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We propose and analyze a novel “flopping-mode” mechanism for electric dipole spin resonance
based on the delocalization of a single electron across a double quantum dot confinement potential.
Delocalization of the charge maximizes the electronic dipole moment compared to the conventional
single dot spin resonance configuration. We present a theoretical investigation of the flopping-
mode spin qubit properties through the crossover from the double to the single dot configuration
by calculating effective spin Rabi frequencies and single-qubit gate fidelities. The flopping-mode
regime optimizes the artificial spin-orbit effect generated by an external micromagnet and draws on
the existence of an externally controllable sweet spot, where the coupling of the qubit to charge noise
is highly suppressed. We further analyze the sweet spot behavior in the presence of a longitudinal
magnetic field gradient, which gives rise to a second order sweet spot with reduced sensitivity to
charge fluctuations.

I. INTRODUCTION

Control of individual electron spins is one of the cor-
nerstones of spin-based quantum technology. Although
standard single-electron spin resonance has been demon-
strated 1, there is a strong incentive to avoid the use
of local oscillating magnetic fields since these are tech-
nically demanding to generate at the nanoscale, hinder
individual addressability, and limit the Rabi frequency
due to sample heating issues. Electric dipole spin reso-
nance (EDSR) techniques offer a more robust method to
electrically control the electron spin state. Traditionally,
successful implementations have used spin-orbit coupling
2, hyperfine interaction3 and g-factor modulation 4.

The transition from GaAs to Si-based spin qubits has
led to dramatic advances in the field of spin-based quan-
tum computing. Site-selective single-qubit control5–7,
two-qubit operations with high fidelity8–13, electron shut-
tling14, and strong coupling to microwave photons15,16
have been demonstrated. Recent demonstrations of
strong spin-photon coupling have used double quantum
dot (DQD) structures where the charge of one elec-
tron is delocalized between both dots (“flopping-mode”;
Fig. 1(a)), thus enhancing the coupling strength to the
cavity electric field beyond the decoherence rate 17–19 and
enabling the transfer of information between electron-
spin qubits and microwave photons 15,16,20. This sug-
gests that the manipulation of electron spins with classi-
cal electric fields will also be efficient in the flopping-mode
configuration.

The scalability of spin qubit processors hinges upon the
use of resources that permit fast control without a sig-
nificant degradation in coherence times. The same prop-
erties that make silicon based QDs extremely attractive
for quantum information processing make it challenging
to use its intrinsic properties for electrical spin manipu-
lation. Not only is the hyperfine interaction to nuclear
spins largely reduced, but the intrinsic spin-orbit cou-
pling for electrons in Si is very weak21. Recently, this
weak effect combined with the rich valley physics in Si
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Figure 1. (a) Schematic illustration of the flopping-mode
EDSR mechanism, where the spin of an electron (shown as
green circles) delocalized between two QDs is driven via an
electric field (purple line) in a magnetic field gradient (rep-
resented with red arrows). (b) Energy levels E0,...,3 of the
Hamiltonian (17) as a function of the interdot detuning ε, cal-
culated with tc = 20µeV, Ez = 24µeV, gµBbx = 15µeV, and
gµBbz = 4µeV. The asymmetry with respect to ε is due to the
longitudinal magnetic field gradient. Around zero detuning,
|ε| � 2tc, the electron delocalizes across the DQD, yielding
a larger electric dipole moment p compared to the single dot
regime. The arrows represent the electrically addressable spin
(solid line), charge (dashed line) and spin-charge (dotted line)
transitions.

