on ab initio simulations, mode-projection
approach, and comparison with experimental measure-
ments of vibrational spectra, that allows to perform a
consistent modes assignment of the Raman, IR, and vi-
brational density of states (VDOS) spectra in v–P2O5.

II. SIMULATION METHODS AND

STRUCTURAL PROPERTIES

The pure v–P2O5 network is expected to be comprised
from tetrahedrons having three bridging oxygen bonds
(P–O–P), which share a maximum of three of its corners
with neighboring tetrahedra, while the fourth bond rep-
resents double-bonded (terminal) oxygen (P=O) uncon-
nected to other tetrahedral units (see Fig. 1), i.e. v–P2O5

network contains Q3 tetrahedral units in terms of the Q–
speciation6,31, where Qn denotes PO4 tetrahedra with n
number (between 2 and 4) of bridging P–O–P linkages
per tetrahedron. Usually, Classical Molecular Dynam-
ics (CMD) and Reverse Monte Carlo (RMC) approaches
are applied to simulate glasses, and models generated by
these approaches provide satisfactory agreement with ex-
periments on structure factor. However, despite of many
researches dedicated to v–P2O5

8,9,30,32–36, up to now it
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Figure 3. Dependence of the neutron (a) and X–ray (b)
static structure factor on magnitude of momentum transfer
for v–P2O5. Models RMC1 (solid grey curve), RMC2 (dashed
red curve), CMD (dotted blue curve); experimental data for
neutron7 and X–ray8 (shaded dotted green curve).

was not possible to generate v–P2O5 models with more
than 75% of Q3 units. Recently, S. Kohara et al. have
developed the hybrid RMC approach which opened the
door to confidently treat glass systems providing new in-
sights into structural properties28,29,37. Owing to these
advances, we generate three models with 112 atoms: two
RMC models (hereafter labeled as RMC1 and RMC2)
and one CMD model. RMC modeling is performed us-
ing the RMC++ code28,29,37. The difference between the
RMC1 and RMC2 models lies in the different constraints
that were applied in RMC calculations. For the case of
the RMC1 model, the constraints on the P–O connectiv-
ity are that 32 phosphorus atoms ought to be coordinated
by one non-bridging (terminal) oxygen atom at 1.4–1.5 Å
(totally 32 non-bridging oxygen atoms), and three bridg-
ing oxygen atoms at 1.5–1.7 Å (totally 48 bridging oxy-
gen atoms), whereas, for the case of the RMC2 model,
the constraint on coordinations is not applied. Atomic
number density for P2O5 glasses is 0.0708 Å

−3. The final
RMC run is conducted under these constraints by fitting
to both X-ray and neutron total structure factors S(q)8.
In particular, the structure of RMC1 and RMC2 have
the highest proportions of Q3 units ever reported, being
100% and 87.5%, respectively (see Fig. 2). Such a distri-
bution plays an essential role in our research due to strong
sensitivity of vibrational spectra to local symmetry. We
follow Ref.30 in order to generate CMD model, and the
simulations are carried out with the help of LAMMPS
code38.

Figs. 3(a) and (b) show good agreement of the glass
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Figure 4. Reduced Raman HH spectra of o’–P2O5: theory
(solid red curve), experimental data by Meyer et al.39 (solid
grey curve), and experimental data by Voron’ko et al.40 (solid
black curve). A Gaussian broadening (8 cm−1) is used for the
theoretical curve.

