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We demonstrate several explicit duality mappings between elasticity of two-dimensional crystals
and fracton tensor gauge theories, expanding on recent works by two of the present authors. We
begin by dualizing the quantum elasticity theory of an ordinary commensurate crystal, which maps
directly onto a fracton tensor gauge theory, in a natural tensor analogue of the conventional particle-
vortex duality transformation of a superfluid. The transverse and longitudinal phonons of a crystal
map onto the two gapless gauge modes of the tensor gauge theory, while the topological lattice defects
map onto the gauge charges, with disclinations corresponding to isolated fractons and dislocations
corresponding to dipoles of fractons. We use the classical limit of this duality to make new predictions
for the finite-temperature phase diagram of fracton models, and provide a simpler derivation of
the Halperin-Nelson-Young theory of thermal melting of two-dimensional solids. We extend this
duality to incorporate bosonic statistics, which is necessary for a description of the quantum melting
transitions. We thereby derive a hybrid vector-tensor gauge theory which describes a supersolid
phase, hosting both crystalline and superfluid orders. The structure of this gauge theory puts
constraints on the quantum phase diagram of bosons, and also leads to the concept of symmetry
enriched fracton order. We formulate the extension of these dualities to systems breaking time-
reversal symmetry. We also discuss the broader implications of these dualities, such as a possible
connection between fracton phases and the study of interacting topological crystalline insulators.
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I. INTRODUCTION

A. Overview

Stimulated by the ever-growing class of unusual quan-
tum materials which do not conform to the conven-
tional Landau paradigms of Fermi liquids and symme-
try breaking, much effort has been directed at explor-
ing models that exhibit quantum phases with exotic
fractionalized quasiparticles. Recently, a new class of
quantum phases of matter has been discovered, featur-
ing quasiparticles with unusual restrictions on their mo-
bility. The first, and most famous, example of this
phenomenon is the “fracton” excitation. These exotic
particles are characterized by strict immobility in iso-
lation, but they can often move through interaction
with other particles. More generally, there exist par-
ticles which move freely only along certain subspaces
while being immobile in the transverse directions, ex-
hibiting subdimensional behavior. Fractons and other
subdimensional particles were first seen in the context
of certain exactly solvable lattice models, such as sta-
bilizer code spin models and Majorana systems.1–8 It
was later realized that these new particles have a nat-
ural theoretical description in the language of tensor
gauge theories, which exhibit restricted mobility due
to an unusual set of higher moment charge conserva-
tion laws, such as conservation of dipole moment.9–12

Rapid recent progress in the field has established con-
nections with numerous other areas of physics, such
as localization13–15, gravity16, holography17,18, quan-
tum Hall systems19,20, hole-doped antiferromagnets21,
and deconfined quantum criticality22, among many other
theoretical developments.23–47 We refer the reader to
Reference 48 for a review of fracton physics.

While the exotic properties of fractons have been the
subject of intense study, concrete physical realizations
have remained elusive until recently, when two of the
present authors demonstrated explicitly that the fracton
phenomenon is realized in an ordinary two-dimensional
quantum crystal.49 More specifically, we provided a di-
rect mapping between the quantum elasticity theory of
a two-dimensional crystal and a tensor gauge theory fea-
turing fracton excitations, in a direct tensor analogue of
conventional particle-vortex duality.50,51 Thus we explic-
itly demonstrate that fractons are directly realized in the
crystal in the form of disclination defects. The charac-
teristic immobility of fractons is thereby demystified in
terms of known constraints on the mobility of lattice de-
fects. Importantly, however, the duality from elasticity
does not just give a generic tensor gauge theory, but one
with an additional global U(1) symmetry arising from
atom number conservation. This symmetry leads to the
extra feature of subdimensional dipoles (dislocations), as
is known from elasticity theory at zero temperature. In
contrast, a generic tensor gauge theory does not exhibit
this feature without endowing it with extra structure.

In the present work, we derive and analyze this map-

ping in more detail, putting the duality on firmer ground.
We show that this duality allows for a productive ex-
change of ideas between two heretofore disconnected
fields. For example, the well-studied phase diagram
of elasticity theory allows us to map out new finite-
temperature phases of the corresponding fracton the-
ory, such as analogues of the hexatic and isotropic liquid
phases of elasticity theory. In turn, fracton tensor gauge
theory provides a convenient language for encoding the
restricted mobility of lattice defects and allows for a
simpler description of two-dimensional thermal melting
transitions. We note that mathematically similar gauge
duals of elasticity theory have been studied in the liter-
ature, without identification of fracton order.52–54 Our
work also provides significant technical simplifications
over previous duality formulations.

In addition to the properties of crystals, we can also
use our duality approach to describe quantum melting
transitions. However, in this case, the statistics of the
underlying atoms of the crystal become important. For
simplicity, we focus primarily on the case where the
atoms of the crystal are bosonic, such that a quan-
tum liquid phase will naturally have superfluid order.
(We also comment on possible extensions to the case of
fermionic atoms.) To this end, the tensor gauge the-
ory description of crystals must be combined with con-
ventional particle-vortex duality, which is capable of de-
scribing superfluidity. The end result is a hybrid vector-
tensor gauge theory which describes a nontrivial inter-
play between crystalline and superfluid order, thereby
providing a natural dual description of a supersolid, as
first described in Reference 55. Here we provide a more
complete derivation of this duality and explore its var-
ious consequences. By condensing various topological
defects, a supersolid can be driven into superhexatic,
superfluid, or commensurate solid phases. Importantly,
however, the structure of the gauge dual rules out the
possibility of zero-temperature hexatic or liquid phases
without superfluid order, consistent with conventional
wisdom. This more complete version of the duality
teaches us important lessons about fracton physics, such
as the role of symmetry enrichment in restricting the mo-
bility of particles. For example, the glide constraint of
a commensurate crystal, which is relaxed in the super-
solid phase, corresponds to the one-dimensional motion
of dipoles in the presence of a global U(1) symmetry.

We end with a discussion of various connections that
these dualities draw between the study of fracton phases
and other areas of condensed matter theory. For ex-
ample, the defects of crystalline order carry quantum
numbers related to the superfluid order parameter, and
vice versa, in close relation to the physics of deconfined
quantum criticality. We also show how this duality pro-
vides a possible connection between fracton physics and
the classification of interacting topological crystalline in-
sulators (TCIs).
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B. Summary of Results

The primary result of this paper is a set of dualities
connecting the physics of fractons to the elastic theory
of two-dimensional crystals.

The first duality we demonstrate starts from the stan-
dard elastic description of an ordinary commensurate
crystal in terms of a displacement field ui(~x), with action
given by:

S =

∫
d2xdt

1

2

(
(∂tu

i)2 − Cijk`uijuk`
)
. (1)

(All indices refer to spatial coordinates, and repeated
indices are summed over. Raising and lowering is done
via a flat metric, δij . The use of upper and lower in-
dices is merely a bookkeeping device.) This action is
then mapped onto that of a tensor gauge theory coupled
to fracton excitations, featuring a noncompact rank-two
symmetric tensor gauge field Aij(~x), along with a scalar
potential φ(~x):

S =

∫
d2xdt

(
1

2
C̃−1
ijk`E

ij
σ E

k`
σ −

1

2
BiBi − ρφ− J ijAij

)
.

(2)
where Eijσ = −∂tAij − ∂i∂jφ and Bi = εjk∂

jAki. Both
of these actions feature two gapless modes with linear
dispersion (ω ∼ k): phonons of the elastic theory and
gauge modes of the gauge theory. Additionally, each
side of the duality hosts a set of topologically stable ex-
citations: lattice defects of the crystal and charges of
the gauge theory. We show that these topological exci-
tations of the two theories can be directly mapped onto
each other. In particular, disclinations (orientational lat-
tice defects) correspond to isolated fracton charges, while
dislocations (translational lattice defects) correspond to
stable dipoles of fractons. The derivation of this dual-
ity proceeds in close analogy with conventional particle-
vortex duality, which maps the low-energy theory of a
superfluid onto a conventional U(1) gauge theory (as re-
viewed in Appendix A). The full dictionary of fracton-
elasticity duality is summarized in Figure 1. We show
how to derive this duality starting from either side: us-
ing the gauge theory to derive elasticity theory or vice
versa.

As an important check on the validity of this duality,
we explicitly demonstrate the equivalence of mobility re-
strictions on both the elastic and tensor gauge theory
sides, as manifested in conservation laws and continu-
ity equations. For example, any motion of a disclina-
tion involves the absorption or creation of dislocation
defects57–60, just as motion of a fracton in the gauge
theory involves absorption or emission of dipoles. An
isolated disclination will be strictly immobile, making
it a true fracton excitation. Similarly, dislocations can
only move easily via gliding (motion in the direction of
the Burgers vector). In contrast, dislocation climb (mo-
tion perpendicular to the Burgers vector) involves the
absorption/emission of another class of lattice defects:

FIG. 1. The excitations and operators of the scalar charge
theory are in one-to-one correspondence with those of elastic-
ity theory. (Pictures of lattice defects adapted from Reference
56.)

vacancies and interstitials. In the absence of such auxil-
iary defects, an isolated dislocation moves only along its
Burgers vector. We show that the dipoles of the frac-
ton gauge theory have the same quasi-one-dimensional
behavior after taking into account symmetry quantum
numbers related to the underlying atoms. The gauge
dual is thereby seen to be a symmetry enriched fracton
phase, in which extra mobility restrictions are enforced
by the presence of a global U(1) symmetry, associated
with atom conservation.

This fracton-elasticity duality not only provides nu-
merous insights into the emerging field of fractons by
drawing on established results of elasticity theory, but
also allows fracton physics to shed new light on old prob-
lems of elasticity. The restricted motion of fractons is
put on more familiar grounds in terms of the known
constraints on motion of lattice defects. In turn, the
conservation laws of higher rank tensor gauge theories
provide a convenient language for systematically encod-
ing such mobility restrictions. Furthermore, using the
well-studied phase diagram of classical two-dimensional
elasticity theory, we can map out several new classical
(finite-temperature) phases of the corresponding fracton
model, including gauge theory equivalents of the hexatic
and isotropic liquid phases. We can then use the gauge
theory formulation of fractons to study the melting tran-
sitions of two-dimensional crystals. Specifically, we use
the classical limit of our duality to provide a simpler
analysis of the two-stage thermal melting transitions of
two-dimensional crystals, first investigated by Halperin
and Nelson and by Young.61–63

While the duality transformation described above is
sufficient for understanding classical melting, it fails to
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accurately capture the physics of quantum melting tran-
sitions. By not accounting for the quantum statistics
of the underlying atoms, it fails to capture important
physics, such as the fact that a liquid of bosonic atoms
at zero temperature should form a superfluid, instead of
a truly featureless state.64–66 In order to rectify this de-
ficiency, we must formulate a more complete gauge dual
which combines the properties of both fracton-elasticity
and particle-vortex duality, thereby allowing for simul-
taneous description of crystalline and superfluid orders.

To this end, we start from a low-energy field theory
description of a supersolid, featuring both types of order,
with an action given by:

S =

∫
x,t

[
1

2
ρ(∂tui)

2 − 1

2
Cijk`uijuk` +

1

2
χ(∂tϕ)2

−1

2
K(∂iϕ)2 − g1∂tu

i∂iϕ+ g2∂tϕ∂iu
i

]
, (3)

where ui is again the lattice displacement and ϕ is the
phase of the superfluid condensate. The various terms
and parameters of this action will be discussed in detail
later. Note that the last two terms represent nontrivial
coupling between the superfluid and crystalline sectors,
which has important consequences in the dual descrip-
tion. After performing an appropriate duality transfor-
mation, the supersolid action maps onto the following
hybrid vector-tensor gauge theory:

S =

∫
x,t

[
1

2
Ĉijk`E

ij
σ E

k`
σ −

1

2
ρ̄−1B2 +

1

2
K̄−1e2 − 1

2
χ̄−1b2

− ḡB · e− gEiiσ b− J ijs Aij − sA0 − jv · a− nva0

]
.

(4)

where Eijσ and Bi are defined as previously, while ei =
−∂tai − ∂ia0 and b = εij∂iaj . Note that, in addition to
Maxwell-type “E2 +B2” terms for the vector and tensor
gauge fields, the action also features cross terms coupling
the electric field of one sector to the magnetic field of
the other sector. These pieces of the action can be inter-
preted as generalized axion contributions, analogous to
the E ·B term featured in axion electrodynamics.67,68 As
in conventional axion physics, we expect that this cou-
pling will result in a form of charge attachment. Indeed,
we show that the effect of these cross terms is to attach
quantum numbers of one sector to the gauge charges of
the other. Specifically, the topological lattice defects of
crystalline order carry boson number of superfluid sec-
tor, while vortices of the superfluid order carry angular
momentum of the crystalline order.

This relationship between the two orders has im-
portant consequences for the quantum (i.e. zero-
temperature) phase diagram of bosons. For example,
when a commensurate crystal undergoes a quantum
melting transition via condensation of topological lat-
tice defects, the underlying bosons necessarily condense
as well, leading to superfluid order. Similarly, conden-

sation of vortices in the superfluid phase will automati-
cally cause the system to form crystalline order. In this
way, we find that it is impossible for a system of bosons
in the continuum to have a trivial gapped state at zero
temperature, which is consistent with both conventional
wisdom and the Lieb-Schultz-Mattis theorem.64–66 We
can also further conclude that even the partially melted
hexatic phase, obtained from a solid via proliferation of
dislocation defects, must necessarily feature superfluid
order, ensuring that a non-superfluid hexatic phase does
not exist at zero-temperature. We use this insight to
establish the full quantum phase diagram of intertwined
superfluid and crystalline orders.

Finally, we discuss possible connections between the
duality established here and other topics in condensed
matter physics. For example, the relationship between
quantum numbers of defects of the two sectors draws
an immediate connection with the physics of decon-
fined quantum criticality, in which continuous quantum
phase transitions are allowed between phases with dif-
ferent order parameters via similar interplay of topolog-
ical defects.69,70 As such, the gauge dual of the super-
solid discussed here draws a connection with the the-
ory of deconfined quantum critical points. As another
application, we note that recent connections have been
drawn between the theory of lattice defects and topolog-
ical crystalline insulators (TCIs).71 Our duality suggests
that the full characterization of fracton phases (which
does not currently exist but is a subject of active re-
search) will be an important tool for the classification
of interacting TCIs. More generally, this duality will
allow for a productive future exchange of ideas between
the new field of fractons and established literature in the
field of elasticity.

II. BACKGROUND

A. Two-Dimensional Elasticity Theory

In this work, we will primarily focus on the elastic
theory of a two-dimensional quantum crystal, in which
the underlying atoms have arranged themselves into a
lattice with translational and orientational order. Each
atom can oscillate only a small distance ui away from
its equilibrium position, which serves as the fundamen-
tal dynamical variable of elasticity theory. Note that
the system remains invariant under a global shift of ui,
indicating that the low-energy theory must only involve
derivatives of ui. To linear order, the most general low-
energy action that can be written down is72–74:

S =

∫
d2xdt

1

2

(
(∂tu

i)2 − Cijk`uijuk`
)
, (5)

where uij is the symmetrized strain tensor:

uij =
1

2
(∂iuj + ∂jui). (6)
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FIG. 2. Disclinations are orientational defects of the crystal,
as depicted above on the triangular lattice. Notice that the
central site touches only five other sites, indicating a missing
bond angle of π/3. (Figure adapted from Reference 56.)

In writing this action, we have implicitly assumed time-
reversal symmetry, as we will do throughout most of this
manuscript, unless indicated otherwise. Note that the
antisymmetric component of the strain tensor, or equiv-
alently the bond angle, θb = 1

2ε
ij∂iuj , cannot appear ex-

plicitly in the action, as a consequence of the underlying
rotational symmetry (which is spontaneously broken in
the crystal).72 Rather, only derivatives of the bond angle
can appear in the action, which are irrelevant contribu-
tions with subdominant effect on the low-energy disper-
sion. In Section III G, we will describe an alternative
formulation of elasticity theory which treats the bond
angle more explicitly. For now, we focus on the action
in terms of the symmetric strain tensor, which leads to a
linear gapless dispersion (i.e. ω ∼ k) for the two compo-
nents of ui, corresponding to transverse and longitudinal
phonons.

While the bond angle θb makes no appearance in the
action, it is still useful for defining disclinations, the fun-
damental topological defects of a crystal, which represent
defects of the orientational order of the system, as de-
picted in Figure 2. Going around a path enclosing a fun-
damental disclination of a two-dimensional crystal with
Cn symmetry, the bond angle θb will change by 2π/n.
In equations, this corresponds to:∮

d`i ∂iθb =
2π

n
s, (7)

where d`i is tangent to the curve, and s is an integer
representing the total number of enclosed disclinations.
It is also useful to rewrite the disclinations in terms of
the symmetric strain uij as follows:

2π

n
s =

∮
d`i ∂iθb =

1

2

∮
d`i εkj∂k(∂iuj + ∂jui − ∂jui)

=

∮
dn`ε

i`εkj(∂kuij −
1

2
∂k∂jui)

= −
∫
d2x εi`εjk∂`∂kuij −

1

2

∫
d2x εi`∂`(ε

kj∂k∂jui),

(8)

where dni = εjid`j is normal to the curve, and we have
integrated by parts via Stokes theorem and have freely

FIG. 3. Dislocations correspond to bound states of two equal
and opposite disclinations, representing translational defects

of the crystal. Note that the Burgers vector~b is perpendicular
to the vector between the two disclinations. (Figure adapted
from Reference 56.)

commuted derivatives on the boundary, away from any
singularities. We now define a disclination density ρs
via:

ρs = εi`εjk∂`∂kuij , (9)

which allows us to write the total disclination number
as:

−2π

n
s =

∫
d2x

(
ρs − εi`∂i(

1

2
εkj∂k∂jui)

)
. (10)

The first term above corresponds to the bare disclination
density of the system. In order to make sense of the
second term, we must take into account a second type of
topological defect found in two-dimensional crystals.