has been harnessed to achieve EDSR for single-electron
spin qubits 22,23 and singlet-triplet qubits24,25. A more
flexible solution applicable to any semiconductor is the
mixing of orbital motion and spin via an externally im-
posed magnetic field gradient 7,26,27. Beyond this effec-
tive spin-orbit effect, the control over the magnetic field
profile allows for selective addressing of spins placed in
neighboring dots, since the resonance frequency varies
spatially 6,26,28–32. Here we investigate the effect of the
micromagnet stray field on the coherence of the flopping-
mode spin qubit.
In this work we envision the generation of single-
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electron spin rotations via a flopping-mode approach,
which benefits from the electron delocalization between
two gate-defined tunnel coupled QDs33, and track its per-
formance as the electron is spatially localized in a single
quantum dot (SQD). The electron tunneling in such a
double dot potential has a large electric dipole moment,
which is partially transferred to the spin via the magnetic
field gradient induced by the stray field of a micromag-
net placed over the DQD, see Fig. 1(a). Moreover, due
to the spatial separation between the two QDs, obtaining
a sizable magnetic field inhomogeneity, with the result-
ing large effective spin orbit coupling, becomes relatively
easy. A driving field on one of the gate electrodes that
shapes the QD modulates the potential and allows full
electrical spin control via EDSR.

The paper is organized as follows: In Sec. II we in-
troduce the flopping-mode spin qubit and derive the
Rabi frequency and the relevant relaxation and dephas-
ing rates under the effect of a transverse magnetic field
gradient for the case of zero energy level detuning. In
Sec. III we take into account the effect of a general de-
tuning and analyze the electrical control of the flopping-
mode spin qubit as a function of externally controllable
parameters. In Sec. IV we investigate the behavior of the
flopping-mode spin qubit in the presence of a longitudinal
magnetic field gradient and how this affects the working
points with maximal single-qubit average gate fidelity. In
Sec. V we summarize our results and conclude.

II. FLOPPING-MODE SPIN QUBIT

An electron trapped in a symmetric DQD, with zero
energy level detuning ε = 0 between the left (L) and
right (R) QDs will form bonding and antibonding charge
states, which are separated by an energy 2tc, where tc is
the interdot tunnel coupling. The transition dipole mo-
ment between the bonding and antibonding states, |∓〉 =
(|R〉 ∓ |L〉) /

√
2, is proportional to the electronic charge e

and the distance between the two QDs d15,18,19,34, there-
fore an electric field with amplitude Eac at the position
of the DQD can drive transitions with Rabi frequency
Ωc = edEac/~. Spins can be addressed via electric fields
by splitting the spin states via a homogeneous magnetic
field, Bz, and inducing an inhomogeneous magnetic field
perpendicular to the spin quantization axis, i.e., trans-
verse (±bx in the left/right QD). We model the spin and
charge dynamics with the Hamiltonian

Hε=0
0 = tcτ̃z + Ez

2 σ̃z −
gµBbx

2 σ̃xτ̃x , (1)

where τ̃α and σ̃α (α = x, y, z) are the Pauli matrices in
the charge (|±〉) and spin subspace, respectively, Ez is
the Zeeman energy Ez = gµBBz, g is the electronic g-
factor and µB the Bohr magneton. The magnetic field
gradient acts as an artificial spin-orbit interaction and
hybridizes bonding and antibonding states with oppo-
site spin direction via the two spin-orbit mixing angles

φ± = arctan [gµBbx/(2tc ± Ez)] (φ± ∈ [0, π]). As a con-
sequence of this mixing, the electric dipole moment oper-
ator acquires off-diagonal matrix elements in the eigen-
basis of Eq. (1) which involve spin-flip transitions35,36.
In particular, given the four eigenenergies E0,...,3, with
2E3(2) = −2E0(1) =

√
(2tc ± Ez)2 + (gµBbx)2, if τ de-

notes the two-level-system with energy splitting Eτ =
E2 −E0 and σ the one with splitting Eσ = E1 −E0 (see
Fig. 1(b)), the electric dipole moment operator reads

p = ed
[
− cos φ̄τx + sin φ̄σxτz

]
, (2)

where φ̄ = (φ+ + φ−) /2, and τ(σ)α (α = x, y, z) are
the Pauli matrices in the corresponding τ(σ) subspace.
This implies that the electric field can drive transitions
between the ground state and the first and second ex-
cited states with Rabi frequency Ωσ = Ωc sin φ̄ and Ωτ =
Ωc cos φ̄, respectively; see the center part of Fig. 1(b),
where we have defined 2τ± = τx±iτy and 2σ± = σx±iσy.
For 2tc < Ez (2tc > Ez), we define the spin qubit as

s = τ (s = σ), i.e., as the ground state and the second
(first) excited state, with Rabi frequency Ωs = Ωτ (Ωs =
Ωσ). If the transverse magnetic field is small, gµBbx �
|2tc − Ez|, the expansion to first order yields