models with the experimental measurements of structure
factor with neutron7 and X–ray8 diffraction, however, the
RMC models give better agreement. One can note that
for q . 2.5 Å−1, i.e. corresponding to length scales be-
yond nearest neighbor distance, both neutron and X–ray
S(q) show a kind of double peak at 1.3 and 2.3 Å−1, which
is not resolved by the CMD model, while to some extent
it is resolved by both the RMC models. Moreover, RMC2
model counterintuitively seems to provide a slightly bet-
ter agreement for q . 2.5 Å−1 with experiments, despite
it has Q2 and Q4 units8. Thus it appears evident that
relying only on the structural information provided by
the structural probes such as neutron and X–ray scatter-
ing, may constitute a severe limitation for an advanced
modeling of pure v–P2O5. Crucial complementary infor-
mation can however be obtained by means of vibrational
spectroscopies. However, a detailed understanding of the
vibrational spectra can only be achieved through accu-
rate theoretical modeling. Such high level of accuracy re-
quires for theoretical approaches which address directly
the electronic structure. In this context, first-principles
calculations based on density functional theory (DFT)
are particularly appealing for the good compromise be-
tween accuracy and computational cost. All the calcula-
tions carried out in this work are based on the DFT. In
particular, a generalised gradient approximation (GGA)
[i.e. the Perdew-Burke-Ernzerhof functional] and local
density approximation (LDA) exchange-correlation func-
tional are adopted for the DFT calculations included in
Ref.41. Norm-conserving Trouiller-Martins and Bachelet-
Hamann-Schlüter pseudopotentials are used for O and P
atoms, respectively42,43. Kohn-Sham wavefunctions are
expanded in a basis of plane waves up to a kinetic cutoff
of 70 Ry. The wavefunctions are expanded at the sole
gamma point of the Brillouin zone, as justified by the
large size and the large band gap of our system. Geom-
etry optimizations are obtained by means of a two-steps
relaxation procedure (TSP): first a spin-polarized GGA

optimization, followed by a further LDA relaxation of the
atomic structure. As the classical MD provides config-
urations that are slightly far from a DFT ground-state,
a gradient-corrected functional is preferred in the first-
step to accelerate the convergence of the algorithm. The
second optimization step is required in view of an accu-
rate calculation of vibrational modes, as LDA is known
to reproduce vibrational frequencies in better agreement
with experiments than GGA13,44. In both optimization
steps, the minimum is found by adopting a force thresh-
old 0.0025 eV/Å, which allows for a proper harmonic
treatment of the vibrational modes. When applied to
the CMD model, the TSP provides a structure lower in
energy by 0.03 eV/atom with respect to a direct LDA
relaxation. The former TSP relaxed structure features
a decrease by 3% of Q2 and Q4 units and an increase
of 6% of Q3 units with respect to the structure relaxed
directly in LDA. In contrast, as far as concerns RMC1,
which has only Q3 units, the TSP relaxed structure is
equivalent to a direct LDA relaxation (difference in en-
ergy ≤0.0005 eV/atom) with no change in the network
topology, i.e., in both cases, the relaxed structure consists
of only Q3 units. Calculation of the vibrational modes of
relaxed CMD and RMC models are obtained by exploit-
ing a linear response approach45. The codes used for the
present calculations of structural and vibrational proper-
ties are freely available with the Quantum-Espresso pack-
age46.

III. RESULTS AND DISCUSSION

First, we demonstrate the reliability of our DFT calcu-
lation scheme by calculating the Raman spectrum for a
crystalline phase, o’–P2O5

27 (see Fig. 1). As we can see
in Fig. 4, the theoretical Raman spectrum very closely
resembles the experimental one. All signatures are re-
produced including a fine structure at 100–550 cm−1 fre-
quency range. A small shift ∼1% with respect to exper-
imental data at higher frequencies represents the accu-
racy limit of the present DFT calculations in agreement
with recent calculations in phosphosilicate glasses13.
Thus, we can rely on DFT approach to consider v–P2O5

vibrational spectra. In Fig. 5(a), we can see that all
v–P2O5 models reproduce two main experimental Raman
peaks (∼640 and ∼1380 cm−1) and one moderate band
at ∼800 cm−1. However, only the RMC1 model resem-
bles the experimental spectrum over all the range, while
the CMD and RMC2 models produce quite strong ad-
ditional features at high frequencies (∼1000–1300 cm−1)
compared to the silent doublet [∼950 and ∼1150 cm−1