In addition to the fundamental disclinations, a two-
dimensional crystal supports topological defects corre-
sponding to bound states of two equal and opposite
disclinations, as shown in Figure 3. This bound state,
which is a dipole of disclinations, corresponds to a de-
fect of the translational order of the system. Upon going
around a curve enclosing the defect, ui changes by a
constant bj , known as the Burgers vector, which is per-
pendicular to the line between the two constituent discli-
nations. Note that the Burgers vector is constrained to
be a lattice vector. In equations, we can write:

∮
d`i ∂iuj = bj . (11)

It is also possible to rewrite this equation purely in terms
of the symmetric strain, uij , taking advantage of the fact
that dislocations correspond to dipolar bound states of
equal and opposite disclinations.56,72,73,75 Assuming that
we are considering a region with zero net disclinations,
we can integrate by parts twice (and relabel several in-
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dices) to write:

bn = εmn

∫
d2x (ρxm) =

∫
d2xxmεmnε

i`εjk∂`∂kuij

=

∮
d`ixmεmnε

jk∂k∂iuj +

∫
d2x ρb,n

=

∮
d`iεinε

jk∂kuj +

∮
d`i∂iun =

∮
d`i∂iun, (12)

where we have defined the dislocation density ρnb =
εik∂k∂iu

n, and in the last line we have assumed θb =
1
2ε
jk∂juk is single-valued, which amounts to assuming

zero net disclination charge in the region. In this sense,
we can directly identify dislocations as dipoles of discli-
nations. Notice that a dislocation is still a stable defect,
exhibiting a topological winding, despite being “neutral”
in terms of the fundamental disclinations. This fact will
find a natural interpretation in the dual gauge theory.
Using the variables we have now defined, we can write
the total disclination charge as:

−2π

n
s =

∫
d2x (ρs − εi`∂iρ`b) (13)

In this language, we see that ρs represents bare disclina-
tions, while the second term above represents the contri-
bution to the total disclination density arising from the
dislocation density ρb.

B. Fracton Tensor Gauge Theory

We now describe the appropriate fracton tensor gauge
theory, known as the “scalar charge theory” in the frac-
ton literature, which we will see has strikingly similar
physics to two-dimensional elasticity. We here review
the essential features of the theory, referring the reader
to previous literature for a more detailed treatment.9,10

The dynamical gauge variable of this theory is a rank-
two symmetric tensor gauge field, Aij , along with its
canonical conjugate variable, which we denote as Eij ,
playing the role of a generalized electric field tensor. The
gauge theory can be fully defined by specifying the gauge
transformation, then writing the most general gauge-
invariant low-energy action. As discussed in previous
references9,10, an equivalent way to define the theory is
to specify the generalized Gauss’s law, which in turn
determines the gauge symmetry. For the scalar charge
theory, the Gauss’s law takes the form:

∂i∂jE
ij = ρ, (14)

for scalar charge density ρ, where repeated indices are
summed over. Since Eij is conjugate to Aij , this Gauss’s
law immediately dictates that the low-energy sector is
invariant under the following gauge transformation9:

Aij → Aij + ∂i∂jα, (15)

for scalar α which is an arbitrary function of space.

As with more conventional gauge theories, this gauge
structure leads to conservation of charge. One simple
way to see this is to consider the total charge q contained
in some region V with boundary ∂V :

q =

∫
V

d2x ρ =

∫
V

d2x ∂i∂jE
ij =

∫
∂V

dni ∂jE
ij , (16)

where dni is the normal vector on the boundary. Just
as in conventional electromagnetism, the total charge is
encoded as a flux through the boundary. As such, no
local operator in the interior of V , far away from the
boundary, can cause a change of q. The charge of the
system only changes when charges flow in or out through
the boundary.

The more unusual aspect of this theory is that it also
exhibits an additional conservation law, namely conser-
vation of dipole moment. Consider the total dipole mo-
ment P i contained in the region V :

P i =

∫
V

d2x (ρxi) =

∫
V

d2xxi∂j∂kE
jk

=

∫
∂V

dnj (xi∂kE
jk − Eij).

(17)

(Recall that the dipole moment is only independent of
the choice of origin if the system is charge neutral. Oth-
erwise, the dipole moment can change by an overall con-
stant depending on the origin choice. In either case, all
physical observables are independent of this arbitrari-
ness of dipole definition.) Unlike in conventional elec-
tromagnetism, we see that the dipole moment of this
theory can be written as a flux encoded on the bound-
ary, just like charge. As such, no local operator in the
interior of V can cause a change of the total dipole mo-
ment. Dipole moment only changes when charges pass
through the boundary. In other words, dipole moment is
locally conserved. This extra conservation law has dra-
matic consequences for the particles of the theory. In
particular, an isolated charge is strictly locked in place,
since motion of a single charge would change the dipole
moment of the system. Only neutral bound states, such
as dipoles, can move around the system. These facts in-
dicate that the fundamental charges of this theory meet
the definition of fracton excitations. Furthermore, the
dipolar conservation law implies that the dipoles of the
theory are topologically stable excitations, despite being
charge-neutral.

Generically, the dipoles in a gauge theory of this form
are completely mobile, unlike the disclination dipoles
(i.e. dislocations) in the context of elasticity theory,
which are one-dimensional. However, there is a simple
way that subdimensionality can be incorporated into this
theory via imposing a global symmetry. Consider the
trace of the total quadrupole moment tensor contained
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in a region V :

Qii =

∫
V

d2x ρx2 =

∫
V

d2xx2∂i∂jE
ij

=

∫
∂V

dnj(x
2∂iE

ij − 2xiE
ij) +

∫
V

d2xEii. (18)

Note that, up to boundary terms, this component of the
quadrupole moment is equivalent to the integrated trace
of the electric tensor, which is a more conventional global
quantity (i.e. without factors of x in the integrand). If
we happened to have an ordinary global symmetry which
required the integrated trace to vanish, or be a boundary
term, then this quadrupole moment would automatically
be conserved as well. In a certain sense, this amounts to
a higher moment conservation law being “bootstrapped”
to a conventional one, similar to the analysis of Refer-
ence 76. While such a global conservation law is not
generically present in fracton theories, we will see that
the gauge dual of elasticity theory has this type of con-
servation law, thereby making it a symmetry enriched
fracton phase with reduced mobility.

In addition to gauge charges of restricted mobility,
which we generically take to be gapped, this theory will
also have gapless gauge modes, analogous to the gap-
less photon of conventional Maxwell theory. To describe
these modes, we write down the most general gauge-
invariant Hamiltonian for the charge-free sector, which
we can write in a form analogous to Maxwell theory:

H =

∫
d2x

(
1

2
C̃ijk`EijEk` +

1

2
BiBi

)
, (19)

where C̃ijk` is some matrix of coefficients. (The precise
number of independent coefficients will be dictated by
the symmetries of the system.) The magnetic field is
a gauge-invariant operator given by Bi = εjk∂

jAki, de-
scribing the two physical components of Aij . As such,
the equations of motion from this Hamiltonian yield
two gapless gauge modes with linear dispersion, ω ∼ k.
By performing a canonical transformation, we can also
rewrite this theory in the Lagrangian formalism, yielding
the following action:

S =

∫
d2xdt

(
1

2
C̃−1
ijk`E

ij
σ E

k`
σ −

1

2
BiBi

)
, (20)

where C̃−1
ijk` is the matrix inverse of C̃ijk`, such that

C̃−1
ijk`C̃

k`mn = δijδ
mn. We have also defined a new elec-

tric field quantity as:

Eijσ = −∂tAij − ∂i∂jφ, (21)

in which φ plays the role of a scalar potential function.
(The σ notation will be explained in a subsequent sec-
tion.) Note that this new variable differs from the pre-
vious definition of electric field by a tensor factor:

Eij = − ∂L
∂Ȧij

= C̃−1
ijk`E

k`
σ . (22)

The field Eijσ is the analog of the electric displacement

vector ~D in conventional electromagnetism.77 The La-
grangian formalism of the theory is invariant under time-
dependent gauge transformations, of the form:

Aij → Aij + ∂i∂jα, φ→ φ+ ∂tα, (23)

where α is now an arbitrary function of space and time.
Note that, after writing the physical fields in terms of
gauge potentials, we can easily see that the following
equation holds identically:

∂tB
i + εjk∂

jEkiσ = 0, (24)

which serves as the generalized Faraday’s equation of the
theory.

In the presence of fracton charges coupled to the gauge
field, we must also add source terms to the action, re-
sulting in:

S =

∫
d2xdt

(
1

2
C̃−1
ijk`E

ij
σ E

k`
σ −

1

2
BiBi − ρφ− J ijAij

)
,

(25)
where ρ and Jij are the fracton charge density and frac-
ton tensor current, which obey the following relationship,
enforced by gauge invariance10:

∂tρ+ ∂i∂jJ
ij = 0, (26)

representing a generalized continuity equation.

III. FRACTON GAUGE DUAL OF
COMMENSURATE QUANTUM CRYSTALS

A. Derivation of the Duality

We have now encountered two theories with essentially
identical excitation spectra. Both two-dimensional elas-
ticity theory and the fracton tensor gauge theory exhibit
two gapless gauge modes with linear dispersion, topo-
logical charge excitations, and stable dipoles. We now
demonstrate an explicit mapping between the two the-
ories, starting from elasticity theory and deriving the
fracton gauge theory. In Appendix B, we will execute
the duality in reverse, starting with the gauge theory to
derive the elasticity theory.

The essential input that we need from two-dimensional
elasticity theory is the action:

S =

∫
d2xdt

1

2

[
(∂tu

i)2 − Cijk`uijuk`
]
, (27)

given in terms of the symmetrized strain tensor, uij =
1
2 (∂iuj + ∂jui), along with the source equation dictating
how the strain responds to the presence of disclinations:

εikεj`∂i∂juk` = ρ. (28)

Dislocations are also implicitly accounted for in this
equation, since a dislocation can be regarded as a bound
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state of two disclinations,56,72,73,75 as we will see ex-
plicitly. In order to obtain the gauge dual, it is useful
to first separate the displacement field into its singular
and smooth phonon pieces, in terms of which we write

uij = u
(s)
ij + 1

2 (∂iũj + ∂j ũi), where ũi is a smooth single-

valued function, obeying εikεj`∂i∂j ũk` = 0. The singular

strain component u
(s)
ij represents the contribution from

disclinations, εikεj`∂i∂ju
(s)
k` = ρs.

We now introduce two Hubbard-Stratonovich fields,
the lattice momentum πi and the stress tensor σij . In
terms of these variables, we rewrite the action as:

S =

∫
d2xdt

[
1

2
C−1
ijk`σ

ijσk` − 1

2
πiπi

− σij(∂iũj + u
(s)
ij ) + πi∂t(ũi + u

(s)
i )

]
.

(29)

This form for the action explicitly recovers Eq. 27 upon
integrating out the fields πi and σij . Notice that the
action is now linear in the smooth displacement field ũi,
which can be integrated out to enforce the constraint:

∂tπ
i − ∂jσij = 0, (30)

which is simply the continuum form of the Newton’s
equation of motion, relating the stress imbalance to the
rate of change of lattice momentum. We will now rewrite
the action in terms of fields which solve this constraint
explicitly. First, however, it is convenient to introduce
rotated field redefinitions:

Bi = εijπj , Eijσ = εikεj`σk`. (31)

(The label σ on the field Eijσ is to indicate its relation to
the rotated stress tensor.) This change of variables trans-
forms the Newton’s equation into a generalized Faraday
law:

∂tB
i + εjk∂

jEkiσ = 0. (32)

This specific Faraday equation is precisely that which
occurs in the scalar charge tensor gauge theory. The
general solution to this equation is conveniently given by
the potential formulation of the gauge theory, in terms of
a symmetric rank-2 tensor gauge field, Aij , and a scalar
potential, φ:

Bi = εjk∂
jAki , Eijσ = −∂tAij − ∂i∂jφ . (33)

in close analogy with the potential formulation of
Maxwell theory. In the static limit, we can use the rela-
tion between σij and Eijσ to write:

σij = εikεj`∂k∂`φ, (34)

demonstrating that φ plays the role of the Airy stress
function of static elasticity theory. Note that the fields

Eijσ and Bi are invariant under the generalized gauge
transformation on the potentials,

Aij → Aij + ∂i∂jα , φ→ φ+ ∂tα, (35)

for arbitrary function α(~x, t). The potential formulation
has therefore introduced a gauge redundancy into the
problem. (Importantly, this gauge field is noncompact,
as we discuss in more detail in the next section.) Utiliz-
ing these potentials (33), the action (29) can be written
as:

S =

∫
d2xdt

(
1

2
C̃−1
ijk`E

ij
σ E

k`
σ −

1

2
BiBi

+ εikεj`∂t(Ak` + ∂k∂`φ)u
(s)
ij − ε

ijεk`∂
kA`j∂tu

(s)
i

)
,

(36)

where C̃ijk` = εiaεjbεkcε`dCabcd is a rotation of the elas-
tic coefficient tensor. We can now integrate by parts on
the last two terms, being careful that derivatives acting

on u
(s)
ij need not commute, to obtain:

S =

∫
d2xdt

(
1

2
C̃−1
ijk`E

ij
σ E

k`
σ −

1

2
BiBi

+ ρφ− J ijAij
)
,

(37)

where we have defined the current tensor J ij as:

J ij = εikεj`(∂t∂k − ∂k∂t)u`. (38)

This tensor captures the motion of both disclocations
and disclinations, as introduced in Ref. 10 and 78. For
a dislocation with Burgers vector b` at position xk(t)
moving at velocity vj , this tensor takes the form J ij =
1
2 (εi`vjb` + εj`vib`)δ

(2)(xk(t)),79 with the trace J ii de-

scribing dislocation climb.78

Through the above manipulations, we have success-
fully mapped the original action of two-dimensional elas-
ticity theory (27) into the action of the scalar-charge ten-
sor gauge theory (37). The two polarizations of phonons
have mapped onto the two gapless gauge modes of the
gauge theory, while the disclinations of the crystal, de-
scribed by density ρ, have mapped onto the fracton
charges. The correspondence between disclinations and
fractons becomes particularly clear by examining the
Gauss’s law of the gauge theory, obtained by varying
the action with respect to φ:

∂i∂jE
ij = ρ, (39)

where the new electric field tensor Eij (without σ sub-
script) is defined as:

Eij = −∂L/∂Ȧij = C̃−1
ijk`E

k`
σ . (40)

The Gauss’s law (39) serves as the dual formulation of
the definition of disclination density (28). We thereby
see that the duality maps Eij to a rotated strain tensor:

Eij = εikεj`uk`, (41)
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while we have already seen that the closely-related field
Eijσ is mapped to a rotated stress tensor, Eijσ = εikεj`σk`.

The relation Eijσ = C̃ijk`Ek` between the two electric
field tensors exactly mirrors the relation σij = Cijk`uk`
between the stress and strain tensors.

B. Instantons and Stability

In the fracton tensor gauge dual of commensurate
crystals, described in the previous section, the gauge-
invariant magnetic field operator takes the form:

Bi = εjk∂
jAki. (42)

If we regard Aij as simply a real-valued variable (i.e.
noncompact), then there are two separate conservation
laws which the magnetic field obeys: conservation of
magnetic flux,

∫
d2xBi, as well as conservation of a first

moment of flux,
∫
d2xBixi. These conservation laws

can be derived by rewriting each of these quantities as
boundary terms:∫

d2xBi =

∫
d2x εjk∂

jAki =

∮
dnjεjkA

ki, (43)

∫
d2xBixi =

∫
d2xxiεjk∂

jAki =

∮
dnjxiεjkA

ki.

(44)
Since each of these quantities is encoded on the bound-
ary, no local operator in the bulk of the system can cause
them to change, making them locally conserved quanti-
ties. For a noncompact gauge theory such as this, the
gapless mode is unambiguously stable, since there are no
gauge-invariant mass terms which can be added to the
action. This corresponds to a stable deconfined phase
of the gauge theory. In a compact gauge theory, on the
other hand, Aij is only defined modulo some compactifi-
cation radius, say 2π. In a normal compact U(1) gauge
theory, this allows the magnetic flux to slip by 2π. Such
flux slip events, or instantons, destabilize the compact
version of Maxwell theory, gapping the photon and con-
fining the charges.80 In the present case of a tensor gauge
theory, a compact gauge field would imply that the mag-
netic flux could slip by units of 2π. Similarly, the mo-
ment of flux could slip by units of 2πa, where a is the
lattice spacing. Just as in ordinary U(1) gauge theory,
such instantons would destabilize these theories in two
dimensions.81

Since the long-range order of a crystal has a finite
range of stability in two dimensions, we expect that elas-
ticity theory should map onto the noncompact theory,
without the destabilizing instanton processes. But this
fact should naturally arise out of the structure of the du-
ality, without relying on the known stability of elasticity
theory. In order to see where noncompactness arises,
it is useful to translate the magnetic conservation laws

seen in Equation 44 into the original elastic variables, in
terms of which we can write:∫

d2xπi = const.,

∫
d2x εijxiπj = const., (45)

which correspond to conservation of linear and angu-
lar momentum of the crystal. These two conservation
laws follow from the underlying translational and rota-
tional symmetries of space, which importantly are spon-
taneously broken in the crystalline-ordered phase. Thus,
any flux-changing instanton event of the gauge theory
maps onto a violation of momentum (or angular momen-
tum) conservation in the elastic theory. Such terms can
arise in specific situations, such as the case of a crystal
coupled to an underlying substrate. But in the absence
of a translational and rotational symmetry breaking sub-
strate or external fields, the instantons of the gauge the-
ory are ruled out by the underlying translational and
rotational symmetries.

C. Defect Mobility and Continuity Equations

We have shown that there is a direct correspondence at
the operator level between gauge charges of the scalar-
charge fracton tensor gauge theory and lattice defects
of two-dimensional elasticity theory, with disclinations
playing the role of fractons and dislocations acting as
dipoles. However, we have not yet explicitly checked the
correspondence between the mobility restrictions on the
two sides of the duality, which has a few subtle features.
We now verify that the gauge theory description encodes
the expected mobility constraints of elasticity theory.

We begin with the disclinations, corresponding to frac-
ton charges of the gauge theory. The defining property
of fractons is that they cannot move by themselves. In
the scalar charge theory in particular, a charge can only
move if it emits or absorbs extra dipoles, in order to keep
the total dipole moment fixed. The emission of such
dipoles is energetically costly, so an isolated fracton can-
not move without an energy source driving it. An essen-
tially identical story is known to hold for disclinations.
The motion of a disclination is always accompanied by
the creation of dislocation defects, analogous to the cre-
ation of dipoles.57–60 Since the creation of dislocations
costs energy, an isolated disclination is not free to move.
In other words, a disclination is a fracton excitation, as
expected from the duality.

One way to phrase this more formally is to study the
continuity equation of the theory:

∂tρ+ ∂i∂jJ
ij = 0, (46)

in various situations. For example, consider a theory
with density pi of i-directed dipoles, moving at velocity
vj . In this case, the charge and current take the form:

ρ = ∂ip
i, J ij =

1

2
(pivj + vipj). (47)
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Plugging back into the continuity equation, we obtain:

∂i(∂tp
i + pi∂jv

j + vi∂jp
j) = 0. (48)

Rearranging, we find:

∂tp
i + pi∂jv

j = −ρvi, (49)

where we have set a constant of integration to zero on
physical grounds. This equation represents a continuity
equation for the dipoles of the theory (pi), with a source
term corresponding to the motion of fractons (ρ).