Ωs = 2tcgµBbxΩc/|4t2c − E2
z |+O(b3x) (3)

for both 2tc < Ez and 2tc > Ez. For a very small (or very
large) tunnel splitting, 2tc, the qubit is an almost pure
spin qubit and it is hardly addressable electrically, while
in the region 2tc ≈ Ez the spin-electric field coupling is
maximal35 but the spin qubit coherence suffers to some
extent from charge noise (see below).

The spin or charge character of the qubit will be re-
flected in the decoherence time. The spin-charge mixing
mechanism also couples the spin to the phonons in the
host material, therefore the relaxation rates via phonon
emission are γ1,σ = γ1,c sin2(φ̄) and γ1,τ = γ1,c cos2(φ̄)37,
respectively, where we have introduced γ1,c as the relax-
ation rate from the antibonding to the bonding state eval-
uated at the qubit energy. Since the spin qubit energy is
essentially given by the Zeeman splitting Ez (weakly cor-
rected by the spin-charge mixing), we can safely assume
a constant value for γ1,c, neglecting both oscillations of
the form cos (qd) (q is the phonon quasimomentum) and
polynomial dependences on the transition frequency38–42.
The expansion to the lowest order in bx yields

γ1,s = γ1,c
[
2tcgµBbx/(4t2c − E2

z )
]2 +O(b4x) , (4)

where we can evaluate γ1,c at the Zeeman splitting en-
ergy Ez. In the symmetric configuration ε = 0, pure
dephasing is strongly suppressed since the qubit is in a
sweet spot protected to some extent from charge fluctua-
tions43,44. Although the qubit energy splitting is first-
order insensitive to electrical fluctuations in detuning
ε, we account here for pure dephasing due to second-
order coupling to charge fluctuations, which induces a
Gaussian decay of coherences (∝ e−(γ(2)

φ,σ(τ)t)
2
) with rates



3

γ
(2)
φ,σ = (γ2

φ/Eσ) sin2 φ̄ and γ(2)
φ,τ = (γ2

φ/Eτ ) cos2 φ̄, where
γφ is the magnitude of the low-frequency detuning charge
fluctuations (see Appendix A). The expansion to the
lowest order in bx yields

γ
(2)
φ,s =

γ2
φ

Ez

[
2tcgµBbx/(4t2c − E2

z )
]2 +O(b4x) . (5)

Note that far from the resonant point 2tc ≈ Ez, other
decoherence sources related to the spin, such as the hy-
perfine interaction with nuclear spins, would start dom-
inating the dephasing. The dephasing corresponding to
quasistatic magnetic noise45,46 with magnitude γM is
also quadratic, and the corresponding rates are γM,σ =
γM (cosφ++cosφ−)/2 and γM,τ = γM (cosφ+−cosφ−)/2
(see Appendix B). Therefore, to lowest order in bx, the
spin qubit magnetic noise dephasing rate is

γM,s = γM

[
1− (gµBbx)2(4t2c + E2

z )
2(4t2c − E2

z )2

]
+O(b4x) . (6)

In this architecture the electric field can induce spin
rotations with Rabi frequency Ωs. We focus on the short-
est single-qubit spin rotation (Xπ gate), performed in the
gate time tg = π/Ωs. Using a master equation with qubit
relaxation and a noise term, we calculate the average gate
fidelity (see Appendix C) and average this result over a
Gaussian distribution for the noise with standard devi-
ation given by the total magnitude of the low-frequency
noise, Var(δ) = 2

(
γ

(2)
φ,s

2
+ γ2

M,s

)
. The optimal tunnel

coupling value to achieve the best single-qubit average
gate fidelity depends on the relation between the charge-
induced dephasing and the magnetic noise (see Sec. III).
Note that if the DQD is coupled to a microwave res-
onator the spin qubit couples also to the confined electric
field and the Purcell effect opens another relaxation chan-
nel via photon emission. Single-spin control was demon-
strated in Ref.15 in a detuned DQD configuration, where
the spin-charge mixing, and therefore the coupling of the
spin to the electric field is much weaker. In the following
we analyze the crossover from a symmetric (DQD) to a
far detuned (SQD) configuration.