(exp. ∼920 and ∼1110 cm−1)]. Considering IR spec-
tra in Fig. 5(b), we can mention that only the Model
RMC1 provides very good agreement with experimen-
tal spectrum and reproduces all signatures (∼450 cm−1,
∼800 cm−1, ∼950 cm−1, ∼1100 cm−1, and ∼1380 cm−1),
whereas the CMD and RMC2 models do not reproduce
the peak position of the central band ∼800 cm−1, de-
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Figure 5. Vibrational spectra of v–P2O5. (a) Reduced Raman
HH spectra with experiment by Mohmoh et al.16, (b) IR ab-
sorption spectra with experiment by Meyer et al.47, (c) VDOS
spectra with experiment (present work). In all panels: exper-
iment (solid grey curve); models RMC1 (solid black curve),
RMC2 (dashed red curve), and CMD (dot-dashed blue curve).
A Gaussian broadening (20 cm−1) is used for all theoretical
curves.

form and shift the most strong ∼950 cm−1 band, and
generate additional features at high frequencies similarly
to Raman spectra.
In Fig. 5(c) we present the VDOS analysis. The ex-

perimental VDOS was obtained using the inelastic neu-
tron scattering technique with experimental details as
reported elsewhere48. We can see that, apart from
the very beginning, < 100 cm−1 (boson peak area),
and the double-bonded oxygen line, 1400 cm−1 (exp.
1380 cm−1), all models exhibit similar qualitative be-
havior and reproduce the main experimental features:
i) mid-frequency bands at ∼450 cm−1, ∼650 cm−1 and
∼800 cm−1; ii) high-frequency bands at ∼950 cm−1,
∼1150 cm−1 and ∼1380 cm−1. The origin of slight shift
of 1380 cm−1 line is coming from the DFT calculation in
the case of oxide glasses as mentioned above. A broad
range of wavenumber used in the neutron experiments

 Q4 (9.375%)
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 Q4 (12.5%)
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  Q4

Figure 6. The partial VDOS for Qn species: (a) Model RMC1
vs. Model RMC2, (b) Model RMC1 vs. Model CMD. Qn

species for PO4 structural unit are shown schematically in
the inset. Note: the model RMC1 has 100% Q3 units.

does not resolve accurately the boson peak area, how-
ever, it does not affect the present vibrational analysis.
Despite the qualitative similarity of the simulation and
experimental spectra, however, there are significant dif-
ferences in the structure of simulation spectra. In par-
ticular, the CMD model shifts the high-frequency spec-
trum (∼950 cm−1 and ∼1150 cm−1) by ∼100 cm−1, es-
sentially deforming it in relation to RMC and experi-
mental spectra. In addition, the RMC2 model shifts the
mid-frequency band (∼650 cm−1) and the high-frequency
band (∼1150 cm−1). By contrast, a comparison of the
experimental and ab initio RMC1 model VDOS spectra
shows very good agreement over all the frequency range,
reproducing the exact locations of all the main features.
Thus, similarly to Raman and IR spectra, the CMD and
RMC2 models deform VDOS spectra inducing additional
features at high frequencies [see Fig. 5(c)]. In order to
reveal these features, we decompose the VDOS spectra
in terms of Qn species by projecting vibrations onto cor-
responding Qn structural units:

g(ν) =

4
∑

n=2

gn(ν) =
1

3Nat

∑

n

∑

k

∑

In

∣

∣e
k
In

∣

∣

2
δ(ν − νk),

(1)
where the index k labeling the vibrational modes runs
from 1 to 3Nat, Nat is the total number of atoms in
the models (112 atoms), ek and νk are eigenmodes and
eigenfrequencies, the index In runs over the Qn units,
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Figure 7. The dependence of the participation ratio on fre-
quency for RMC1 (violet circles), RMC2 (green circles) and
CMD (blue circles) models.
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2
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where Pn denotes phosphorus atoms belonging to In
units, iBO and iTO enumerate bridging and terminal oxy-
gen atoms within Qn units. Figs. 5(c), 6(a) and 6(b)
evidence clearly that the Q2 and Q4 units (in CMD
and RMC2 models) deform VDOS spectra at ∼600–
1450 cm−1 and hence induce corresponding differences
in Raman and IR spectra with respect to experimen-
tal measurements and RMC1 model. Thus, the RMC1
model, comprised from Q3 units only, provides excellent
agreement with all the experimental measurements and
properly represents the structure of pure v–P2O5. The
additional features at high frequency in all vibrational
spectra are the signatures of Q2 and Q4 units in the net-
work of CMD and RMC2 models (see Fig. 2), support-
ing previous experimental Raman studies19 on Na-doped
P2O5 containing Q2 units.
Previous researches based on specific cluster

model14,15,17 were able to confidently assign only
the high-frequency Raman and IR band 1380 cm−1

ascribing it to the motion of the double-bonded oxygens
along the P=O bonds. Since high-frequency modes are
quite localized (having participation ratio (PR) ∼0.2, see
Fig. 7), cluster models14,15,17 are capable to explain their
nature. However, the medium-frequency range (∼300–
870 cm−1) is characterized by quite strong cooperative
effect (in fact modes are rather non-localized having
PR ∼0.5, see Fig. 7) and cluster models can hardly be
applied. We overcome the cluster model limitations by
using the 112-atom models (RMC and CMD). To better
understand the internal structure of vibrations, we
perform a projection analysis in terms of the chemical
species. In Fig. 8(a), VDOS spectrum projected onto
species reveals a quite noticeable coupling of phosphorus
and oxygens atoms at ∼600–870 cm−1, uniform moder-
ate presence of phosphorus motion at frequencies below
∼600 cm−1, suppressed phosphorus activity at high fre-
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Figure 8. (a) The partial VDOS for phosphorus (P) atoms
(solid red line), terminal oxygen (TO) (dot-dashed green line)
and bridging oxygen (BO) (dotted blue line) atoms compared
to the total VDOS (solid black line). Inset schematically
shows Q3–PO4 structural unit. (b) Deconvolution of Raman
HH spectrum with the same color code as in panel (a). In-
set shows zoom of intensity multiplied by a factor of 40 for
700–1250 cm−1 frequency region. (c) The partial VDOS for
the projections onto the Td-group symmetries: A1 symmetric
stretching (solid red line), F2s asymmetric stretching (dashed
blue line), F2b bending (dotted magenta line), E bending (dot-
dashed green line), F1 solid-unit rotations (double dot-dashed
orange line). Inset schematically shows the relative atomic
displacements of the Td-group. The results are obtained for
the Model RMC1.

quency doublet zone (∼870–1250 cm−1) with respect to
the bridging oxygens, and considerable phosphorus gain
at the narrow ∼1400 cm−1 band. The doublet zone can
be attributed mostly to the bridging oxygens, while the
terminal oxygens only provide a negligible contribution.
By contrast, the band ∼1400 cm−1 (exp. 1380 cm−1)
is practically forbidden for the bridging oxygens, and
mostly arising from terminal oxygen motions. Some
very interesting Raman features relates to the frequency
range between ∼550 and 700 cm−1 [see Fig. 5(a)],
where a strong Raman enhancement is observed at
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∼610 cm−1 (exp. 640 cm−1). Umari and Pasquarello
developed an approach for the decomposition of Raman
spectra49,50, however, their approach does not take
into account the interference effect between specific
groups of atoms or vibration, which does not provide the
decomposition of the spectra in an additive manner. We
adapt this approach to take into account the interference
effect to decompose the Raman spectrum into partial
contributions of specific groups of atoms, i.e. P, TO,
BO (phosphorous, terminal- and bridging-oxygen atoms,
see the legend in Fig. 8), so to fully represent the total
spectrum (see Appendix A). In result, the Raman HH
intensity is a sum of three terms:

I(ν) = IP (ν) + ITO(ν) + IBO(ν). (3)

By projecting VDOS onto phosphorous, terminal- and
bridging-oxygen atoms, we can see that in the range
∼550–700 cm−1 bridging oxygen motions are major as
compared with terminal oxygens [see Fig. 8(a)], however,
the polarizability of terminal oxygens are much stronger
than bridging oxygens, that leads to their predominance
in producing the Raman 640 cm−1 band [see Fig. 8(b)],
and this assignment disproves the previous band attri-
bution14,16–18 ascribing mainly its origin to the symmet-
ric stretching modes of bridging oxygens. Also, we in-
dicate comparable contributions of bridging oxygen and
phosphorus motions and quite moderate contributions
of terminal oxygens at 700–870 cm−1 band, however,
the phosphorus atoms contribute lightly to the Raman
∼800 cm−1 band [see inset in Fig. 8(b)], i.e. this Ra-
man band is ascribed mainly to bridging oxygens. In the
VDOS frequency range 100–550 cm−1 it is interesting
to note that terminal oxygens make a larger contribu-
tion than bridging oxygens in the range 100–350 cm−1,
whereas the opposite is true in the range 350–550 cm−1.
It is also interesting to mention that Raman spectra ap-
pearing at 100–550 cm−1 have a similar structure as
VDOS, however the terminal oxygen contribution is deci-
sive [see Fig. 8(b)] due to higher polarizability, and hence
the Raman modes in the range 350–550 cm−1 are not
specifically related to bending modes of bridging oxy-
gens14,16.
Finally, we present full tetrahedral (Td) symmetry

group analysis20,21, which have never been reported for
ab initio glass models to date. In Fig. 8(c), the spec-
trum in the range from ∼600 to 870 cm−1 is dominated
by bending (F2b) motions related mostly to bridging
oxygen and phosphorus (∼800 cm−1 band) atoms [see
Fig. 8(a)], while the high frequency doublet zone (∼870–
1250 cm−1) is associated mostly with the symmetric (A1)
and asymmetric (F2s) stretching modes. One can note,
that the Raman bands ∼870–1250 cm−1 behave silently
that complicates their accurate measurements and analy-
sis, whereas IR spectrum shows strong resonances, espe-
cially at ∼950 cm−1. Since the modes above ∼870 cm−1

are quite spatially localized (PR ∼0.2) that enables to
infer information about intermediate range order (inter-
bonding angle)51, and hence, in the case v–P2O5, the

IR spectroscopy seems more preferred tool rather than
Raman spectroscopy in this frequency range. The most
prominent peak around 1400 cm−1 (exp. 1380 cm−1) is
mainly due to asymmetric stretching vibrations of termi-
nal oxygens, and its signatures are comparably strong in
all vibrational spectra (see Fig. 5). The lower frequency
range in VDOS below 600 cm−1 is shown to arise from
mixture of bending (E and F2b) and rotation (F1) modes.
However, the scissors bending (E) and rotation (F1)
modes are well localized below 600 cm−1, whereas the
F2b–bending modes spread further into the range ∼600–
870 cm−1. The boson peak area, i.e. < 100 cm−1, is orig-
inating mostly from the rotation (F1) modes similarly to
v–SiO2

20,21. It should be noted that our mode-projection
analysis can be applied for other point-symmetry groups,
thus offering a powerful modes assignment tool, and
hence unveils a more comprehensive methodology for
studying vibrational properties in disordered systems.