Now we must address the dipoles and dislocations,
which have slightly more subtle behavior. In a generic
tensor gauge theory of the form discussed, there are no
further restrictions on particle mobility, and dipoles are
fully mobile objects. The conservation laws of charge
and dipole moment do not place any fundamental re-
striction on the motion of a dipole, so long as its orien-
tation is preserved. On the other hand, we know that a
dislocation defect can only move easily in the direction
of its Burgers vector. Therefore, if the duality is truly
to hold, there must be some mechanism which impedes
longitudinal motion of dipoles in the gauge theory. We
will see that this mechanism corresponds to the pres-
ence of an extra symmetry in the gauge dual of elastic-
ity theory, corresponding to the U(1) symmetry of atom
number conservation. This results in the dipoles of the
gauge theory exhibiting the symmetry-enforced mobility
restriction of only moving perpendicular to their dipole
moment, as we discuss in more detail later.

To see this mechanism at work, we consider a par-
ticular component of the quadrupole moment, Qii =∫
d2x ρx2, which changes under longitudinal dipole mo-

tion. Through integration by parts, it is straightforward
to obtain the following relation:∫
V

d2x (ρx2−2Eii) =

∫
∂V

dni (x2∂jE
ij−2xjE

ij). (50)

The right-hand side of this equation is just a boundary
term, which cannot be changed by local operations in the
bulk of the region. In other words, the quantity (ρx2 −
2Eii) obeys a local conservation law. Any change in ρx2

is necessarily accompanied by an opposing change in Eii.
To understand the physical meaning of this conservation
law, we can rewrite the trace in elasticity language as:

Eii = ∂iu
i, (51)

which corresponds to volume changes of the lattice. This
indicates that any motion of a dislocation transverse to
its Burgers vector must be accompanied by stretching or
compressing of the lattice. In a solid, such compressions
are very energetically costly. In particular, when ∂iu

i

becomes large, it is useful to write:

Eii = ∂iu
i = nd + ∂iũ

i, (52)

where nd is the number of vacancies minus the number of
interstitial defects, and ũi is a smooth function obeying

∂iũ
i � 1. Up to boundary terms, we can then write:∫

V

d2x (ρx2 − 2nd) = constant. (53)

In other words, the longitudinal motion of a dipole (i.e.
motion of a dislocation transverse to its Burgers vector)
necessarily involves the absorption or creation of vacan-
cies or interstitial defects, which are closely related to
the quadrupole moment of the gauge theory. This is in
line with the fact that, in certain fracton models, dipoles
can only move in certain directions via the absorption
or emission of quadrupolar excitations. This provides
an energetic barrier which makes the dislocations into
quasi-one-dimensional particles, as expected. It is im-
portant to note that this one-dimensional behavior is
closely tied to the vacancy quantum number and its as-
sociated U(1) symmetry. If, for example, the U(1) sym-
metry were broken by vacancies forming a condensate,
such that vacancies could be easily absorbed and emit-
ted by the dipole, then these mobility restrictions would
be lifted, as we will discuss further in a later section. In
this sense, we have a type of symmetry-enriched fracton
behavior, with immobility protected by conservation of
vacancy number.

We can more formally see that transverse dislocation
motion creates vacancy/interstitial defects by examining
the Ampere equation of motion, first studied in Refer-
ence 78, which follows directly from the Hamiltonian:

∂tE
ij +

1

2
(εik∂kB

j + εjk∂kB
i) = −J ij . (54)

The piece of this equation which is relevant for our pur-
poses is the trace, which takes the form:

∂tE
i
i + εij∂iBj = −J ii. (55)

We can rewrite the left hand side in terms of elasticity
variables to obtain78:

∂tnd + ∂iπ
i = −J ii, (56)

where we have used the fact that Eii ∼ nd, the number
of vacancies minus interstitials, since ∂iũ

i � 1. We note
that πi = J i(d) plays the role of the current of vacan-

cies/interstitials. The above equation then represents a
continuity equation for the vacancy number, sourced by
J ii, the trace of the current tensor. This trace represents
the rate of longitudinal motion of dipoles (transverse mo-
tion of dislocations).10 Equation 56 therefore formally
shows that transverse motion of dislocations will create
vacancy/interstitial defects, in line with our earlier ar-
guments.

D. Forces, Interactions, and Energetics

Another important aspect on both sides of the dual-
ity is the way in which the charges/defects interact with
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each other, mediated by long-range fields. Here we dis-
cuss the structure of the interactions between charges
on the gauge theory side, which match up perfectly with
the expected properties of elasticity theory. Towards this
end, the first important piece of information is the force
on charges due to the electric and magnetic fields of the
gauge theory. Since an isolated fracton cannot move,
there is no meaningful sense of force on it. Rather,
we should discuss the force on dipoles, which serve as
the fundamental mobile objects of the theory. Indeed,
dipoles are the objects which behave most like conven-
tional particles in this theory, with −pjAij serving as the
effective gauge field seen by dipole pj .

10 One way to see
this is to consider the form of the matter to gauge field
coupling in the action:

Scoup =

∫
d2xdt (J ijAij + ρφ), (57)

where, for a single dipole pi at instantaneous position
ri(t) and velocity vi = ṙi, the density and current are
given by:

ρ = pi∂iδ(x
k − rk(t)), (58)

J ij =
1

2

(
piṙjδ(xk − rk(t)) + pj ṙiδ(xk − rk(t))

)
. (59)

Using these forms, it becomes clear that the effective
scalar and vector potentials for a dipole pj are simply
given by −pjAij and −pj∂jφ, at which point the deriva-
tion of the equation of motion proceeds exactly as in the
case of ordinary Maxwell theory. By varying the action
Scoup with respect to ri(t), we obtain the equation of
motion for a dipole as:

pi(∂
i∂jφ+ ∂tA

ij)− piεjkvkεmn∂mAni

= −pi(Eij + εjkvkB
i) = 0. (60)

Assuming an effective mass m description of a dipole will
give an additional inertial term, allowing us to write:

F j = mr̈j = −pi(Eij + εjkvkB
i). (61)

The above equation serves as the fundamental Lorentz
force on dipoles, as described in more detail in Reference
10. As in standard electromagnetism, static charges feel
only a force from an electric field, while moving charges
experience a velocity-dependent force. Translating this
force into elastic variables, we can write the force on a
dislocation bi = εijpj as:

F j = εjkbi(σik + vkπi). (62)

The first term is the standard Peach-Koehler force on
a static dislocation82, while the second is a velocity-
dependent correction which will be much smaller than
the “electric” contribution, since the typical dislocation
velocity will be much smaller than the phonon velocity,

which serves as the effective “speed of light.” For the rest
of this section, we will assume that the dislocation ve-
locity is small, such that we can work in the electrostatic
limit, writing:

F j = −piEij = εjkbiσik. (63)

As in conventional electromagnetism, this electrostatic
limit can be conveniently treated by introducing a po-
tential formulation, which is a significant simplification
of the problem. We can derive this potential formula-
tion from the static limit of the generalized Faraday’s
equation:

∂tB
i = −εjk∂jEkiσ = 0. (64)

The condition εjk∂
jEkiσ = 0 has the general solution:

Eijσ = ∂i∂jφ, (65)

for scalar potential φ, which plays the role of the Airy
stress function of elasticity theory. Plugging φ into the
Gauss’s law of the theory, and using the relation Eij =

C̃−1
ijk`E

k`
σ , we obtain a generalized Poisson equation:

C̃−1
ijk`∂

i∂j∂k∂`φ = ρ. (66)

The physical meaning of φ can be clarified by writing
the electrostatic energy as:

H =
1

2

∫
d2x (C̃ijk`EijEk`)

=
1

2

∫
d2x C̃ijk`C̃−1

ijnm∂
n∂mφEk`

=
1

2

∫
d2x ρφ. (67)

We see that φ represents the potential energy per unit
charge, justifying our use of the term “potential.” In
terms of this potential, the force on a dipole is given
by:

F j = −pi∂i∂jφ. (68)

In order to determine how this force depends on the
distance from other crystalline defects, we now find the
appropriate potentials for all excitations of the theory.
For simplicity, we focus on a crystal of high symmetry
(e.g. a hexagonal crystal) such that only isotropic terms
appear up to fourth order in derivatives. In this case, up
to normalization, our Poisson equation takes the form:

∂4φ = ρ. (69)

For an isolated fracton of charge q (i.e. a disclination),
the potential must then satisfy:

∂4φq = q δ(2)(r). (70)

Simply by dimensional analysis, we can conclude that
the generic solution to this equation is:

φq(r) = αr2 log
r

r0
, (71)
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for some constants α and r0. One can readily check
that this equation only solves the Poisson equation if we
choose α = q/8π. As discussed in earlier treatments of
elasticity theory83,84, we have a condition of vanishing
stress at the boundary which requires r0 ∼ L. The final
form of the potential is then:

φq(r) =
qr2

8π
log

r

L
. (72)

The growth of the potential as a function of r is in-
dicative of the extensive energy cost necessary to create
isolated disclinations within the solid phase. Separating
a group of disclinations out to a distance R in Euclidean
space would require an energy of order R2. In practice,
therefore, disclination physics is typically only seen on
small scales. In an appropriate sense, the disclinations
are “confined” in the crystal (though this elastostatic
mechanism is different from more conventional forms of
confinement9). Nevertheless, the disclinations will play
an important role in the melting transitions of the crys-
tal, particularly in the hexatic phase, so we must account
for them in a complete description. In the vicinity of a
disclination, dislocations experience a large force given
by:

F j = −pi∂i∂jφq(r)

= −qp
j

8π
(1 + 2 log

r

L
)− q(p · r)rj

4πr2
, (73)

which grows logarithmically with distance.
In addition to the interaction with individual

charges/disclinations, we should also determine the in-
teraction between dipoles/dislocations. Since a dipole
is simply a bound state of two fracton charges, we can
easily determine the potential generated by a dipole pi

to be:

φp(r) = −pi∂i
(
r2 log(r/L)

8π

)
= − (p · r)

8π
(2 log(r/L) + 1). (74)

We can also determine the effect of such a potential on
other dipoles. Since a dipole is electrically neutral, it
is only sensitive to the derivative of φ. As such, the
effective potential energy between two dipoles, p and p′,
is given by:

Vpp′(r) = pi∂iφp′

= − (p · p′)
8π

(2 log(r/L) + 1)− (p′ · r)(p · r)
4πr2

.

(75)

For two oppositely directed dipoles, p′ = −p, the long-
distance behavior is a simple logarithmic attractive po-
tential:

Vpp′(r)→
p2

4π
log

r

a
, (76)

where we have subtracted off the self-energy,
p2

4π log(L/a), associated with two well-separated
dipoles. These expressions agree with those discussed
by Halperin and Nelson61, restricted to the case of
structures such as hexagonal crystal, with very high
symmetry. Creating an isolated dislocations costs an
energy of order logL, which has important consequences
for the melting transitions of solids. In this limit, the
force between dipoles takes the form:

F j = −∂jVpp′(r) = − p
2rj

4πr2
, (77)

which is purely radial, and is equivalent to a force be-
tween ordinary two-dimensional electric charges.

E. Introducing Matter Fields

The duality mapping of elasticity theory yielded the
following gauge theory action:

S =

∫
d2xdt

(
1

2
C̃−1
ijk`E

ij
σ E

k`
σ −

1

2
BiBi − ρφ− J ijAij

)
,

(78)
with source terms corresponding to fracton charge (ρ)
and dipole current (J ij). However, this action does not
feature separate fields describing the charges, and the
dynamics of charges is not made explicit. We now seek
to rewrite the action in a form which manifestly captures
the dynamics of charges, as described by charged matter
fields. To this end, we first introduce by hand the core
energy and kinetic energy of charges to the action:

S =

∫
d2xdt

(
1

2
C̃−1
ijk`E

ij
σ E

k`
σ −

1

2
BiBi

− ρφ− J ijAij − Ecρ2 − gJijJ ij
)
.

(79)

Such terms arise from short-distance physics, outside the
scope of the original linearized elasticity theory, and are
necessary for a sensible discussion of charges. We now
go to the path integral formulation of the theory, which
integrates not only over all configurations of Aij and φ,
but also over all possible configurations of ρ and Jij :

Z =

∫
DAijDφDρDJij eiS . (80)

The “integration” over ρ should technically be a sum
over only a discrete set of values. However, replacing
this sum by an integral results in only a minor differ-
ence in the theory, as we comment on further below. As
Gaussian variables, we can now integrate ρ and Jij out
of the path integral to yield:

S =

∫
d2xdt

(
1

2
C̃−1
ijk`E

ij
σ E

k`
σ −

1

2
BiBi

+
1

2
g0φ

2 +
1

2
g1AijA

ij

)
,

(81)
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for constants g0 and g1. Note that this action does
not appear to be gauge-invariant, corresponding to the
choice of unitary gauge. However, we can restore gauge
invariance to the entire action by introducing an auxil-
iary field θ, which couples to the gauge field as:

S =

∫
d2xdt

(
1

2
C̃−1
ijk`E

ij
σ E

k`
σ −

1

2
BiBi

+
1

2
g0(∂tθ − φ)2 +

1

2
g1(∂i∂jθ −Aij)2

)
.

(82)

The action is now gauge-invariant under the full set of
transformations:

Aij → Aij + ∂i∂jα, (83a)

φ→ φ+ ∂tα, (83b)

θ → θ + α. (83c)

The original form of Equation 81 can be recovered by
gauge-fixing the above action and setting θ = 0. How-
ever, this new form of the action has the advantage of
manifest gauge invariance, featuring an explicit field θ
capturing the dynamics of charges. Note that, had we
accounted for discreteness of charge, the only change
to this action would be the replacement of (∂tθ − φ)2

by cos(∂tθ − φ), which is important for describing the
transition between fracton insulating and supercondut-
ing states. The crystalline phase corresponds to a frac-
ton insulator, where the matter is gapped and the low-
energy theory is the pure Maxwell piece of the action
in Equation 79. In the melted phase, corresponding to
the condensed “superconducting” phase of charges, we
can expand the cosine around its minimum, recovering
the action in Equation 82. Starting from this “super-
conducting” action, we can then access the conventional
crystal by condensing the topological defects of the frac-
ton condensate.

F. External Stress

We have now established a gauge dual formulation of
an isolated crystal. However, it is also useful to consider
a crystal subjected to an externally applied stress en-
coded via a tensor Σij . In this case, the action will be
modified to include a source term for uij as follows:

S =

∫
d2xdt

1

2

[
(∂tu

i)2 − Cijk`uijuk` − Σijuij

]
. (84)

We can once again introduce Hubbard-Stratonovich
fields to transform the action into:

S =

∫
d2xdt

[
1

2
C−1
ijk`σ

ijσk` − 1

2
πiπi

− (σij + Σij)uij + πi∂tui

]
. (85)

As before, we can decompose ui into its smooth and
singular pieces. Upon integrating out the smooth piece,
we obtain the following constraint:

∂tu
i − ∂j(σij + Σij) = 0. (86)

To explicitly solve this equation, we introduce rotated
field redefinitions:

Bi = εijπj , Eijσ = εijεj`(σij + Σij). (87)

We can then represent these rotated fields in terms of
the usual potential formulation:

Bi = εjk∂
jAki, Eijσ = −∂tAij − ∂i∂jφ. (88)

In the gauge dual language, the elastic action subject to
external stress can be written as:

S =

∫
d2xdt

[
1

2
C̃−1
ijk`E

ij
σ E

k`
σ − C̃−1

ijk`E
ij
σ Ẽ

k`
σ

−1

2
πiπi − J ijAij − ρφ

]
, (89)

where we have defined Ẽijσ = εikεj`Σk`, and have
dropped an overall constant term which is quadratic in
Ẽijσ . All other quantities are the same as in the un-
stressed case. In this language, we can see that the gauge
dual for a crystal subject to an applied external stress
is a tensor gauge theory subject to an applied external
electric tensor field Ẽijσ . This tensor electric field will
exert a force on dipoles in the dual description, which
corresponds to the fact that an external stress exerts a
force on dislocations in a crystal.

G. An Alternative Formulation of Elasticity
Theory

In the preceding sections, we have formulated the low-
energy elasticity theory of crystals purely in terms of
the symmetric strain tensor, uij = 1

2 (∂iuj + ∂jui), as
the antisymmetric part corresponds to the bond angle
θ = 1

2ε
ij∂iuj , which is forbidden to appear by itself by

the underlying rotational invariance of the crystal. Be-
low, we use a reformulated rotationally invariant version
of elasticity theory in terms of an unsymmetrized strain
tensor, but with the bond angle θ appearing to ensure
overall rotational invariance and equivalence to the con-
ventional formulation. This new formulation also has
interesting implications for fracton physics, as discussed
more fully in Reference 85. In this formulation, we start
from an action featuring all spatial derivatives of ui, both
symmetric and antisymmetric, plus an angular variable
θ representing the local orientation of the crystal, which
a priori we allow to be independent of ui. Importantly,
however, we demand that the action of the theory be
invariant under shifting the local orientation θ and the
bond angle 1

2ε
ij∂iuj by equal amounts. Consistent with
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this restriction, the most general low-energy action to
linear order takes the form:

S =

∫
d2xdt

1

2

[
(∂tu

i)2 + (∂tθ)
2 − (∂iθ)

2

− Cijk`(∂iuj − εijθ)(∂ku` − εk`θ)
]
. (90)

Written in this way, we see that the action for the an-
tisymmetric strain tensor is effectively of the form seen
in the context of the Higgs mechanism, at low energies
Higgsing out the antisymmetric part of ∂iuj and thereby
reducing it to the conventional formulation in terms of
symmetrized strain uij only. As in the case of a gauge
field acquiring mass through the Higgs mechanism, the
field θ is “eaten” by the antisymmetric strain, which
thereby is eliminated from the low-energy gapless sec-
tor of the theory. In this way, θ and εij∂iuj mutually
remove each other from the effective action of the the-
ory, which reduces to the symmetric strain formalism of
Equation 5.

Now that we have an alternative action for the theory
of elasticity, we can construct a dual gauge theory in
much the same way as before. Introducing Hubbard-
Stratonovich fields σij , πi, ji, and L, we can rewrite the
action of Equation 90 in the following form:

S =

∫
d2xdt

1

2

[
C−1
ijk`σ

ijσk` − πiπi + jiji − L2

− σij(∂iuj − εijθ) + πi∂tui − ji∂iθ + L∂tθ

]
.