III. CROSSOVER FROM DQD TO SQD

In this section we calculate the spin Rabi frequency
and the single-qubit average gate fidelity for a general
detuning ε and study the crossover from the molecular
or DQD regime (ε = 0) to the SQD regime with the
electron strongly localized in the left or right QD (|ε| �
2tc). An electron trapped in a detuned DQD, with energy
detuning ε between the left and the right QDs, forms
charge states separated by an energy Ω =

√
ε2 + 4t2c .

The detuning reduces the off-diagonal matrix elements of
the transition dipole moment operator in the eigenbasis
resulting in a Rabi frequency Ω′c = Ωc cos θ, where we
have introduced the orbital angle θ = arctan (ε/2tc), and
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Figure 2. (a) Ratio between the spin Rabi frequency Ωs
and the charge Rabi frequency Ωc as a function of detun-
ing ε for tc = 15µeV. The spin Rabi frequency is max-
imized for ε = 0. (b) Single-qubit average gate infidelity
as a function of ε and tc. As expected, F̄ is symmetric
about ε = 0, with the highest values achieved at ε = 0 and
slightly away from the line with maximal spin-charge mixing,
Ω = Ez (black dashed line). The other parameters are cho-
sen to be Ez = 24µeV, gµBbx = 2µeV, Ωc/2π = 500MHz,
γ1,c/2π = 18MHz, γφ/2π = 600MHz, and γM/2π = 2MHz.

incorporates diagonal matrix elements. With a magnetic
field profile as explained above, the model Hamiltonian
reads35

H0 = Ω
2 τ̃z + Ez

2 σ̃z −
gµBbxσ̃x

2 (cos θτ̃x − sin θτ̃z) . (7)

The eigenenergies, labelled as E0,...,3 read 2E3(2) =

−2E0(1) =
√

(Ω± b)2 + (gµBbx cos θ)2, with b =√
E2
z + (gµBbx sin θ)2, and all the off-diagonal matrix

elements of the electric dipole moment operator in the
eigenbasis are non-zero. Therefore all the transitions can
be addressed electrically, as shown in Fig. 1(b) via colored
arrows. The Rabi frequencies for the transitions involv-
ing the lower energy states are (see Appendix A) Ωσ =
Ω′c cos Φ sin φ̄, and Ωτ = Ω′c cos Φ cos φ̄, where the angle
Φ = arctan (bx sin θ/Bz) describes an orbital-dependent
spin rotation, φ± = arctan [gµBbx cos θ/ (Ω± b)] (φ± ∈
[0, π]) generalize the spin-orbit mixing angles, and φ̄ =
(φ+ + φ−) /2.
Analogously to the previous section, we define the spin

qubit as s = τ (s = σ) for Ω < Ez (Ω > Ez), i.e., as the
ground state and the second (first) excited state. As
expected, the spin qubit Rabi frequency is reduced as ε
increases. The expansion of Ωs for small bx (gµBbx �
|Ω− Ez|) yields

Ωs = 2tcgµBbxΩ′c/|Ω2 − E2
z |+O(b3x) , (8)

generalizing Eq. (3) to ε 6= 0. In Fig. 2(a), we plot the
ratio Ωs/Ωc as a function of ε for tunnel coupling tc =
15µeV and fixed magnetic field profile, Ez = 24µeV and
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gµBbx = 2µeV. As expected, for a given amplitude of
the applied electric field the Rabi frequency is larger at
zero detuning, which implies that at ε ≈ 0 one can drive
Rabi oscillations at a given frequency with less power
consumption than for finite detuning; see Appendix D.