IV. CONCLUSION

In conclusion, we presented a comprehensive analysis
based on ab initio calculations and experimental mea-
surements, which provides an assignment of the Raman,
IR and VDOS spectra in v–P2O5 to vibrations of specific
network structural units. Our analysis yields compelling
evidence of the existence of only Q3 tetrahedral units in
pure v–P2O5. It has been revealed in detail the internal
structure of vibrations using a mode-projection analy-
sis based on chemical species and Td symmetry group.
Thus, this work serves as an exemplary study of disor-
dered material with complex bonding configurations, and
the combined modeling approach based on RMC and
DFT simulations with mode-projection analysis is very
promising for further studies of amorphous materials.
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Appendix A: Raman decomposition

The Raman cross-section is calculated assuming non-
resonant conditions in the Placzek approximation as de-
scribed in a previous work25 and given by (in esu units):

IP (ν) =
2πh

ν

g(ν) (νL − ν)
4

V −1c4

∑

k

Ikδ(ν − νk), (A1)

where the index k labeling the vibrational modes runs
from 1 to 3Nat, Nat is the total number of atoms in the
models, νL is the frequency of the incoming photon, h
is the Planck constant, c is the speed of light, V is the
volume of the scattering sample, g(ν) = nB(ν) + 1, and
nB(ν) is the boson factor. In this work, we give the
Raman intensities using the following reduced expression:

I(ν) = ν (νL − ν)−4 g−1(ν)IP (ν). (A2)

In experimental setups, it is customary to record the Ra-
man spectra in the horizontal-horizontal (HH) configu-
ration in which the polarization of the outgoing photons
is respectively parallel to the ingoing photon polariza-
tion. Using the isotropy of disordered solids, we express
the contribution of the kth mode Ik to the HH-Raman
spectra as

IHH
k = a2k +

4

45
b2k. (A3)

Below, we adapt the Umari and Pasquarello approach
in Ref.49 to take into account the interference effect and
to additively decompose the Raman spectrum given by
Eq. (A2) into partial contributions of specific groups
of atoms {Am}(m = 1, 2, 3), Am ∈ {P, TO,BO}, i.e.
I(ν) =

∑

m IAm
(ν). The Raman susceptibility tensors

R
k are given by

R
k =

∑

m

R
k
Am

=
∑

m

{

√
V

∑

I∈Am

∂χ

∂RI

e
k
I√
MI

}

, (A4)

where χ is the electric polarizability tensor, the capital
Latin index I runs over the atoms, RI and MI are the

position and the atomic mass of atom I, respectively. By
using R

k
Am

we decompose a2k and b2k as follows

ak =
∑

m

ak,Am
=

=
∑

m

{

1

3

3
∑

i=1

Rk
ii,Am

}

=
1

3

3
∑

i=1

Rk
ii, (A5)

a2k =
∑

m

ã2k,Am
=

∑

m

∑

m′

ak,Am
ak,Am′

, (A6)

b2k =
∑

i<j

{

1

2

(

Rk
ii −Rk

jj

)2
+ 3

(

Rk
ij

)2
}

=

=
∑

i<j

(

γk
ij

)2
+
∑

i<j

(

δkij
)2

= γ2
k + δ2k, (A7)

where γk
ij and δkij are represented as

γk
ij =

∑

m

γk
ij,Am

=
∑

m

1√
2

(

Rk
ii,Am

−Rk
jj,Am

)

, (A8)

δkij =
∑

m

δkij,Am
=

∑

m

√
3Rk

ij,Am
, (A9)

and γ2
k and δ2k are decomposed as

γ2
k =

∑

m

γ̃2
k,Am

=
∑

m

∑

i<j

∑

m′

γk
ij,Am

γk
ij,Am′

, (A10)

δ2k =
∑

m

δ̃2k,Am
=

∑

m

∑

i<j

∑

m′

δkij,Am
δkij,Am′

. (A11)

By using Eqs. (A5)–(A11) we decompose IHH
k as IHH

k =
∑

m IHH
Am,k, that allows to compute mth terms IAm

(ν)

representing the total intensity I(ν) given by Eqs. (A2)
and (3).
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