(91)

Note that the field σij , playing the role of the stress
tensor, is no longer manifestly symmetric. The field L
represents the local angular momentum of the crystal,
while ji represents a current of this angular momentum.
It is now useful to break up both ui and θ into their
smooth single-valued pieces (denoted by tildes) and their
singular pieces, which serve as sources for topological
defects:

ui = ũi + u
(s)
i , (92)

θ = θ̃ + θ(s). (93)

Integrating over the smooth pieces, our action becomes:

S =

∫
d2xdt

1

2

[
C−1
ijk`σ

ijσk` − πiπi + jiji − L2

−σij(∂iu(s)
j − εijθ

(s)) + πi∂tu
(s)
i − j

i∂iθ
(s) + L∂tθ

(s)

]
,

(94)

subject to two additional constraints:

∂tπj − ∂iσij = 0, (95)

∂tL+ ∂ij
i − εijσij = 0. (96)

The first equation represents the Newton’s equation of
motion, relating forces to change in momentum, while
the second relates torques to changes of angular momen-
tum. We now seek to solve these equations explicitly
through a potential formulation. We begin by introduc-
ing field redefinitions as follows:

Bi = εijπj , Eijσ = −εikεj`σk`,

b = L, ei = εijjj , (97)

in terms of which the constraint equations take the form
of generalized Faraday equations:

∂tB
i + εjk∂

jEkiσ = 0, (98)

∂tb+ εij∂
iej + εijE

ij
σ = 0. (99)

These equations are exactly solved by the following po-
tential formulation:

Eijσ = −∂tAij + ∂iλj , (100a)

Bi = εjk∂
jAki, (100b)

ei = −∂tai − ∂iφ− λi, (100c)

b = εij(∂
iaj −Aij), (100d)

where Aij is an arbitrary tensor, without any symmetry
properties. Note that the electric and magnetic fields
are invariant under the following transformation on the
gauge fields:

Aij → Aij + ∂iαj , (101a)

λi → λi + ∂tαi, (101b)

ai → ai + αi + ∂iβ, (101c)

φ→ φ+ ∂tβ, (101d)

for two arbitrary gauge functions αi(x) and β(x). In
terms of these new fields, we can rewrite the action from
Equation 94 as:

S =

∫
d2xdt

1

2

[
C̃−1
ijk`E

ij
σ E

k`
σ −BiBi + eiei − b2

+(∂tA
ij − ∂iλj)(εikεj`∂ku`(s) − εijθ

(s))

+εij(ε`k∂
`Aki)∂tu

j
(s) + εij(∂ta

i + ∂iφ+ λi)∂jθ
(s)

+(εij(∂
iaj −Aij))∂tθ(s)

]
.

(102)
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After a few integrations by parts, we can convert the
last few terms into source terms for the gauge fields, as
follows:

S =

∫
d2xdt

1

2

[
C̃−1
ijk`E

ij
σ E

k`
σ −BiBi + eiei − b2

+AijJ
ij + λjpj + aij

i − φs
]
, (103)

where we have defined the charge and current densities
in terms of commutators of derivatives on the singular
parts of the fields:

J ij = εikεj`(∂k∂t − ∂t∂k)u
(s)
` , (104a)

pj = εikεj`∂i∂ku
(s)
` , (104b)

ji = εij(∂j∂t − ∂j∂t)θ(s), (104c)

s = εij∂
i∂jθ(s). (104d)

The source fields J ij and pj physically correspond to
the current and charge density of dislocations, i.e. point
defects around which the lattice displacement ui has
nontrivial winding. (More accurately, pj represents the
dipole density, which is a simple rotation of the disloca-
tion density, pi = εijb

j .) Concomitantly, ji and s repre-
sent the current and charge density of disclinations, i.e.
point defects around which the bond angle θ has non-
trivial winding. It is also instructive to see how these
charges enter the Gauss’s laws of the theory, which can
be obtained by integrating the Lagrange multipliers λi
and φ out of the theory, yielding:

∂iE
ij − ej = pj , (105)

∂ie
i = s. (106)

By taking a divergence of the first equation and plugging
in the second, we obtain:

∂i∂jE
ij = s+ ∂ip

i, (107)

which reflects the fact that the total disclination density,
∂i∂jE

ij , has contributions both from bare disclinations,
s, and the dislocations (dipoles) of the system.

In Equation 103, we now have an alternative formu-
lation of the theory of elasticity phrased in terms of a
nonsymmetric tensor gauge field Aij and a conventional
vector gauge field ai. To see how this formalism reduces
to the previous formulation in terms of symmetric ten-
sors, it is useful to write out the Maxwell portion of the
action more explicitly in terms of the potentials for the
vector gauge field:

SMax =

∫
d2xdt

1

2

[
C̃−1
ijk`E

ij
σ E

k`
σ −BiBi

−(εij∂
iaj − εijAij)2

+(∂ta
i + ∂iφ+ λi)(∂tai + ∂iφ+ λi)

]
.

(108)

Written in this way, it becomes apparent that the action
is that of a Higgsed phase for the antisymmetric ten-
sor field εijA

ij , with the curl of the vector gauge field,
εij∂

iaj , acting as the phase field of a condensate. In this
way, the antisymmetric component of Aij is gapped out
via “eating” the curl of ai. Simultaneously, the remain-
ing curl-free component of ai features in the last term as
a phase field gapping the curl of λi out of the low-energy
theory. Within the low-energy sector, we can then write
λi = ∂iA0, reducing to the potential of the tensor gauge
sector to a simple scalar, as in our earlier duality. In this
way, the vector gauge sector is entirely eaten by the ten-
sor gauge sector, thereby imposing a symmetry condition
on the tensor gauge field and reducing to our previous
analysis.

While the alternative reformulation of elasticity theory
described in this section is useful for making the absence
of the antisymmetric strain in the low-energy sector more
explicit, its dual description also has important implica-
tions for fracton tensor gauge theories. A nonsymmetric
tensor gauge theory features charges which generically
do not have any restrictions on their mobility. However,
we have now seen how coupling such a nonsymmetric
tensor gauge theory to a conventional vector gauge field
can enforce symmetry on the tensor and impose mobil-
ity restrictions on the charges. This provides a novel
mechanism for driving phase transitions between fracton
and non-fracton phases, which will provide an interesting
topic of future investigation. More details on this new
vector reformulation of fracton physics can be found in
Reference 85.

IV. GENERALIZED BOSONIC CRYSTAL
DUALITY

In the previous sections, we have seen how the the-
ory of elasticity for an ordinary commensurate two-
dimensional solid maps onto a fracton tensor gauge the-
ory, in which mobility restrictions are closely tied to
the quantum numbers of the underlying atoms. How-
ever, this treatment did not incorporate the dynamics or
statistics of the underlying atoms, as manifested in va-
cancy defects of the crystalline order. As such, the previ-
ously discussed pure tensor gauge theory is not equipped
to describe zero-temperature melting transitions, driven
by quantum fluctuations. While the commensurate crys-
tal was not particularly sensitive to the statistics of the
underlying atoms, a sensible description of quantum fluid
phases must take these statistics into account. For ex-
ample, we expect that fully quantum melting a crystal
of bosonic atoms will result in a superfluid phase, as op-
posed to some completely featureless state. Indeed, a
truly featureless fully gapped phase preserving all sym-
metries should be impossible in a continuum, as dictated
by the Lieb-Schultz-Mattis theorem.

In order to rule out such unphysical phases and to ob-
tain a sensible description of melting transitions between
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crystalline and superfluid phases, it is necessary to con-
struct a generalized theory which simultaneously treats
both types of ordering. To this end, we first describe the
field theory description of a supersolid, in which both
types of ordering are present, with nontrivial coupling
between the two sectors. We then perform a duality
transformation to construct a gauge theory capturing
the properties of the supersolid phase. The other phases
of boson systems, including commensurate crystals and
superfluids, can then be obtained from the supersolid
through various condensation transitions.

A. Field Theory Description of Supersolids

A supersolid is a phase of matter featuring both crys-
talline and superfluid orders, corresponding to sponta-
neously broken spatial and U(1) symmetries.86–88 The
simplest physical picture for such a phase is to consider
a solid in which vacancy/interstitial defects have con-
densed, thereby allowing a condensate of the underlying
atoms to coexist with the crystalline order. In order to
describe such a phase in field theory language, we must
account for fluctuations around both order parameters.
For the crystalline sector, the appropriate variable to use
is the lattice displacement field, ui(x), which describes
the fluctuations of atoms around their equilibrium posi-
tions. For the superfluid sector, the low-energy fluctua-
tions can be described in terms of the phase φ(x) of the
condensate. More formally, we can obtain these variables

starting from a bosonic field ψ̂(x) as:

ψ̂(x) = ψ̂0 +
∑
G

ψ̂Ge
iG·x, (109)

in terms of its long wavelength component, ψ̂0 =√
n̂0e

iφ̂, and reciprocal lattice (G) components, ψ̂G =√
n̂Ge

iφ̂+iG·û. The phase variables φ and ui are suffi-
cient for describing the low-energy dynamics of the su-
persolid phase, while the amplitude variables correspond
to gapped modes.

In terms of the Goldstone mode fields ui and φ, the
most general low-energy Hamiltonian we can write down,
to lowest order in derivatives, takes the form:

Ĥ =
1

2
ρ−1π̂2 +

1

2
C̃ijk`ûij ûk` +

1

2
K̃(∇φ̂)2 +

1

2
χ−1n̂2

−µn̂+ g̃1∇φ̂ ·~̂π + g̃2n̂ûii , (110)

where uij = 1
2 (∂iuj + ∂jui) is the symmetric strain ten-

sor. (Note that the corresponding antisymmetric strain
tensor cannot appear explicitly in the action to lowest
order, due to the underlying rotational symmetry of the
system, which is spontaneously broken by the crystalline
order.) The conjugate fields π̂ and n̂ = n̂0 +

∑
G n̂G

are the momentum and number density, µ the chemi-
cal potential, ρ the boson average mass density, K̃ the
superfluid stiffness, χ the compressibility, and C̃ijk` the

tensor of elastic coefficients. The first five terms of this
Hamiltonian represents the standard Hamiltonians for
decoupled elastic and superfluid theories, while the final
two terms are the lowest-order symmetry-allowed cou-
plings between the two sectors, a current-current and
density-density interaction, respectively.

For obtaining the dual gauge theory, it will be useful
to first switch to a path integral representation, given by
Z =

∫
[dπ][du][dn]Dφ eiS , where the action corresponds

to S =
∫
x,t

[π · ∂tu− n∂tφ−H[π,u, n, φ]], (with
∫
x,t
≡∫

d2xdt, ~ = 1). Using the Hamiltonian from Equation
110, we can write the action as:

S =

∫
x,t

[
1

2
ρ(∂tu)2 − 1

2
Cijk`uijuk` +

1

2
χ(∂tϕ)2

−1

2
K(∇ϕ)2 − g1∂tu · ∇ϕ+ g2∂tϕ∇ · u

]
, (111)

where we have defined a shifted phase field ϕ = φ− µt,
stiffnesses K = K̃ − ρg̃2

1 and Cijk` = C̃ijk` − χg̃2
2δijδk`,

and couplings g1 = g̃1ρ and g2 = g̃2χ. The above action
will serve as a starting point for deriving the dual gauge
theory.

First, however, it is instructive to examine the equa-
tions of motion of this theory, which shed further light on
the physical interpretation of the g1 and g2 cross terms.
By varying the action with respect to ϕ, we obtain the
following equation of motion:

∂t(−χ∂tϕ− g2∂iu
i) + ∂i(K∂

iϕ+ g1∂tu
i) = 0. (112)

By identifying the total boson number n and current ji

as:

n = −χ∂tϕ− g2∂iu
i, (113)

ji = K∂iϕ+ g1∂tu
i, (114)

we can regard the equation of motion as the continuity
equation for bosons:

∂tn+ ∂ij
i = 0. (115)

It is also useful to separately identify the contribution
to boson number and current coming from vacancy and
interstitial defects:

nd = −χ∂tϕ, (116)

jid = K∂iϕ. (117)

In terms of these fields, we can rearrange the equation
of motion for ϕ as:

∂tnd + ∂ij
i
d = g2∂t∂iu

i − g1∂i∂tu
i ≡ Js, (118)

where the source term Js represents the non-
conservation of the net vacancy/interstitial defect num-
ber. From the elastic side of the duality, we know that
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the source term for vacancy/interstitial creation should
be proportional to the transverse motion of dislocations,
i.e. longitudinal motion of dipoles, as captured by the
trace of the tensor current described in previous sections,
J ii = ∂t∂iu

i−∂i∂tui. Based on physical grounds, we can
therefore conclude that g1 = g2, which guarantees that
vacancy/interstitial number is conserved in the absence
of topological defects, such that ∂i∂tu

i = ∂t∂iu
i.

It is equally informative to consider the equation of
motion for the lattice displacement field. By varying the
action of Equation 111 with respect to ui, we obtain the
equation of motion as:

∂t(ρ∂tui − g2∂iϕ)− ∂j(Cijk`uk` − g1δ
ij∂tϕ) = 0. (119)

By identifying the total momentum and stress of the
system as:

πi(tot) = ρ∂tu
i − g2∂

iϕ, (120)

σij(tot) = Cijk`uk` − g1δ
ij∂tϕ, (121)

we can write this equation of motion simply as the New-
ton’s force law for the system:

∂tπ
i
(tot) − ∂jσ

ij
(tot) = 0. (122)

In terms of the conventional momentum and strain of
the crystal, πi = ρ∂tu

i and σij = Cijk`uk` respectively,
we can also write the equation of motion as:

∂tπ
i − ∂jσij = g2∂t∂iϕ− g1∂i∂tϕ. (123)

In the absence of vortex motion in the superfluid sector,
the momentum of the condensate and crystal should be
conserved separately. This indicates that, when ∂i∂tϕ =
∂t∂iϕ, the right-hand side of the above equation should
vanish, which once again allows us to conclude that g1 =
g2, on independent physical grounds. We therefore set
g1 = g2 ≡ g for the rest of this section. In terms of this
parameter, we can write the equation of motion for ui

as:

∂tπ
i − ∂jσij = g(∂i∂t − ∂t∂i)ϕ = gεijj

(v)
j , (124)

where j
(v)
j is the current of vortices. This equation re-

flects the physical fact that motion of vortices relaxes
supercurrents, thereby transferring momentum from the
condensate to the crystal.

B. Hybrid Gauge Dual of a Supersolid

Now that we understand the field theoretic description
of a supersolid, we can construct a gauge dual through a
prescription similar to the previous duality derivation.
We first introduce Hubbard-Stratonovich fields n, πi,

σij , and ji, which allow us to rewrite the action of Equa-
tion 111 as:

S =

∫
x,t

[
πiu̇i −

1

2
ρ−1π2 +

1

2
C
−1

ijk`σ
ijσk` − σijuij − nϕ̇

−1

2
χ−1n2 +

1

2
K
−1
j2 − ji∂iϕ− gπiji − gC−1

iik`σ
k`n

]
.

(125)

The coefficients are chosen such that the original action
is obtained upon integrating out the new fields. Specifi-
cally, we have:

K̄−1 = K−1 − ρg2K−2, (126a)

C̄−1
ijk` = C−1

ijk` − χ̄g2C−1
ssijC

−1
ttk`, (126b)

ρ̄ = ρ+K−1ρ2g2, (126c)

χ̄ = χ+ χ2g2C−1
iijj , (126d)

ḡ = g/ρK, (126e)

g = gχ−1. (126f)

As before, we now break up both ui and ϕ into smooth

(ũi, ϕ̃) and singular (u
(s)
i , φ(s)) pieces, where the smooth

pieces are single-valued while the static singular pieces
host topological defects. Note that the action depends
linearly on both ui and ϕ, which allows us to integrate
the smooth pieces of both variables, imposing the follow-
ing constraints:

∂tn+ ∂ij
i = 0, (127a)

∂tπ
i − ∂jσij = 0, (127b)

which are precisely the continuity equation for total bo-
son number and Newton’s equation for total momentum,
as discussed earlier.

In order to find the general solution to these constraint
equations, it is useful to first introduce “rotated” field
redefinitions as follows:

σij =− εikεj`Ek`σ , πi = εijBj ,

ji = εijej , n = b. (128)

In terms of these new fields, the continuity and Newton’s
equations take the form of generalized Faraday equa-
tions:

∂tB
i + εjk∂

jEkiσ = 0, (129a)

∂tb+ εjk∂
jek = 0. (129b)

Just as in ordinary electromagnetism, the general solu-
tion to these equations can be found by introducing a
potential formulation as follows:

Bi = εjk∂
jAki, Eijσ = −∂tAij − ∂i∂jA0,

b = εij∂iaj , ei = −∂tai − ∂ia0, (130)
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where Aij is a symmetric tensor gauge field. Note that
the electric and magnetic fields are invariant under the
following gauge transformation on the potentials:

Aij → Aij + ∂i∂jα, (131a)

A0 → A0 + ∂tα, (131b)

ai → ai + ∂iβ, (131c)

a0 → a0 + ∂tβ, (131d)

for two independent gauge parameters α(x) and β(x)
with arbitrary spatial dependence. In terms of these
new fields, we can write the action of Equation 125 as:

S =

∫
x,t

[
1

2
Ĉijk`E

ijEk` − 1

2
ρ−1B2 +

1

2
K
−1
e2 − 1

2
χ−1b2

−gBiei − gEiib

+εijεk`∂kA`i∂tu
(s)
j + εikεj`(∂tAk` + ∂k∂`A0)u

(s)
ij

−εij∂iaj∂tϕ(s) + εij(∂tai + ∂ia0)∂jϕ
(s)

]
.

(132)

After integrating by parts, we can convert the last two
lines into source terms for the gauge fields, yielding the
final dual gauge theory action:

S =

∫
x,t

[
1

2
Ĉijk`E

ijEk` − 1

2
ρ−1B2 +

1

2
K
−1
e2 − 1

2
χ−1b2

−gBiei − gEiib− J ijs Aij − sA0 − jivai − nva0

]
,

(133)

where the charge and current densities of disclinations
(s) and vortices (v) are given by:

J ijs = εikεj`(∂k∂t − ∂t∂k)u
(s)
` , (134a)

s = εikεj`∂i∂ju
(s)
k` , (134b)

jiv = εij(∂t∂j − ∂j∂t)ϕ(s), (134c)

nv = εij∂i∂jϕ
(s). (134d)

As before, disclinations map onto the fracton charges of
a scalar-charge tensor gauge theory, while vortices of the
condensate map onto charges of a conventional vector
gauge theory.

We can also explicitly introduce matter fields describ-
ing the dynamics of charges. To this end, we introduce
several new terms to the action as follows:

S =

∫
x,t

[
1

2
Ĉijk`E

ijEk` − 1

2
ρ−1B2 +

1

2
K
−1
e2 − 1

2
χ−1b2

−gBiei − gEiib− J ijs Aij − sA0 − jivai − nva0

−Ec,ss2 − λsJ ijJij − Ec,vn2
v − λvjiji

]
,

(135)

where the terms in the final line correspond to the
core energies and kinetic energies of vortices and lat-
tice defects, respectively, which arise from short-distance
physics outside of our original proposed harmonic long
wavelength description. As we did in the case of the pure
tensor gauge theory, we now integrate nv, s, ji, and Jij
out of the path integral to obtain an action as:

S =

∫
x,t

[
1

2
Ĉijk`E

ijEk` − 1

2
ρ−1B2 +

1

2
K
−1
e2 − 1

2
χ−1b2

−gBiei − gEiib+
1

2
(c1A

2
0 + c2AijA

ij + c3a
2
0 + c4a

iai)

]
.