The direct phonon-induced spin relaxation rate for
small bx reads

γ1,s = γ1,c(2tc/Ω)2 [2tcgµBbx/(Ω2 − E2
z )
]2 +O(b4x) .

(9)
In this detuned situation, the second excited state can
also decay to the first excited state via phonon emission,
which opens another spin relaxation channel for the case
Ez > Ω (see Appendix A). However, the corresponding
decay rate is lower than γ1,c due to the smaller energy
gap between these two states and it can be neglected
for the relevant parameters. Moreover the low-frequency
charge fluctuations (with magnitude γφ) induce pure de-
phasing with rates proportional to the first derivative of
the transition frequencies with respect to ε,

γ
(1)
φ,τ(σ) = γφ cos θ

2 {tan θ (cosφ+ ± cosφ−)

+ sin Φ (sinφ+ ∓ sinφ−)} (10)

(see Appendix A), which yields

γ
(1)
φ,s = γφ|ε|

Ez

[
2tcgµBbx/(Ω2 − E2

z )
]2 +O(b4x) . (11)

The second order contribution to spin dephasing is pro-
portional to the second derivatives of the transition fre-
quencies, as calculated from second order perturbation
theory47–49. The full expression for this spin contribu-
tion is given in Appendix A. Including terms to lowest
order in bx, we find

γ
(2)
φ,s =

γ2
φ

Ez

[
2tcgµBbx
(Ω2 − E2

z )

]2 [
1− 4ε2

Ω2 − E2
z

]
+O(b4x) . (12)

Finally, the dephasing rates corresponding to quasistatic
magnetic noise are given in Appendix B and accounting
for terms to lowest order in bx, we find

γM,s = γM

√
2ε2 + 4t2c

Ω

[
1− (gµBbxε)2

2E2
zΩ2

− (gµBbx)2t2c(Ω2 + E2
z )

(2t2c + ε2)(Ω2 − E2
z )2

]
+O(b4x) . (13)

In Fig. 2(b), we show the single-qubit average gate fi-
delity as a function of ε and tc, calculated by averaging
the Xπ average gate fidelity in the presence of Gaus-
sian distributed noise with standard deviation given by
the total magnitude of the low-frequency noise, Var(δ) =
2
(
γ

(1)
φ,s

2
+ γ

(2)
φ,s

2
+ γ2

M,s

)
. First, we can observe the op-

timal values of tc mentioned in Sec. II and a reduction
in the fidelity when Ω = Ez (indicated by the dashed
line) due to large spin-charge mixing. Moreover, we can

see the detrimental effect of working slightly away from
the sweet spot (ε = 0). The qubit not only suffers from
a lower Rabi frequency but the first order charge noise
contribution dominates, abruptly decreasing the average
gate fidelity.
As an estimate of the number of Rabi oscillations that

can be observed with high visibility in a EDSR experi-
ment we can use the quality factor Q, defined as the ratio
of spin Rabi frequency and decay rates

Q = 2Ωs

γ1,s/2 +
√
γ

(1)
φ,s

2
+ γ

(2)
φ,s

2
+ γ2

M,s

. (14)

This expression should be viewed as an approximate in-
terpolation between the limiting cases where relaxation
rate γ1,s or the low-frequency noise are dominating50.
Increasing the detuning localizes the electron more in

a single QD and the flopping-mode EDSR mechanism
described above may compete with other EDSR mech-
anisms that take place in a SQD, via excited orbital or
valley states23,27,51–56. Also in a DQD structure, if the
intervalley interdot tunnel coupling57–59 is strong com-
pared to the valley splittings59, the effective spin Rabi
frequency will be modified. In this work we focus on
the micromagnet-induced flopping-mode EDSR mecha-
nism, which dominates if the excited orbital and val-
ley energy splittings are large enough. For a discussion
of the interplay between micromagnet-induced SQD and
flopping-mode EDSR mechanisms we refer the reader to
Appendix D.
In more realistic setups, where the micromagnet stray

field is not perfectly aligned with the DQD, there can be
magnetic field gradients in the z direction (longitudinal)
and a finite average field in the x direction (transverse).
Given the importance of the protection against charge
fluctuations, we investigate the sweet spot behavior using
a more general model in the following section.

IV. FLOPPING-MODE CHARGE NOISE
SWEET SPOTS

In this section, we examine the optimal working points
for flopping-mode spin qubit EDSR operation. For the
model used in Sec. III, the zero detuning point consti-
tutes a first order sweet spot with respect to fluctuations
in the detuning, since the qubit energy is insensitive to
ε variations to first order. In this case, it is important
to account for the second order contribution to qubit de-
phasing which, as mentioned above, is related to the sec-
ond derivative of the qubit energy with respect to the
detuning. The micromagnet could be designed to induce
a longitudinal magnetic field gradient between the left
and the right QDs with the aim of obtaining a different
spin resonance frequency depending on the electron posi-
tion. Fabrication misalignments can also give rise to both
longitudinal gradients and overall transverse magnetic
fields16,50,60, i.e., the magnetic field components in the
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Figure 3. Spin qubit energy splitting Es as a function of the
detuning ε, for various values of the longitudinal gradient field
(gµBbz), as indicated, increasing from top to bottom. The
interdot tunnel splitting amounts to (a) 2tc = 18µeV and (b)
2tc = 30µeV, while the homogeneous field Zeeman energy is
Ez = 24µeV and the transverse inhomogeneous component
is gµBbx = 2µeV. The thin shaded areas indicate first order
sweet spots for the corresponding color line and the wide blue
shaded area in (b) indicates the region around the second
order sweet spot for gµBbz = 0.3µeV. The discontinuity in
(a) occurs at Ω = Ez due to a level crossing of the upper
qubit state.

right and left QD positions may be B(L,R)
z = Bz±bz and

B
(L,R)
x = Bx± bx, where Bz � Bx, bx, bz. Via a rotation

of the spin quantization axis, given by the small angle
ζ = arctan (Bx/Bz), it is always possible to rewrite the
latter as B(L,R)

z′ =
√
B2
z +B2

x ± bz′ and B(L,R)
x′ = ±bx′ ,

with

bz′ = bz cos ζ + bx sin ζ , (15)
bx′ = bx cos ζ − bz sin ζ , (16)

therefore a model containing a homogeneous field and
two gradients is sufficient. In the following we work in
a rotated coordinate system and rename the variables as√
B2
z +B2

x → Bz, bx′ → bx and bz′ → bz. This allows us
to use the model Hamiltonian in Eq. (7), with a homoge-
neous field Bz and a transverse inhomogeneous compo-
nent bx, and add a term accounting for the longitudinal
gradient (±bz in the left/right QD),

H = H0 −
gµBbzσ̃z

2 (cos θτ̃x − sin θτ̃z) . (17)

Note that the relative values of bx and bz can be con-
trolled via the direction of the external magnetic field60.

For simplicity we analyze first this model in the limit of
small inhomogeneous fields, gµBbx,z � |Ω − Ez|. While
the transverse gradient corrects the spin qubit energy
splitting Es (from the value Es = Ez for bx,z = 0) to
second order, the longitudinal gradient has an effect to
first order, leading to

Es ' Ez −
E2
z − ε2

2Ez(Ω2 − E2
z ) (gµBbx)2 − ε

ΩgµBbz . (18)

From this simplified expression, we can explore the exis-
tence of first order sweet spots. Unless bz = 0, the spin
qubit does not have a first order sweet spot at zero de-
tuning. For an arbitrary value of tc, if bz < b2x/Bz the
spin qubit should be operated at a first order sweet spot
slightly shifted from zero detuning (see below). For a
larger longitudinal gradient, bz > b2x/Bz, there are two
first order sweet spots for a given value of tunnel split-
ting below the Zeeman energy, i.e., 2tc < Ez. For larger
tunnel splitting, 2Ez > 2tc > Ez, there are also two first
order sweet spots if