(136)

Once again, we have treated the densities and currents as
real-valued, as opposed to quantized quantities, a point
to which we return later. Note that the action is now no
longer invariant under the original gauge transformation
of the theory, Equations 131a-131d. However, we can
restore gauge invariance to the theory by introducing
two phase fields, θ and φ, which transform as:

θ → θ + α, (137a)

φ→ φ+ β. (137b)

These new fields couple to the gauge theory as:

S =

∫
x,t

[
1

2
Ĉijk`E

ijEk` − 1

2
ρ−1B2 +

1

2
K
−1
e2 − 1

2
χ−1b2

−gBiei − gEiib+
1

2
(c1(∂tθ −A0)2 + c2(∂i∂jθ −Aij)2

+c3(∂tφ− a0)2 + c4(∂iφ− ai)2)

]
,

(138)

which is now a gauge-invariant action. The previous
form of the action can be obtained by gauge-fixing θ and
φ to zero. Note that, more properly, if we accounted
for the discreteness of the charges and currents, the final
four terms of the action above would all have a cosine
form, e.g. 1

2c1(∂tθ−A0)2 → −c1 cos(∂tφ−A0), which is
important within the uncondensed phase of the topolog-
ical defects.

This completes the gauge dual description of a super-
solid, from which several other dualities descend. First,
however, we turn to a more detailed analysis of the cross
terms of our gauge dual, which have important conse-
quences not only for the supersolid, but for the entire
quantum phase diagram of bosons.

C. Generalized Witten Effect and Symmetry
Protected Subdimensionality

In the gauge dual action of Equation 133, we have
ordinary “E2 − B2” Maxwell terms for both the vector
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FIG. 4. A bound state of two dislocations of opposite charge,
separated by a single lattice constant, carries a unit of va-
cancy number, as can be seen by the depleted density of
atoms.

and tensor gauge fields, capturing the separate physics
of particle-vortex and fracton-elasticity dualities. Impor-
tantly, however, the action also contains “cross terms”
connecting the electric and magnetic fields of the two sec-
tors. Physically, these cross terms arise from the non-
trivial coupling between the crystalline and superfluid
sectors found in the original supersolid action (i.e. the
g1 and g2 terms of Equation 111). We now ask what
physical effects in a supersolid arise due to the presence
of this coupling in the action.

To understand the role played by the cross terms, it
is important to note that they bare a close similarity to

the the ~E · ~B term seen in axion electrodynamics.68 As
such, we will refer to these extra couplings as generalized
axion terms. We have already shown that, as in conven-
tional axion electrodynamics, the cross terms do not af-
fect the physics of the gapless (i.e. charge-free) sector of
the theory. Specifically, in the absence of topological de-
fects, we found that the g terms of the supersolid action
do not enter the equations of motion. However, these
terms will have a significant effect on the charge sector
of the theory. To determine how the charge sector is al-
tered, it is useful to recall the case of a conventional axion
term, which produces a “Witten effect,” attaching elec-
tric charge to the magnetic monopoles of the theory.67

We expect similar physics to hold in the present case, ex-
cept that the generalized axion terms should effect some
charge attachment between the two sectors of the theory.

To see the generalized Witten effect explicitly, we ex-
amine the Gauss’s laws of the theory. By varying the
action with respect to a0, we obtain the Gauss’s law for
the vector gauge field as:

∂ie
i = nv − g∂iBi, (139)

which indicates attachment of some magnetic flux of the
tensor sector to the charges of the vector sector. (Note
that ∂iB

i of the noncompact tensor gauge field does
not correspond to a magnetic monopole configuration.)
In supersolid language, we have ∂iB

i = εij∂iπj , cor-
responding to the angular momentum associated with
lattice displacements. As such, this Gauss’s law tells us

FIG. 5. a) A fracton is immobile since motion of a fracton
requires creation of a conserved dipole moment. b) A dipole
is immobile in the longitudinal direction in a phase without
superfluid order, since such motion corresponds to creation
of a collinear quadrupole, carrying conserved boson number,
protected by global U(1) symmetry. c) A dipole is always
fully mobile in the transverse direction, since it corresponds
to creation of a U(1)-neutral non-collinear quadrupole mo-
ment.

that vortices of the vacancy/interstitial carry crystalline
angular momentum.

It is even more informative to consider the Gauss’s law
of the tensor sector, obtained by varying the action with
respect to A0, yielding:

∂i∂jE
ij = s+ gĈ−1

iik`∂
k∂`b, (140)

which represents a form of attachment of flux of the vec-
tor sector to charges of the tensor sector. Recall that
b represents flux density of the vector gauge field, cor-
responding to density of vacancies/interstitials, not the
magnetic field of the tensor gauge theory. The presence
of derivatives in the final term somewhat complicates the
usual flux attachment interpretation. The physics of this
flux attachment is easiest to see on a lattice of high sym-
metry, such that Ĉ−1

iik`∂
k∂`b ∼ ∂2b. Given this diagonal

second derivative structure, it is easy to verify that va-
cancies/interstitials are attached to quadrupoles of the
fracton charges, specifically quadrupoles corresponding
to two head-to-head dipoles. In elasticity language, this
corresponds to the bound state of two dislocations, as
seen in Figure 4. This type of generalized Witten effect
will have important consequences for the quantum phase
diagram of bosons, as we will discuss later.

This charge attachment physics is also important for
understanding the mobility of lattice defects across the
solid-supersolid transition. In a generic tensor gauge
theory without additional structure arising from elastic-
ity duality, the quadrupoles are not conserved and thus
dipoles are fully mobile. Because of the generalized ax-
ion physics, however, quadrupoles with collinear charges
carry a unit of boson number. In phases with super-
fluid order, bosons can be freely created from the con-
densate, so all quadrupoles remain unconserved. When
boson number is conserved, however, such as in an ordi-
nary commensurate crystal, collinear quadrupoles carry
U(1) atom charge, and are thus forbidden to be freely
created from the vacuum. Since longitudinal motion of
dipoles corresponds to creation of collinear quadrupole
moments (see Figure 5), the axion term forces dipoles
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FIG. 6. A supersolid features both superfluid order, with its
associated confined vortex defects, and crystalline order, with
its associated topological lattice defects, namely disclinations
and dislocations. Other typical quantum phases of bosons,
such as normal solids, superfluids, and superhexatics, can be
obtained from the supersolid upon condensation of lattice
defects. Note, however, that normal (i.e. non-super) liquids
and hexatics are ruled out as quantum phases on general
principles from the LSM theorem.64–66

to move only transversely when boson number is con-
served. This corresponds to the familiar glide constraint
in commensurate crystals, which states that a disloca-
tion can only move in the direction of its Burgers vector.
We therefore see that the one-dimensional constrained
dynamics of dislocations only appears in the presence of
the U(1) symmetry associated with boson number con-
servation. In contrast, a dislocation is fully mobile in
a supersolid, in which this U(1) symmetry is broken.
We therefore refer to this type of mobility restriction
as symmetry-protected subdimensionality, or symmetry-
enriched fracton order. This example teaches us that the
mobility of excitations in a fracton theory can be further
reduced by the presence of global conservation laws, as
has been noted in several related works.76,89,90

D. Mapping the Quantum Phase Diagram of
Bosons

We have now derived a gauge dual of a supersolid,
which features both crystalline and superfluid order, as
well as defects of both types of ordering, in the form of
superfluid vortices and topological lattice defects. By
condensing these defects, we can destroy the different
types of order and restore various symmetries to the
system. For example, by condensing the vortices, we
can eliminate superfluid order and restore the underly-
ing U(1) symmetry of the system, leading to an ordinary
commensurate crystal. If, instead of vortices, we con-

FIG. 7. A schematic quantum (i.e. zero-temperature) phase
diagram of bosons in two dimensions.

dense the topological lattice defects, we can also destroy
crystalline order and restore spatial symmetries. Specifi-
cally, by condensing dislocation defects, we restore trans-
lational order and enter a hexatic phase, in which rota-
tional invariance is the only broken spatial symmetry. By
further condensing the disclination defects, we restore ro-
tational invariance and enter into a liquid phase, with no
broken spatial symmetries. This sequence of condensa-
tion transitions is indicated in Figure 6. We also sketch
a schematic phase diagram of two-dimensional quantum
systems of bosons in Figure 7. Note that the hexatic and
liquid phases obtained from the supersolid by condens-
ing lattice defects continue to feature superfluid order,
which is not affected by this condensation transition.

Indeed, superfluid order must be present in any quan-
tum liquid or hexatic phase, on general grounds, regard-
less of whether or not they are obtained from a super-
solid. These states descend from either a commensu-
rate (normal) or incommensurate (supersolid) crystalline
phase, which has been quantum melted by the condensa-
tion of topological lattice defects. As we have just seen,
such defects naturally carry boson number, even when
the crystal does not possess superfluid order. As such,
the condensation of topological lattice defects naturally
leads to condensation of bosons and the formation of
superfluid order. This indicates that “normal” (i.e. non-
superfluid) liquid and hexatic phases are impossible at
zero temperature, which is consistent with conventional
wisdom. Indeed, the absence of a continuum quantum
liquid phase of bosons without gapless modes or symme-
try breaking can be argued based on the Lieb-Schultz-
Mattis theorem64–66, since a continuum system can sim-
ply be regarded as a lattice model in the limit where the
lattice constant goes to zero. As the continuum limit is
approached, a lattice system necessarily passes through
an infinite number of fillings, many of which require the
system to be nontrivial (i.e. symmetry-breaking, gapless,
or topologically ordered). This precludes the possibility
of a stable trivial gapped phase in the continuum, since
there are nontrivial phases arbitrarily close to the con-
tinuum limit.

It is worth noting that the structure of this theory is
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highly reminiscent of the physics of deconfined quantum
criticality, in which there is a generic direct transition
between two different types of symmetry breaking, in vi-
olation of the principles of Landau theory.69,70 The most
studied example is a direct transition from a Néel anti-
ferromagnet to a valence bond solid, a continuous tran-
sition which has a critical point featuring an emergent
gauge theory with deconfined excitations. In theories
such as this, the defects of one type of order carry the
quantum numbers of a different type of order. When
one order parameter vanishes due to the condensation
of its topological defects, another order parameter natu-
rally arises due to the condensation of some appropriate
quantum number. Based on our gauge dual description
of a supersolid, we see that a similar sort of structure
occurs in ordinary two-dimensional boson systems. If
the commensurate crystal to superhexatic transition is
continuous, it holds the possibility of hosting a decon-
fined quantum critical point. Another possibility is the
generic existence of a region of supersolid in the phase
diagram between the commensurate crystal and super-
hexatic phases. If the transition is indeed continuous
and hosts a deconfined quantum critical point, then var-
ious other questions arise. For example, can the field
theory description of known deconfined quantum criti-
cal points, like the Néel-VBS transition, be phrased in
a similar generalized axion language? We leave these
questions as topics for future investigation.

V. EXTENSIONS

In the previous sections, we have established dualities
between fracton tensor gauge theories and certain famil-
iar two-dimensional crystalline phases, such as ordinary
commensurate crystals and supersolids. However, this
duality prescription is much more broadly applicable to
quantum crystalline phases. We here consider various
extensions of our previous analysis to other phases break-
ing spatial symmetries.

A. T -Breaking Crystals

While the previously considered examples all featured
time-reversal symmetry T , it is also possible to con-
sider crystalline phases in contexts with explicitly bro-
ken time-reversal symmetry. As simple examples, we can
consider Abrikosov vortices in a type-II superconductor
in a magnetic field, a neutral superfluid film under rota-
tion, or a Wigner crystal of electrons in a magnetic field.
Lack of time-reversal invariance in such systems thus al-
lows a new quadratic term in the low-energy quadratic
theory of the form εijui∂tuj . Neglecting the less-relevant
kinetic energy gives the low energy action for the chiral
vortex crystal:

S =

∫
d2xdt

1

2

(
εijui∂tuj − Cijk`uijuk`

)
. (141)

Crucially, the new dynamic term ux∂tuy encodes the
appropriate cyclotron vortex dynamics with ux and uy
canonically conjugate, as is also found in electronic sys-
tems in a quantum Hall regime.91 As such, this action
describes only a single phonon mode, with quadratic dis-
persion, ω ∼ k2. We now extend our previous analysis
to find the gauge dual of such a chiral crystal, which was
also derived independently in a parallel work by Kumar
and Potter, using an imaginary time formalism.90

Once again, we begin by introducing Hubbard-
Stratonovich fields πi and σij , representing the lattice
momentum and stress tensor, respectively. As compared
with the previous non-chiral treatment, these fields now
enter the action in a more nontrivial way:

S =

∫
d2xdt

(
1

2
C−1
ijk`σ

ijσk` − 1

2
εijπi∂tπj

− σijuij + πi∂tui

)
, (142)

where the original action is obtained upon integrating
out the new fields. As before, we now break up the

displacement field into its smooth ũi and singular u
(s)
i

components, where ũi is single-valued and u
(s)
i serves as

a source for topological defects. As in a conventional
crystal, integration of the phonons enforces the Newton
equation:

∂tπ
i − ∂jσij = 0, (143)

that with Bi = εijπj and Eijσ = εikεj`σk` again maps
onto the Faraday’s law:

∂tB
i + εjk∂

jEkiσ = 0, (144)

which is solved by Bi = εjk∂
jAki and Eijσ = −∂tAij −

∂i∂jφ. In terms of these fields, the action can now be
written in dual form as:∫

d2xdt

(
1

2
C̃−1
ijk`E

ij
σ E

k`
σ −

1

2
εijBi∂tBj + ρφ− J ijAij

)
,

(145)
where the fracton charge density ρ and current J ij are
defined in the same way as before. The only notable
change in this dual gauge theory, as compared with the
non-chiral crystal, is the absence of the usual B2 term
in favor of a B∂tB contribution to the action. This
change results in only a single gapless gauge mode with
a quadratic dispersion, ω ∼ k2, which matches with the
properties of the chiral crystal.

B. Superhexatic

We previously discussed the gauge dual of a super-
solid, which features both a tensor gauge field describing
the crystalline sector and a vector gauge field describ-
ing the superfluid sector. Upon condensing vortices of
the superfluid, we obtain the pure tensor gauge theory
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of fracton-elasticity duality. And upon condensing all
topological lattice defects, both disclinations and dislo-
cations, we obtain the familiar vector gauge theory of
particle-vortex duality. However, condensing only dis-
locations (while leaving disclinations uncondensed and
gapped), leads to a zero-temperature quantum hexatic
phase, the thermal analogue of which was discovered by
Halperin and Nelson.61 Specifically, as discussed earlier,
such a condensation at zero temperature will necessarily
lead to a superhexatic phase featuring both hexatic and
superfluid order. But what sort of gauge theory is dual
to such a superhexatic phase?

One approach to answering this question is from the
dual formulation of a supersolid, featuring both vector
and tensor gauge theories, then explicitly condensing dis-
location defects. However, a simpler path is to identify
the relevant low-energy modes and write down the most
general quadratic field theory. For a two-dimensional
superhexatic, the important degrees of freedom are the
Goldstone modes of the associated orientational and
U(1) atom conservation symmetries, which we denote
as θ and φ, respectively. The action should be invari-
ant under shifts of θ and φ by global constants, so only
derivatives of these fields should appear in the action. It
is also important that φ is even under spatial reflections
and odd under time reversal, while θ has the opposite
behavior. Making use of these facts, the most general
action which can be written down for a superhexatic,
to quadratic order in the fields and derivatives, takes a
simple decoupled form:

S =

∫
d2xdt

1

2

(
(∂tφ)2 − (∂iφ)2 + (∂tθ)

2 − (∂iθ)
2

)
,

(146)

which is simply two XY models, as expected on general
grounds, with coupling only appearing as anharmonic
gradient interactions.92 In contrast to the case of the
supersolid, there are no symmetry-allowed cross terms
coupling the θ and φ sectors at the quadratic level. At
this level, we can therefore trivially construct a gauge
dual for the superhexatic by writing down separate vec-
tor gauge theories for the two sectors:

S =

∫
d2xdt

1

2

(
EiEi −B2 + eiei − b2

)
, (147)

where the electric and magnetic fields have their usual
Maxwell definition in terms of two vector gauge fields,
Ai and ai. Let us take Ai as the dual gauge field of the
orientational sector and ai as the dual gauge field of the
superfluid sector. Then we can conclude that ei and B
are odd under time-reversal and spatial reflections, while
Ei and b are even under these symmetries.

We have now shown that the gauge dual of a super-
hexatic takes an extremely simple form, featuring two
conventional vector gauge theories which are completely
decoupled at the quadratic level, coupling only via higher
order terms. This gauge dual hosts two gapless gauge

modes with linear dispersion, corresponding to the Gold-
stone modes of the two types of symmetry breaking.

C. Fermionic Atoms

In Section IV, we incorporated the statistics of atoms
into the crystalline duality, assuming the atoms of the
crystal were bosonic. A natural extension is to a crys-
tal of fermionic atoms. This opens the door to a variety
of new quantum phases with no bosonic analogue. An
obvious example is a state in which the fermionic va-
cancy/interstitial defects have formed a Fermi surface.
Just as the supersolid served as a parent state for the en-
tire bosonic quantum phase diagram, the “Fermi surface
solid” serves as a parent state for all phases of fermionic
atoms.

To write down an effective theory of the Fermi surface
crystal, it is useful to break the Fermi surface up into
patches n over which the normal direction ⊥ does not
change substantially. Within this framework, one can
write the low-energy action for a noninteracting system
of fermions as93:

SΨ =
∑

patches

∫
dtd2xΨn(∂t − vFσx∂x⊥)Ψn, (148)

where Ψn is a Weyl fermion for each patch of the Fermi
surface, x⊥ is the normal coordinate in real space at each
patch, and σx acts on the spin space of the fermions.
This model could also be extended to include interac-
tions between different patches to yield the celebrated
Landau’s Fermi liquid theory. For now, however, we con-
tent ourselves with minimally coupling this Fermi sur-
face to the crystalline degrees of freedom. As in the case
of the supersolid, the symmetry-allowed couplings be-
tween the two sectors take the form of density-density
and current-current interactions, which we can write as:

SuΨ = g
∑

patches

∫
dtd2x (∂iu

iΨnΨn − ∂tuiΨn∂iΨn),

(149)
where the density-density and current-current interac-
tions must appear with opposite signs, as discussed in
the context of the supersolid. A similar coupling between
crystalline degrees of freedom and a Fermi surface was
also discussed in Reference 90 in the context of charge
density waves. The full field theory of the Fermi surface
solid can then be written down as:

S = SΨ + Su + SuΨ, (150)

where Su is the usual elastic action, and SΨ and SuΨ are
defined in Equations 148 and 149, respectively.

As in the case of a supersolid, it is useful to formulate
this theory in gauge dual language. However, construct-
ing gauge duals of fermionic phases is a highly nontriv-
ial task, an understanding of which has only begun to



23

emerge in the last several years, beginning in the con-
text of surface states of topological insulators.94–96 In-
stead of trying to dualize the full theory, we therefore
content ourselves with dualizing only the crystalline sec-
tor, leaving the Fermi surface sector of the theory in
its original language. From our earlier analysis, we can
easily construct this dual theory in the usual way, intro-
ducing a tensor gauge field to describe the dynamics of
the crystalline sector. The resulting theory is described
by the following action:

S =

∫
d2xdt

1

2
(C̃−1

ijk`E
ij
σ E

k`
σ −BiBi) + SΨ

+ g
∑

patches

∫
dtd2x (Eiiσ ΨnΨn −BiΨn∂iΨn) + · · ·,

(151)

where Eijσ = −∂tAij − ∂i∂jφ and Bi = εjk∂
jAki, as

before, and “· · ·” represents source terms, which we have
suppressed. By varying the action with respect to φ, the
Gauss’s law of the theory is given by:

∂i∂jE
ij = ρ+ g∂2

∑
patches

ΨnΨn. (152)

As with bosonic atoms, the second derivative above
indicates that fermion number is attached to linear
quadrupoles of the disclinations (fractons).

This type of charge attachment imposes that a dislo-
cation of the crystalline order can only move in the di-
rection of its Burgers vector (i.e. perpendicular to their
dipole moment in the gauge theory language), while mo-
tion perpendicular to the Burgers vector results in cre-
ation of a fermionic vacancy/interstitial defect. More
mathematically, a bare dislocation hopping operator,
~b†x+p

~bx (where p is the perpendicular direction to b), is
not allowed. Instead, an allowed hopping operator takes
the form:

~b†x+p
~bxΨ†x, (153)

featuring a combination of dislocation hopping and
fermion creation. Interestingly, since this operator must
preserve the fermion parity of the system, we see that

the hopping operator ~b†x+p
~bx must be a fermionic oper-

ator, in contrast to the bosonic statistics of all conven-
tional hopping operators, as first noted in Reference 90.
While an unusual property, the fermionic nature of the
hopping operator does not appear to be a fundamental
impediment to the formulation of the theory. Indeed, we
conjecture that such statistics associated with hopping
operators may prove useful in the more general classi-
fication of the statistics of fractons and subdimensional
particles.

We have already seen how the supersolid serves as
a parent state for all conventional bosonic phases of
matter, yielding the ordinary commensurate crystal and
superfluid states upon condensation of various defects.

Similarly, we expect to be able to access various phases
of fermionic atoms starting from the Fermi surface solid.
Melting the crystalline order will eventually result in a
Landau Fermi liquid, with perhaps a Fermi surface hex-
atic as an intermediate state. By Cooper pair conden-
sation, we can also obtain phases featuring supercon-
ductivity, which can coexist with either hexatic or full
crystalline order. As with bosons, the structure of the
duality does not permit a trivial gapped phase preserv-
ing all symmetries. We leave the full mapping of the
fermionic quantum phase diagram as a challenge for fu-
ture work.

D. Other Extensions

Before moving on, we also briefly describe several
other extensions to our work which have appeared in
subsequent literature. Perhaps most notably, the first
duality between fracton tensor gauge theory and ordi-
nary two-dimensional quantum crystals has now been
extended to three dimensions.97 Three-dimensional crys-
tals have the nontrivial feature that their topological lat-
tice defects, such as disclinations and dislocations, are
line-like objects, rather than the point-like defects found
in two-dimensional crystals. Accordingly, these systems
require a more complicated rank-4 gauge dual formula-
tion, which turns out to combine the properties of sym-
metric tensor gauge fields with those of antisymmetric
tensor gauge fields, the latter of which naturally hosts
line-like excitations. In this way, the gauge dual of three-
dimensional crystals describes line-like topological de-
fects which inherit some of the mobility restrictions of
fractons. Specifically, these line-like objects obey higher-
moment conservation laws on their flux through arbi-
trary two-dimensional surfaces, in close analogy with
higher-form (or “generalized”) symmetries. These con-
servation laws force the disclination lines of a three-
dimensional crystal to be fully immobile in isolation,
leading us to label this type of excitation as a fractonic
line.

In another development, it has also been argued that
the elasticity theory of certain chiral systems may be
described by a gapped tensor gauge theory, taking the
form of a higher-rank Chern-Simons theory.98 Such the-
ories may have applicability to Chern insulators or topo-
logical metamaterials, within certain limits. These the-
ories are notable for exhibiting fractionalization of the
ordinary topological lattice defects, such as fractional
Burgers vectors. This proposal may open the door to
a new realm of topological elasticity theories, which are
an exciting topic of future investigation. In turn, such
topological elasticity theories may provide clues in the
search for two-dimensional lattice models realizing frac-
ton physics, which remain elusive.
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VI. APPLICATIONS

With this new duality in hand, relating elasticity the-
ory to fracton tensor gauge theories, we explore a few ap-
plications of this duality. In this section, we show how
fracton-elasticity duality can be utilized both to make
new theoretical predictions about fracton systems, and
also to provide a simpler derivation of the known prop-
erties of two-dimensional melting transitions.

A. Two-Dimensional Thermal Melting

The previous sections have shown how to reformu-
late the conventional theory of elasticity as a dual gauge
theory. As an important check of this framework, we
can use it to reproduce and simplify the description of
classical two-stage melting of a two-dimensional crystal,
through a thermal hexatic to an isotropic liquid, as first
discussed by Halperin and Nelson61,62 and by Young.63

To this end, we first rederive the duality in a classical
context, which provides certain simplifications over the
full quantum case. This leads to a generalized vector
sine-Gordon model, on which a renormalization group
analysis was performed in Reference 99 to obtain the
critical exponents of the solid-to-hexatic melting transi-
tion, driven by the proliferation of dislocation defects.
Here we discuss some of the basis aspects of this analy-
sis, which complements the traditional vector Coulomb
gas treatment of Halperin, Nelson, and Young.61–63

1. Classical Duality

The starting point for the classical version of our du-
ality is a classical Hamiltonian featuring only the lin-
earized potential energy associated with configurations
of the lattice displacement, H =

∫
d2xH[u], with Hamil-

tonian density given by:

H[u] =
1

2
Cijk`uijuk`, (154)

where uij = 1
2 (∂iuj +∂jui) is the usual symmetric strain

tensor. (Note that, at the classical linearized level, the
kinetic piece, 1

2π
2, can be integrated out and has no bear-

ing on the subsequent analysis.) The form of the elastic
tensor Cijk`, including its number of independent com-
ponents, is dictated by the symmetry of the underlying
crystal. For simplicity, we here focus on the case of an
isotropic hexagonal lattice, for which this tensor takes
the generic form:

Cijk` = λδijδk` + 2µδikδj`, (155)

characterized by two independent elastic constants λ and
µ, known as the Lamé coefficients. Just as in the full
quantum case, the field ui includes a smooth phonon

piece and a singular piece from topological defects, the
latter of which encodes disclinations according to:

εi`εjk∂`∂kuij =
2π

n
stot ≡ ρ, (156)

where the total disclination charge is 2π
n stot = 2π

n s +

εij∂ibj , where s is the density of bare disclinations and
the second term is the contribution from the dislocation
density bi. This definition of a disclination leads to the
bond angle θ = 1

2ε
ij∂iuj winding by 2π/n upon going

around the defect, as discussed earlier in the quantum
case. Once again, there are also stable dipolar bound
states of disclinations, corresponding to dislocations (see
Figure 3), which are defects of the translational order.

We consider the thermal partition function:

Z =

∫
Du e−

∫
d2xH[u], (157)

where we have set β = (kBT )−1 = 1 for simplicity (i.e.
we measure all coupling constants in units of tempera-
ture). We now introduce a Hubbard-Stratonovich field
σij , which physically plays the role of the stress tensor,
to write the partition function as:

Z =

∫
DuDσij e−

∫
d2xH[u,σij ], (158)

where the new Hamiltonian density is given by:

H[u, σij ] =
1

2
C−1
ijk`σ

ijσk` + iσijuij

=
1

2
C−1
ijk`σ

ijσk` + iσij(∂iũj + u
(s)
ij ), (159)

where we have broken up the symmetric strain tensor
into its contributions from the smooth phonon field ũi
and from topological defects u

(s)
ij . The original partition

function is obtained upon integrating out the new field
σij . Since the smooth single-valued piece ũi appears lin-
early in the Hamiltonian, with imaginary coefficient, it
can be integrated out of the problem to enforce a diver-
genceless constraint on the stress tensor:

∂iσ
ij = 0. (160)

This constraint can be solved explicitly by a scalar po-
tential φ representing the Airy stress function:

σij = εikεj`∂
k∂`φ. (161)

Note that, in terms of our previous quantum duality, this
would correspond to an electrostatic potential formula-
tion:

Eijσ = ∂i∂jφ, (162)

which makes intuitive sense, since Equation 160 is simply
the static limit of Faraday’s equation. We now express
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the Hamiltonian density in terms of this potential func-
tion, obtaining:

H[φ] =
1

2
C̃−1
ijk`∂

i∂jφ∂k∂`φ+ iεikεj`∂k∂`φu
(s)
ij , (163)

where we have defined C̃ijk` = εiaεjbεkcε`dC
abcd. Inte-

grating by parts on the second term, and using the defi-
nition of disclination density, we can rewrite the Hamil-
tonian as:

H[φ] =
1

2
C̃−1
ijk`∂

i∂jφ∂k∂`φ+ iφ

(
2π

6
s+ εij∂ibj

)
.

(164)

where we have specialized to a hexagonal crystal, with
n = 6.

Within the crystal phase, the disclination defects are
extremely energetically costly and have little relevance
to transitions out of the phase. Neglecting these defects
for now (i.e. setting s = 0), we can straightforwardly in-
tegrate the field φ out of the partition function to obtain
the energy as a function of the dislocation configurations:

Hb =
1

2

∫
d2q

(2π)2
bi(q)K̃ij(q)bj(−q), (165)

with the tensor interaction K̃ij given in momentum and
coordinate spaces by:

K̃ij(q) =
K

q2

(
δij −

qiqj
q2

)
, (166a)

Kij(r) = −K
4π

(
δij ln(r/a)− rirj

r2

)
, (166b)

where we have defined the elastic modulus K = 4µ(µ+λ)
2µ+λ .

Converting back to real space, the effective Hamilto-
nian for the dislocations corresponds to that of a vector
Coulomb gas:

Hb =− K

8π

∫
d2xd2y

(
bi(x)bi(y) ln

|x− y|
a

− bi(x)(x− y)ib
j(y)(x− y)j

|x− y|2

)
, (167)

where a is the lattice constant. Precisely this same vector
Coulomb gas was used by Halperin and Nelson61,62 and
by Young63 in their seminal work on two-dimensional
melting, demonstrating the equivalence of the dual
framework with their analysis.

Instead of integrating out φ to obtain the effective
Hamiltonian for topological defects, we can take the com-
plementary but equivalent approach of summing over de-
fect configurations to obtain an effective Hamiltonian for
φ. To this end, we explicitly write the disclination and
dislocation densities in terms of their discrete charges:

bi(x) =
∑
xn

bixnδ
(2)(x− xn), (168)

s(x) =
∑
xn

sxnδ
(2)(x− xn), (169)

where xn = a(n1ê1 + n2ê2), (n1, n2 ∈ Z) are triangu-
lar lattice vectors spanned by unit vectors ê1 = x̂ and

ê2 = 1
2 x̂ +

√
3

2 ŷ, bxn = a(n1ê1 + n2ê2), and srn ∈ Z are
dislocation and disclination charges, respectively.

Expressing the Hamiltonian of Eq. 167 in terms of
these charges, we find:

H =
1

2

∫
d2xC̃−1

ijk`∂
i∂jφ∂k∂`φ+

∑
xn

[
Ẽbb

2
xn + Ess

2
xn

]
−i
∑
xn

[
εij∂

iφ(xn)bjxn −
2π

6
φ(xn)sxn

]
,

(170)

where we have added by hand core energies Eb = a2Ẽb
and Es for the disclination and dislocation respectively,
to account for their short-distance energetics. Summing
over the fundamental (i.e. charge ±1) topological de-
fects {sxn ,bxn} inside the partition function gives, via

standard analysis72,99, Z =
∫
Dφ e−H̃ with the effective

Hamiltonian:

H̃ =

∫
d2x

[
1

2
C̃−1
ijk`∂

i∂jφ∂k∂`φ

− gb
3∑

n=1

cos(εijb
i
n∂

jφ)− gs cos

(
2π

6
φ

)]
,

(171a)

=

∫
d2x

[
K−1

2
(∂i∂jφ)2 +

B

2
(∂2φ)2

− gb
3∑

n=1

cos(εijb
i
n∂

jφ)− gs cos

(
2π

6
φ

)]
,

(171b)

where n runs over the three elementary dislocation Burg-

ers vectors, given by b1 = ax̂,b2 = −a2 x̂ + a
√

3
2 ŷ,b3 =

−b1 − b2 = −a2 x̂ −
a
√

3
2 ŷ. The parameters K−1 and

B can be written in terms of the Lamé coefficients as
K−1 = 2µ+λ

4µ(µ+λ) and B = λ
4µ(µ+λ) . The coupling con-

stants are given by gb = 2
a2 e
−Eb and g2 = 2

a2 e
−Es ,

corresponding to the fugacities of the dislocations and
disclinations, respectively. This generalized vector sine-
Gordon model provides a complete characterization of
a two-dimensional crystal and allows a complementary
treatment of its two-stage melting.

2. Renormalization Group Analysis

As we demonstrated in the context of the quantum du-
ality, dislocations have a logarithmic interaction energy,
ln(R/a), where R is the separation of two dislocations.
As in the conventional BKT transition100–102, this ad-
mits an entropy-driven unbinding of dislocations, and
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the accompanied vanishing of the shear modulus and
restoration of the translational symmetry, i.e. melting
into a hexatic fluid. In contrast, disclinations have a
quadratic interaction energy, R2, and therefore at this
stage remain bound, unless the continuous transition is
preempted by a first order melting. This can be seen in
a complementary way through power-counting on the gs
operator at the Gaussian fixed line. This shows that as
long as gb is small, gs is strongly irrelevant with scaling
dimension −2.99

To study this crystal to hexatic fluid melting transi-
tion, we can entirely neglect disclinations, which remain
bound across the transition. This allows us to simply
drop the disclination piece of the vector sine-Gordon
model, i.e. set gs = 0, with the effective Hamiltonian
reducing to:

H̃ =

∫
d2x

[
1

2
C̃−1
ijk`∂

i∂jφ∂k∂`φ

− gb
3∑

n=1

cos(εijb
i
n∂

jφ)

]
, (172)

a vector sine-Gordon model that is the starting point for
our renormalization group analysis. To simplify nota-
tion, it is useful to define a new field given by:

Ai = εij∂jφ, (173)

which obeys the divergence-free condition, ∂iAi = 0,
with the model reducing to:

H =

∫
d2x

[
1

2
C−1
ijk`ε

imεkn∂mAj∂nA`

+
α

2
(∂iAi)2 − gb

3∑
n=1

cos(binAi)
]
, (174)

where we have chosen to impose the divergence-free con-
dition energetically via a (∂iAi)2 term, with the coeffi-
cient α taken to infinity at the end of the calculation.
Specializing to the case of the hexagonal lattice, we can
also expand the Hamiltonian as:

H =

∫
d2x

[
K−1

2
(∂iAj)2 +

B

2
∂iAj∂jAi +

α

2
(∂iAi)2

−gb
3∑

n=1

cos(binAi)
]
.

(175)

In the physical limit α → ∞, the Ai propagator in the
dislocation-free sector takes the purely transverse form:

〈Ai(q)Aj(q′)〉0 =
K

q2
(2π)2δ(2)(q + q′)PTij (q), (176)

where the transverse projection operator is given by
PTij (q) = δij− qiqj

q2 . While a perturbative expansion in gb

is convergent at low temperatures, deep within the crys-
tal phase, a naive perturbation theory breaks down in
the vicinity of the crystal-hexatic transition. To under-
stand the physics of the critical point, we must perform
a renormalization group analysis. Specifically, we carry
out a Wilsonian momentum-shell RG treatment, break-
ing up Ai into its slow and fast modes as:

A<i (x) =

∫
0<q<Λ/b

d2q

(2π)2
eiq·xAi(q), (177a)

A>i (x) =

∫
Λ/b<q<Λ

d2q

(2π)2
eiq·xAi(q), (177b)

where we have taken the UV cutoff as Λ = 2π/a with
b > 1 as the coarse-graining factor. Integrating the
short-scale modes out of the partition function yields an
effective Hamiltonian for the long-scale modes. We refer
the reader to Reference 99 for details of the calculation.
Here we simply state the results that the renormalized
couplings for the slow modes are given by:

K−1
R (b) = K−1 + J2g

2
b , (178a)

BR(b) = B + J3g
2
b , (178b)

gb,R(b) = gbe
− 1

2G
>
nn(0) + J1g

2
b , (178c)

valid to second-order in gb, where the Ji are numeri-
cal factors defined in terms of modified Bessel functions,
while the Green’s function appearing in the definition
of gb,R is given by G>nm(x− y) ≡ binbjm〈A>i (x)A>j (y)〉>0 .
These RG equations can now be converted into differ-
ential equations by taking b = eδ` with δ` � 1. In the

vicinity of the fixed point at g∗b = B∗ = 0, K−1,∗
R = a2

16π ,
the differential RG flow equations for the dimension-

less couplings K
−1

(`) =
K−1,∗
R (l)

a2 , B(`) = B(l)
a2 , and

gb(`) = gb(`)a
2 take the form:

dK
−1

(`)

d`
=

3π

8

[
e2

(
I0(2)− 1

2
I1(2)

)]
g2
b(`), (179a)

dB(`)

d`
=

3π

16
e2I1(2)g2

b(`), (179b)

dgb(`)

d`
=

(
2− K

8π

)
gb + πeI0(2)g2

b(`), (179c)

where I0(x) and I1(x) are modified Bessel functions. Us-

ing the definitions of K
−1

, B, and gb in terms of the
dimensionless Lamé elastic constants µ = µa2, λ = λa2

and the fugacity y = e−Eb , we recover precisely RG flows
for the inverse shear modulus, µ−1(l), inverse bulk mod-
ulus [µ(l) + λ(l)]−1, and the effective fugacity y(l) re-
spectively,

dµ−1

dl
= 3πe2I0(2)y2, (180a)

d(µ+ λ)−1

dl
= 3πe2 [I0(2)− I1(2)] y2, (180b)

dy

dl
=

(
2− K

8π

)
y + 2πeI0(2)y2, (180c)
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first derived by Halperin and Nelson61,62, and by
Young.63

Following a standard analysis, as first shown by
Halperin and Nelson, these RG equations can be used
to obtain a characteristic correlation length ξ1 near the
crystal-hexatic critical temperature, Tc1, which is given
by:

ξ1(T ) ∼ ae−c/|T−Tc1|
ν

, (181)

where the exponent ν is given by 0.3696... on a hexagonal
lattice and c is a non-universal constant.

We can also now examine the criticality at the hexatic-
liquid transition. In the hexatic phase, dislocations
have condensed and therefore screen disclinations. This
is captured by the large relevant dislocation fugacity,
gb � 1, where the vector cosine operator from the origi-
nal Hamiltonian (Equation 171b) can be treated within
the harmonic approximation, i.e. cos(εijb

i
n∂

jφ) → 1 −
1
2 (εijb

i
n∂

jφ)2, resulting in a more standard gradient
“elasticity” for the Airy potential φ. In its presence, we
can neglect the Laplacian elasticity in the Hamiltonian
of Eq. 172, which is subdominant at long scales, re-
sulting in a conventional sine-Gordon model for φ with
Hamiltonian given by:

H =

∫
d2x

[
1

2
gb

3∑
n=1

εikεj`b
i
nb
j
n∂

kφ∂`φ− gs cos

(
2π

6
φ

)]
=

∫
d2x

[
1

2
J(∂iφ)2 − gs cos

(
2π

6
φ

)]
, (182)

where J ≡ 3
2a

2gb. (For non-triangular lattices, we still

have J ∼ a2gb, but the numerical prefactor may change.)
This is a conventional sine-Gordon model (with some
anisotropy for non-triangular lattices) which arises in the
study of the conventional BKT transition. The conven-
tional gradient elasticity encodes logarithmic interaction
between disclinations in a hexatic, screened by the pro-
liferated dislocations down from the quadratic interac-
tion found in a crystal, as we describe in detail in Ap-
pendix D. This scalar sine-Gordon model thus describes
the entropy-driven proliferation of disclinations with in-
creasing temperature, predicting the conventional BKT
transition between hexatic and isotropic fluids. This
completes the reproduction of the theory of two-stage
classical melting of two-dimensional crystals, using the
duality framework.

As another closely related application of the duality,
we can immediately utilize the finite-temperature phase
diagram of a two-dimensional crystal to predict ther-
mal phases of two-dimensional fractons. The duality
predicts that, besides the fracton insulator, the tensor
gauge theory should also admit two finite-temperature
phases, distinguished by the proliferation of dipoles and
fractons. The fracton insulator should therefore undergo
two phase transitions as the temperature is raised: un-
binding of dipoles, followed by unbinding of fractons, as
summarized in Fig.8.

B. Ginzburg-Landau Theory of Tensor
Superconductors

As we have found in Sec. III, the zero-temperature du-
ality has predicted a description of a quantum crystal as
a charged fractonic matter coupled to tensor gauge field
electrodynamics. By construction we expect this novel
field theory must provide a dual description of familiar
quantum crystal and fluid phases. It is constructive to
explore this novel gauge theory, a tensor Abelian-Higgs
model superconductor, to clarify how it captures these
conventional phases. In addition, one may hope that this
dual description may provide access to new phases that
are inaccessible (or not naturally described) in a direct
description. Therefore, here we turn to the analysis of
the tensor electrodynamics coupled to bosonic charged
matter. To this end, as with the conventional Abelian-
Higgs model, it is convenient to soften the magnitude of
the field constraints and generalize the dual model from
Section III to its equivalent Ginzburg-Landau formula-
tion, coupled to a tensor gauge field theory. We then
use this simpler formulation to discuss the correspond-
ing fracton phase diagram. Here we limit our analysis
to defining the model and outlining its general features,
leaving a detailed study of the phases and phase transi-
tions to the future.

We focus primarily on the study of dipole-condensed
phases, where we expect to find the most novel physics.
Subsequent fracton condensation is expected to be equiv-
alent to more conventional Ginzburg-Landau transitions,
just as the hexatic-to-liquid transition can be understood
in terms of a standard BKT analysis. To describe a
dipole-condensed phase, we introduce a complex order
parameter ψp for each minimal dipole species p, cor-
responding to the condensate strength of that species.
For example, on a square lattice, there will be two com-
plex order parameters corresponding to the two minimal
Burgers vectors, x̂ and ŷ, while there are three order
parameters required for a triangular lattice.

To construct the quantum Ginzburg-Landau theory of
fractonic dipoles, we recall that the effective gauge field
seen by a dipole pj takes the form −pjAij , where Aij

is a symmetric tensor gauge field. (Note not to confuse
the dipole pi with the momentum ki.) Restricting to the
case of a square lattice, with two species of dipoles, the
most general Lagrangian density allowed by symmetries,
to fourth order in the two order parameters ψ1 and ψ2,
takes the form:

L = i
∑
p

ψ†pD0ψp −
1

2m

∑
p

|Πik
⊥pDiψp|2

−α
2

∑
p

|ψp|2 −
β

4

∑
p

|ψp|4 −
β′

2
|ψ1|2|ψ2|2

+
1

2
C̃−1
ijk`E

ij
σ E

k`
σ −

γ

2
BiBi, (183)

where the magnetic field is a vector quantity, Bi =
εjk∂jAki, the covariant derivatives are defined as D0 =
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FIG. 8. As the temperature is raised, a two-dimensional fracton tensor gauge theory exhibits a dipole unbinding transition,
analogous to the solid-hexatic transition of elasticity theory. At a higher temperature, the system will then undergo a fracton
unbinding transition, analogous to the hexatic-liquid transition.

∂t+ip
i∂iφ and Di = ∂i+ip

jAij , and the projector trans-

verse to the dipole p is Πik
⊥p = δik − pipk

p2 , as introduced

in Reference 90. This projection reflects the symmetry-
enforced mobility restriction that dipoles can only move
in the direction perpendicular to pi. The parameters α,
β, and β′ are real constants, where β, β′ > 0, while α is
a tuning parameter which is negative in the condensed
phase. The constant m represents the effective mass of
dipoles in their allowed direction of motion.

By varying the action with respect to the two fields
ψ1 and ψ2, we obtain the following equations of motion:[
iD0 +

1

2m
Π
⊥p1
jk DjDk−

α

2
− 1

2
(β|ψ1|2 +β′|ψ2|2)

]
ψ1 = 0,

(184)[
iD0 +

1

2m
Π
⊥p2
jk DjDk−

α

2
− 1

2
(β|ψ2|2 +β′|ψ1|2)

]
ψ2 = 0.

(185)
When α > 0, the order parameters fluctuate around an
energy minimum at ψ1 = ψ2 = 0, indicating that no
condensation has taken place. When α < 0, however, at
least one of the order parameters picks up a nonzero ex-
pectation value. To determine the precise form of the
condensation, we rewrite the potential portion of the
Ginzburg-Landau action as:

V =
α

2
|Ψ|2 +

β

4
|Ψ|4 +

1

2
(β′ − β)|ψ1|2|ψ2|2 (186)

where |Ψ|2 ≡ |ψ1|2 + |ψ2|2. If β > β′, then it is favorable
for both order parameters to pick up the same nonzero
expectation value, |〈ψ1〉| = |〈ψ2〉| = ψ0, where:

ψ0 =

√
|α|

β + β′
, (187)

We will later briefly consider the case where β < β′. For
now, however, we proceed with the assumption β > β′.
In this case, we can further use the equations of motion
to immediately read off the coherence length as:

ξ =

√
1

2m|α|
, (188)

which represents the length scale on which the order pa-
rameters heal to their equilibrium value in the presence
of a perturbation.

We can also vary the Lagrangian with respect to φ,
which yields the generalized Gauss’s law of the theory
as:

∂i∂jC̃−1
ijk`E

k`
σ = −

∑
p

pi∂i(ψ
†
pψp), (189)

representing the contribution of a nonuniform distribu-
tion of dipoles to the charge density. Similarly, we can
vary with respect to Aij , which yields the generalized
Ampere’s law:

∂tC̃
−1
ijk`E

k` + γ(εik∂
kBj + εjk∂

kBi)

= − 1

2m

∑
p

(pjΠ
⊥p
ik + piΠ

⊥p
jk )Im(ψ†pD

kψp),

(190)

where the right-hand-side represents the tensor current
carried by the dipoles. If we now assume that we are
in the dipole-condensed phase, such that ψ1 = ψ0e

iϕ1

and ψ2 = ψ0e
iϕ2 , and keeping only lowest-order terms in

fluctuations around the energy minimum, we can rewrite
this equation of motion as:

∂tC̃
−1
ijk`E

k` + γ(εik∂
kBj + εjk∂

kBi)

= − ψ
2
0

2m

∑
p

(pjΠ
⊥p
ik + piΠ

⊥p
jk )(∂kϕp + p`Ak`).

(191)

From the structure of projectors, it is clear that only the
off-diagonal A12 component appears on the right-hand-
side, indicating that only this component has picked up
a mass. This results in one of the two gapless modes
of the insulating phase becoming gapped via the Higgs
mechanism. More specifically, plugging in the forms for
Eij and Bi in terms of φ and Aij into Eq. 191, pick-
ing the gauge where φ = 0, and allowing A12 to “eat”
the Goldstones modes (∂1ϕ2 and ∂2ϕ1), the equations of
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motion for Aij can be written in Fourier space as:c1ω2 − q2
y c2ω

2 qxqy
c1ω

2 c2ω
2 − q2

x qxqy

−qxqy −qxqy −(4c3ω
2 − q2 − 2ψ2

0

m p2)

A11

A22

A12


= 0,

(192)

where the three independent coefficients of the elastic
tensor are written as C̃−1

11,11 = C̃−1
22,22 ≡ c1, C̃−1

11,22 =

C̃−1
22,11 ≡ c2, and C̃−1

12,12 = C̃−1
12,21 = C̃−1

21,12 = C̃−1
21,21 ≡ c3.

This equation has two independent solutions. In the
simplest limit, with c1 = c2 = c3 ≡ c, we obtain the
following dispersion relations (to lowest order in q2):

ω2
± =

1

16c

(
2P+q2(3− cos(4θ))

± 2
√
P (P + q2 + q2 cos(4θ))

)
, (193)

where we have used the polar representation qx = q cos θ,
qy = q sin θ, and we have defined P = 2ψ2

0p
2/m. The

mode with frequency ω+, corresponding to A12, picks up

a gap given by
√
P/4c. The A12 component alone will

exhibit a Meissner effect, only being able to penetrate
into the bulk of the system up to a scale given by:

λ =

√
γm

2p2|ψ0|2
=

√
γm(β + β′)

2p2α
. (194)

Meanwhile, the mode with frequency ω−, corresponding
to the trace Aii, does not pick up a mass term and re-
mains gapless. This also means that there is no Meissner
effect for Aii, which can penetrate into the interior of the
system.

We can further use this framework to find the critical
magnetic field which destroys the dipole superconducting
phase. We can do this by equating the energy difference
between the superconducting and normal phases with
the magnetic energy:

FS − FN = −γ
2
B2
c . (195)

We can then immediately write the critical field as:

Bc =

√
α2

γ(β + β′)
. (196)

There are many other interesting questions to be ad-
dressed regarding the dipole-condensed phase, such as
the role and structure of vortex solutions. We leave these
important questions as topics of future research.

Before leaving the topic of Ginzburg-Landau theory,
we return to the idea of another type of dipole conden-
sation on the square lattice which does not respect the
symmetries of the lattice. Specifically, when β < β′,
Equation 186 indicates that it is energetically favorable

to have only one of ψ1 or ψ2 pick up an expectation
value, such that only one species of fundamental dipole
has condensed. In elasticity language, such a phase cor-
responds to a smectic, which breaks translational order
in only one direction. As in the case of a full dipole con-
densate, such a unidirectional dipole condensate leads to
a mass for the A12 component of the gauge field, gap-
ping out one of the gauge modes, though the details of
the dispersion will be different. Various further details
of the unidirectional dipole condensate are left to future
investigations.

C. Connection to Topological Crystalline
Insulators

Topological insulators103–109 (TIs) are a particular ex-
ample of a broader class of systems known as symmetry
protected topological (SPT) phases.110,111 These quan-
tum phases of matter are best characterized in terms
of their entanglement properties. Specifically, an SPT
phase cannot be disentangled to a direct product state
without either breaking symmetry or undergoing a phase
transition. However, disentanglement becomes possi-
ble in the presence of symmetry-breaking perturbations.
The earliest work on TIs and other SPT phases focused
on internal symmetries, such as time reversal or particle
number conservation. It was later realized that SPT
phases could also be protected by crystalline symme-
tries. Topological insulators protected by such spatial
symmetries are known as topological crystalline insula-
tors (TCIs).112,113

As with other TIs, early studies of TCIs focused on
the band theory of non-interacting electrons. However,
a robust classification and characterization of TCIs must
account for interactions, a significantly more challenging
problem. Powerful tools have been developed for study-
ing interacting SPT phases. One, developed in the con-
text of internal symmetries, is to consider gauging the
symmetry protecting the SPT phase.114 The resulting
system will have long-range entanglement, described by
a gauge theory with gauge group equivalent to the sym-
metry group of the original SPT phase. (For a discrete
internal symmetry group, we would say that the gauged
system has intrinsic topological order.) Furthermore,
different SPT phases within the same Hilbert space (e.g.
a system of electrons subject to the same symmetries)
map onto different long-range-entangled systems under
gauging. By studying the resulting gauge theories, one
can thereby characterize and classify SPT phases, in a
way which is robust to the introduction of interactions.

The theory of interacting SPT phases protected by in-
ternal symmetries, studied via gauging procedures and
other techniques, is by now well-developed. On the other
hand, interacting SPT phases protected by crystal sym-
metries have only been studied relatively recently115–121,
and the set of available tools has been more limited. Nev-
ertheless, we expect that the gauging procedure applied
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to simpler SPT phases can be adapted to the case of
crystal symmetries by the identification of a correspond-
ing gauge “flux.” A key insight which has recently been
developed is that inserting a flux of a lattice symmetry is
in an appropriate sense equivalent to inserting a topolog-
ical lattice defect.71 For example, in a two-dimensional
crystal, a dislocation corresponds to a flux of transla-
tional symmetry, while a disclination corresponds to a
flux of rotational symmetry.

Discussion on this topic so far has focused on promot-
ing this symmetry flux to a non-dynamical gauge flux.
However, a fully gauged crystalline symmetry results in a
dynamical gauge theory with dynamical lattice defects,
i.e. an elasticity theory. As we have described in this
work, such an elastic system can usefully be regarded as
a fracton theory. We therefore conclude that a gauged
crystalline symmetry gives a state with fracton order. By
similar principles to the more conventional SPT physics,
we expect that different TCIs should map onto different
fracton phases under gauging. By studying the resulting
fracton phases, we should thereby be able to understand
and classify the TCIs from which they are obtained.

In this way, the classification of topological crystalline
insulators maps onto the problem of classification of frac-
ton phases, which has numerous aspects. First of all,
different fracton phases have particles with different de-
grees of mobility, such as one-dimensional versus fully
mobile dipoles. And even for phases with the same par-
ticle mobility, there may be different quantum statistics
associated with the various particle species.25 As a fur-
ther complication, in the event that there are additional
symmetries in the problem besides the crystalline ones,
one must have a complete classification of symmetry-
enriched fracton phases. In such systems, one must ask
several additional questions, such as how the symmetries
act on the particle species. It has also been shown that
symmetry enrichment can cause extra mobility restric-
tions on a fracton theory, beyond those dictated by the
gauge conservation laws.55,76,90 As such, a full under-
standing of symmetry-enriched fracton phases requires
a systematic understanding of the ways in which global
symmetries can restrict mobility.

The program outlined above leads to a direct map-
ping between two seemingly different physical problems,
the classification of topological crystalline insulators and
the classification of fracton phases (possibly with sym-
metry enrichment). Methods of understanding both of
these problems are still being actively developed, and it
is therefore useful to have this dual perspective. Ad-
vances in TCI physics may shed important light on the
classification of fracton physics, and vice versa. We leave
the details of implementing this program as a task for the
future.

FIG. 9. At left is a schematic plot of 〈Ex(q)Ey(−q)〉 in the
qx-qy plane, displaying the characteristic two-fold pinch-point
singularity of conventional gauge theories. At right is an
analogous plot of 〈Exx(q)Eyy(−q)〉, displaying the four-fold
pinch-point singularity of a rank-2 tensor gauge theory. Fig-
ure adapted from Reference 125.

VII. EXPERIMENTAL SIGNATURES

The analysis of this paper has shown how the well-
established properties of elasticity theory can be equiva-
lently reformulated in the useful new framework of frac-
ton tensor gauge theories. For example, we have used
this dual language to reproduce the mobility restrictions
of topological lattice defects in terms of a simple set of
higher moment conservation laws. But in addition to
the reproduction of known facts, it is important to es-
tablish whether or not our duality makes any new pre-
dictions for crystalline phases or opens up new sort of
questions which were not apparent in the conventional
formulation of elasticity theory. In this section, we dis-
cuss several clear indications of fracton physics in crys-
tals which, to the best of our knowledge, have not been
studied within the conventional framework of elasticity
theory. Undoubtedly many other fascinating experimen-
tal implications remain to be explored.

A. Pinch Point Singularities

One key signature of the presence of an emergent U(1)
gauge field is the existence of certain characteristic sin-
gularities in certain physical correlation functions. For
example, in Coulomb spin ice materials, it has been
shown that the spin-spin correlation functions map di-
rectly onto electric (or magnetic) field correlators of an
emergent Maxwell gauge field:

〈Sz(q)Sz(−q)〉 =
∑
ij

Cij〈Ei(q)Ej(−q)〉, (197)

for some coefficients Cij dictated by the symmetry of the
lattice. Importantly, the Maxwell electric field correlator
has characteristic singular behavior:

〈Ei(q)Ej(−q)〉 ∼ δij − qiqj

q2
. (198)
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The components of this correlator are singular in the
sense that the q → 0 limit depends upon the direction in
which q = 0 is approached, as depicted in Figure 9. This
sort of “pinch point” singularity is readily observed in
spin-spin correlation functions, which can be measured
via neutron scattering experiments.122,123 Indeed, such
singularities have been observed in certain spin ice ma-
terials, serving as a clear indication of the presence of an
emergent gauge theory.124

Similar sorts of singularities are expected for theories
featuring emergent fracton tensor gauge theories, as dis-
cussed recently in the context of spin models hosting
fracton excitations.125 It was shown that tensor gauge
theories give rise to pinch-point singularities with a char-
acteristic four-fold symmetry, in contrast with the two-
fold symmetry of pinch-point singularities in more con-
ventional gauge theories, as shown in Figure 9. In the
context of elasticity theory, these singularities can be
found in the stress-stress correlation functions. Relying
on the results of Reference 125, we can immediately write
the low-energy stress-stress correlator as:

〈σij(q)σk`(−q)〉 = εiaεjbεkcε`d〈Eab(q)Ecd(−q)〉

∼ 1

2
(δikδj` + δi`δjk)

− εiaεjbεkcε`d qaqbqcqd
q4

. (199)

Not all components of this correlator have singu-
lar behavior. But if we measure, for example,
〈σxx(q)σyy(−q)〉, it will exhibit precisely the sort of sin-
gularity depicted in Figure 9. The same sort of singular-
ities will also manifest directly in correlation functions of
the lattice displacement, in the form of the strain-strain
correlator:

〈uij(q)uk`(−q)〉 = C−1
ijnmC

−1
k`rs〈σ

nm(q)σrs(−q)〉. (200)

This correlator will also feature the four-fold singulari-
ties of Figure 9, though which components are singular
will depend on the symmetry of the underlying lattice.
This experimentally accessible quantity provides a clear
signature of an emergent tensor gauge structure in the
theory of elasticity, making a precise connection with the
physics of fractons.

B. Absence of Zero Modes

Another important signature of fracton physics arises
when we consider a crystal of disclinations on top of the
background lattice. Such a disclination crystal is en-
countered, for example, when a crystalline medium is
wrapped into a spherical shape, such that the associ-
ated topology necessitates the existence of disclinations.
Specifically, a hexagonal lattice wrapped into a sphere is
required to have a crystal of at least twelve 5-fold discli-
nations. Let us choose the density of disclinations such
that the disclination crystal is incommensurate with the

underlying crystal. In this case, the original crystal and
disclination crystal represent distinct forms of symme-
try breaking, which naively would involve two separate
sets of gapless phonon modes. For two regular coex-
isting incommensurate crystalline structures, the joint
system would indeed have two independent sets of gap-
less phonons. However, for a system of disclinations,
which behave as fractons, there are no matrix elements
for motion of the disclination crystal. Such processes
are ruled out by the conservation laws of the theory,
which prevents gapless phonons from arising as “soft”
modes translating the disclination crystal. We there-
fore conclude that a disclination crystal will not have
all of the gapless Goldstone modes which would naively
be required based on broken symmetries. This could be
verified, for example, by measuring correlations of the
displacement ud of disclinations relative to their under-
lying crystal. Correlations such as 〈ud(x)ud(0)〉 should
have exponentially short-ranged behavior, as opposed to
the long-ranged correlations which would be expected in
the presence of Goldstone modes.

C. Disclination Mobility in Finite-Temperature
Hexatics

While our dual formulation of elasticity theory pre-
dicts that disclinations are immobile in a crystal, this
restriction is lifted in a hexatic phase. While a fracton
still cannot move by itself, it can move through absorp-
tion of a dipole (i.e. a dislocation). In a hexatic phase,
dislocation defects have proliferated throughout the sys-
tem, and a disclination can move through interaction
with this finite density of dislocations. For simplicity, let
us consider a finite-temperature hexatic phase, driven by
the conventional Halperin-Nelson thermal unbinding of
dislocations. In such a phase, a disclination will effec-
tively undergo a random walk through the frequent ab-
sorption of randomly directed dislocations, causing the
disclination to diffuse through the system. The rate of
this diffusion is directly set by the density of dislocations.
The typical velocity of a disclination is directly propor-
tional to the dislocation density, nd.

14 In turn, this leads
to an effective fracton diffusion constant which is also
directly proportional to dislocation density:

Df ∼ nd(T ), (201)

From our earlier analysis, we can conclude that a ther-
mal hexatic phase has a dislocation density given by
nd(T ) ∼ ξ−2

1 (T ), where ξ1(T ), as defined in Eq. 181, has
strong T dependence near the transition, but asymptotes
to a constant at higher temperatures. This provides a
clear prediction for the temperature dependence of discli-
nation mobility in the hexatic phase, which in principle
can be directly detected in experiments.
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VIII. CONCLUSIONS

In this work, we have demonstrated a duality between
elasticity of a two-dimensional crystal and a U(1) fracton
tensor gauge theory, in a natural tensor analogue of con-
ventional particle-vortex duality. The topological lattice
defects of elasticity theory map onto the charges of the
gauge theory, with disclinations as fractons and disloca-
tions as dipoles, while the two phonon modes map onto
the gapless gauge modes of the gauge theory, as sum-
marized in Figure 1. This duality provides numerous in-
sights into U(1) fracton physics based on well-established
results of elasticity theory. Further connections with
three-dimensional Zn fracton lattice models may then
be possible via the Higgs mechanism.11,12 For example,
our physical picture of phase transitions in fracton sys-
tems, in terms of unbinding of dipoles and fractons, may
shed light on quantum phase transitions in the gapped
fracton models. In turn, the fracton tensor gauge theory
allows for a convenient reformulation of several aspects
of elasticity theory, such as the restricted mobility of lat-
tice defects. Our work has numerous other implications,
such as drawing a connection between fractons and in-
teracting topological crystalline insulators. This duality
opens the door for the future exchange of ideas between
the new field of fractons and more-established ideas in
the field of elasticity.
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APPENDIX A: PARTICLE-VORTEX DUALITY

In the main text, we have described a tensor version
of particle-vortex duality. For readers unfamiliar with
conventional particle-vortex duality (sometimes called
“Dasgupta-Halperin duality”), we here review some of
its basic aspects, which describes a two-dimensional su-
perfluid in terms of a Maxwell U(1) gauge theory cou-
pled to charged matter. The major hint for this dual-
ity comes from examining the excitation spectra of both

theories. A two-dimensional superfluid features a gap-
less Goldstone mode plus logarithmically interacting vor-
tices. Similarly, the two-dimensional U(1) gauge theory
features a gapless photon coupled to logarithmically in-
teracting charges. It therefore seems reasonable that an
appropriate duality transformation will map the Gold-
stone mode onto the photon, while vortices map onto
charges.

To see this duality explicitly, it is easiest to start on
the gauge theory side, which simply consists of a U(1)
gauge field ai coupled to charged particles. The gauge
field itself is governed by a conventional Maxwell Hamil-
tonian:

H =

∫
d2x

1

2
(eiei + b2), (202)

where b = εij∂iaj . The charges are gapped, and the pre-
cise form of their action is unimportant. The only im-
portant piece of physics from the charge sector is Gauss’s
law, relating charge density to the electric field ei conju-
gate to ai:

∂ie
i = 2πρ, (203)

where the normalization has been chosen for later con-
venience.

Within this charge-free sector, the electric field obeys
the source-free condition, ∂ie

i = 0. We can therefore
conveniently describe the gapless photons by rigidly en-
forcing this constraint, which has the general solution:

ei = εji∂jφ, (204)

for scalar field φ. Since ai generates translations of ei,
it is easy to check that b generates translations of φ. In
other words, b is the canonical conjugate to φ, which
we relabel as n = b. In terms of these variables, the
low-energy Hamiltonian becomes:

H =

∫
d2x

1

2
((∂iφ)2 + n2), (205)

which is precisely the effective theory for the Goldstone
mode of a superfluid, where φ is interpreted as the phase
angle of the superfluid condensate, and n corresponds to
the boson number variable. This indicates that the pho-
ton of two-dimensional Maxwell theory can be mapped
directly onto the superfluid Goldstone mode.

In order to complete the particle-vortex duality, we
must also match the gauge theory’s charges (“particles”)
with the vortices of the superfluid. To see this, we can
write the total charge enclosed in a region of space V
(with boundary ∂V ) as:

q =

∫
V

d2x ρ =
1

2π

∫
V

d2x ∂ie
i =

1

2π

∫
∂V

dnie
i. (206)

Plugging in the low energy form for ei from Equation
204, we obtain:

q =
1

2π

∮
∂V

d`i∂iφ =
∆φ

2π
, (207)
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so a unit charge represents a 2π winding of φ around
the curve. In other words, a charge of the gauge theory
corresponds to a vortex of the superfluid.

With this correspondence in place, we have now
matched the complete spectra between the superfluid
and the U(1) gauge theory, with vortices acting as
charges and the Goldstone mode playing the role of the
photon. The gauge theory formulation provides a con-
venient dual description of the superfluid. Furthermore,
the duality remains valid even as the superfluid transi-
tions to a gapped Mott insulating phase. An insulator of
bosons can equivalently be thought of as a condensate of
vortices. On the gauge theory side, this corresponds to
the condensation of charges, which gaps the photon via
the Anderson-Higgs mechanism. The U(1) gauge theory
is thereby able to capture the full phase diagram of a
two-dimensional boson system.

APPENDIX B: DUALITY FROM FRACTONS TO
ELASTICITY

We have already shown how to map elasticity theory
directly onto a fracton tensor gauge theory. To obtain
the duality in the reverse direction, one could in princi-
ple simply reverse each step of the previous derivation.
However, this process is cumbersome and does not al-
low for immediate generalization to other tensor gauge
theories. Luckily, there is a shortcut which allows any
gauge theory to be quickly converted to its dual formu-
lation. Within the gapless gauge sector, where there are
no charges, the system obeys the source-free Gauss’s law:

∂i∂jE
ij = 0, (208)

and the Hamiltonian of the system takes the form:

H =

∫
d2x

1

2
(C̃ijk`EijEk` +BiBi). (209)

Within this sector, any configuration of Eij can be writ-
ten in terms of the general solution to the source-free
Gauss’s law, which takes the form:

Eij =
1

2
(εikεj`∂

ku` + εjkεi`∂
ku`) = εikεj`u

k`, (210)

for arbitrary vector ui (and corresponding strain tensor
uij). It is easy to check that, since Aij is a field canon-
ically conjugate to −Eij , the canonical conjugate to ui
is:

πi = εijB
j . (211)

In terms of these new dual variables, the Hamiltonian
takes the form:

H =

∫
d2x

1

2
(Cijk`uijuk` + πiπi), (212)

which is precisely the Hamiltonian for two-dimensional
elasticity theory.

Now that we have established a duality within the gap-
less sector, we must also convert the charges of the gauge
theory into elasticity language. In any region of space
V with boundary ∂V , we can write the total enclosed
charge as:

q =

∫
V

d2x ρ =

∫
V

d2x ∂i∂jE
ij

=

∫
∂V

dni ∂jE
ij = −

∮
∂V

d`iεik∂jE
kj . (213)

On the boundary, away from any charges, we can then
plug in the low-energy form for Eij from Equation 210,
yielding:

q =
1

2

∮
∂V

d`i∂i(εjk∂
juk) =

1

2
∆(εjk∂

juk). (214)

A charge on the gauge theory side therefore represents
a winding of the bond angle θb = εjk∂

juk around some
point, which is precisely the definition of a disclination
defect. The size of the fundamental charge in the gauge
theory will be set by the minimal winding of θb around
a curve, which depends on the symmetry of the lat-
tice. Specifically, in a Cn symmetric lattice, the minimal
winding is ∆(εjk∂

juk) = 2π/n, such that the fundamen-
tal charge of the gauge theory is q = π/n.

There is one other important type of excitation which
is present on both sides of the duality: dipoles of equal
and opposite charges/disclinations. On the elasticity
side, this should correspond to a dislocation defect. We
can obtain the correspondence explicitly by considering
the total dipole moment in some region V :

P i =

∫
V

d2xxi∂j∂kE
jk =

∫
∂V

dnj (xi∂kE
jk − Eij).

(215)
Plugging in the low-energy form of Eij from Equation
210 and rearranging a few terms, we obtain:

P i =

∮
∂V

d`j∂j

(
εikuk −

1

2
xiεk`∂ku`

)
. (216)

Assuming that there are zero net charges (disclinations)
contained inside the region, so that εk`∂ku` does not
wind around the closed curve, we will be left with:

P i =

∮
∂V

d`j∂j(ε
ikuk) = εik∆uk = εikbk, (217)

where bk is the Burgers vector. We see that a dipole in
the gauge theoretic language corresponds to a dislocation
in elasticity language, with Burgers vector perpendicular
to the dipole moment, as expected. Finally, we note that
the above relationship leads to a convenient alternative
formulation of the duality which is useful for describing
a system of dislocations, as discussed in Appendix C.
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APPENDIX C: DUALITY WITHOUT
DISCLINATIONS

As discussed in the main text, disclination defects are
extremely energetically costly in the solid phase, and
thus do not play an important role in the low-energy
elastic theory of a crystal (though they play an impor-
tant role in the hexatic phase and its transition to the
isotropic liquid). It is therefore reasonable to construct
an effective low-energy theory for a crystal, with a cor-
responding tensor gauge dual, in which dislocations are
the fundamental charges, without making any reference
to disclinations at all. In this case, we expect the charges
of the gauge theory to all have a vector character, as op-
posed to the scalar charges considered earlier. Thus, the
charge sector of the theory should have two components.
The gapless phonon sector should also still have two com-
ponents, giving four total local degrees of freedom.

Using these clues, we formulate a theory in terms a
generic tensor Ãij , without any index symmetry, which
has four independent components. We call its canonical
conjugate variable Ẽij . (We use tildes to distinguish
from the symmetric tensors used in the main text.) We
stipulate that the Gauss’s law constraint on this tensor
is:

∂iẼ
ij = ρj , (218)

for vector charge density ρj . Within the charge-free sec-
tor, the most general low-energy Hamiltonian for the
gauge modes is:

H =

∫
d2x

1

2
(C̃ijk`ẼijẼk` + B̃iB̃i), (219)

where the magnetic field is given by

B̃i = εjk∂
jÃki. (220)

The source-free Gauss’s law, ∂iẼ
ij = 0, has the generic

solution:

Ẽij = εikεj`∂ku`. (221)

It is easy to check that Bi is the canonical conjugate to
ui, which we label πi. In terms of these new variables,
the Hamiltonian becomes:

H =

∫
d2x (Cijk`uijuk` + πiπi), (222)

which once again takes the standard elastic form, de-
scribing two phonon modes.

We must also determine the correspondence between
the vector charges and dislocations. The total charge in
region V with boundary ∂V is given by:

qj =

∫
V

d2x ρj =

∫
V

d2x ∂iẼ
ij =

∫
∂V

dniẼ
ij . (223)

Plugging in the low-energy form for Ẽij , we obtain:

qj =

∮
∂V

d`i∂i(ε
`ju`) = ∆(ε`ju`) = ε`jb`. (224)

We therefore see that a vector charge indeed corre-
sponds to a dislocation, as expected. We have now
matched the excitation spectrum on both sides of the
duality: dislocations with vector charges and phonons
with gauge modes. This completes our duality of the
phonon-dislocation theory. As we have discussed, this
theory does not incorporate disclinations. But for low-
energy purposes within the solid phase, the disclination-
free treatment should be accurate.

APPENDIX D: DISCLINATION SCREENING IN
THE HEXATIC PHASE

In the main text, we described how two-dimensional
crystals and their corresponding fracton tensor gauge
theories undergo two finite-temperature phase transi-
tions, corresponding to the proliferation of dislocations
(dipoles), followed by the proliferation of disclinations
(fractons). The first such transition is fairly simple to
see in gauge theory language. As we derived earlier in
Equation 76, the long-distance interaction potential be-
tween two dipoles takes a logarithmic form. For two
equal and opposite dipoles, p and −p, this interaction
take the form:

V (r) ∼ p2

4π
log r. (225)

This is the same type of interaction that occurs in a
two-dimensional Coulomb gas, or between vortices in a
superfluid. As in those more familiar systems, a sim-
ple argument based on the free energy per particle indi-
cates that the system will undergo a finite-temperature
unbinding transition. The energy of an isolated dipole
grows as p2 logL, while the entropy beahves as T logL,
yielding the free energy per dipole as:

F = E − TS = (p2 − T ) logL. (226)

At zero temperature, the energy term dominates and
F > 0, so forming isolated dipoles is unfavorable. At
higher temperatures however, the free energy per par-
ticle becomes negative, F < 0. This will result in the
proliferation of dipoles, resulting in a gauge theory ana-
logue of the hexatic phase.

While the unbinding of dipoles is fairly easy to under-
stand in the gauge theory language, fracton unbinding is
slightly more subtle. From our earlier potential formula-
tion, we found that the energy of an isolated fracton in a
solid grows as L2, which would keep the fractons bound
at all temperatures. If fractons are to proliferate, there
must be a mechanism which drastically reduces their en-
ergy within the gauge hexatic phase. Precisely such a
reduction occurs due to screening by the finite density
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of dipoles within this phase. To see this, we write a self-
consistent equation for the total electrostatic potential
of a fracton, summing the contributions from the bare
fracton and its screening cloud of dipoles, following the
treatment of Reference 14:

φ(r) = φq(r) +
∑
p

∫
d2r′ np(T, φ(r′))φp(r − r′). (227)

Here, φq is the bare fracton potential, φp is the poten-
tial generated by a dipole, and the sum runs over the
fundamental dipole moments. The density np(T, φ) rep-
resents the density of p-directed dipoles at temperature
T and potential φ. In the presence of a potential, the
Boltzmann weights of dipoles shift, giving:

np = n0e
−βpi∂iφ ∼ n0(1− βpi∂iφ), (228)

where β = 1/T is the inverse temperature, n0 is a finite
background dipole density, and we have approximated
that the perturbing potential is weak. (This approxima-
tion breaks down close to the fracton, but captures the
correct long-distance physics.) Plugging this form into

Equation 227, we obtain:

φ(r) = φq(r)−∑
p

n0

∫
d2r′(1− βpi∂′iφ(r′))

(p · (r − r′))
4π

log(r − r′).

(229)

We now use the facts that
∑
p pi = 0 and

∑
p pipj =

αδij , where the value of α depends on the lattice under
consideration, to rewrite the above equation as:

φ(r) = φq(r) +
αβn0

4π

∫
d2r′∂′iφ(r′)(r − r′)i log(r − r′).

(230)
Taking a Fourier transform and solving for φ, we obtain:

φ(k) =
k2φq(k)

k2 + αβn0
=

q

k2(k2 + αβn0)
. (231)

At small k, we have:

φ(k) ∼ q

αβn0k2
. (232)

This indicates that the long-distance behavior of the
screened potential is:

φscr(r) ∼
q

αβn0
log r. (233)

We now see that, after accounting for screening by the
proliferated dipoles of the hexatic phase, the energy of an
isolated fracton will behave as logL, instead of L2. With
this reduction of energy, entropic effects will take over at
a finite temperature, leading to an unbinding transition
of fractons. We thereby reach a finite-temperature phase
in which both dipoles and fractons have proliferated.
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