b2x
Bz

< bz < b0z = 3
√

3t4c
Ez(4t2c − E2

z )3/2
b2x
Bz

(19)

and none otherwise.
In Fig. 3, the exact spin qubit energy splitting Es, cal-

culated from the eigenenergies of the Hamiltonian (17), is
shown as a function of the DQD detuning ε for different
values of bz. For negative values of bz the sweet spots
will occur at negative values of ε. The panels (a) and
(b) represent a generic case with tunnel splitting below
and above the Zeeman energy, respectively. The black
(solid) lines are for bz = 0 and the red (dashed) lines cor-
respond to bz < b2x/Bz, showing therefore one first order
sweet spot in both panels (a) and (b). In Fig. 3(a), since
2tc < Ez, we expect two first order sweet spots for large
enough values of longitudinal gradient, which can be seen
in the green (dash-dotted) line. In Fig. 3(b), we analyze
a case with 2Ez > 2tc > Ez. The green (dash-dotted)
line corresponds to the intermediate region of two first
order sweet spots, b2x/Bz < bz < b0z. Finally, the blue
(dotted) line is obtained for bz ∼ b0z. At this point, Es
becomes very flat, which would protect the qubit even to
higher order from fluctuations in the detuning.
To confirm this, we show in Fig. 4 the second deriva-

tive of the spin qubit energy splitting with respect to
detuning. In panel (a) bz < b2x/Bz, while in panel (b)
bz > b2x/Bz. The superimposed black dashed line in-
dicates the position of the first order sweet spots. In
Fig. 4(a), the value of the second derivative along the
expected first order sweet spot (black dashed line) does
not change significantly. Increasing the value of bz can
give rise to a situation as shown in Fig. 4(b), where the
line indicating the position of the first order sweet spot
(black dashed line) crosses the line of zero second deriva-
tive, allowing for a second order sweet spot and a qubit
protected against charge noise up to second order.
The longitudinal magnetic field gradient may also in-

fluence the electric dipole moment operator and there-
fore the Rabi frequencies of the different transitions. In
Appendix E we treat the transverse component bx per-
turbatively and calculate the correction of the spin Rabi
frequency due to the longitudinal magnetic field gradient,

Ωs ' Ω′c
2tcgµBbx
|Ω2 − E2

z |

[
1 + εbz

ΩBz

]
, (20)

i.e., bz � Bz incorporates a small correction. This means
that bz does not have a noticeable effect on the spin Rabi
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Figure 4. Second derivative ∂2
εEs of the spin qubit energy

splitting with respect to the detuning ε as a function of tc
and ε for (a) gµBbz = 0.16µeV and (b) gµBbz = 0.5µeV. The
black dashed lines indicate the first order sweet spot positions
and the circle in panel (b) indicates the position of the second
order sweet spot. The homogeneous field Zeeman energy is
Ez = 24µeV and the transverse inhomogeneous component is
gµBbx = 2µeV.

frequency and the phonon induced spin dephasing rate,
but it strongly affects the pure spin dephasing rate due
to charge fluctuations via a drastic modification of the
qubit energy detuning dependence, as shown in Figs. 3
and 4.

To examine the overall performance of the qubit in
different regimes, we show in Fig. 5 the single-qubit av-
erage gate fidelity as a function of ε and tc. The charge
noise induced spin dephasing rate has been calculated
numerically from the derivatives of the spin qubit en-
ergy splitting Es with respect to detuning ε. The effect
of the small longitudinal gradient on the spin Rabi fre-
quency, the phonon induced spin relaxation rate and the
magnetic noise induced rate is very small, therefore we
have neglected it here. Since we have assumed that the
pure dephasing rate induced by charge noise fluctuations
is the dominant source of decoherence, the condition for
the best quality qubit coincides with the position of the
first order sweet spots, which, as opposed to the case
with bz = 0 shown in Fig. 2, does not occur at ε = 0.
Although for a fixed tunnel coupling tc the two first or-
der sweet spots exhibit high single-qubit average gate
fidelity, their properties are very different. For example,
for tc = 13µeV the spin Rabi frequency at the sweet
spot at ε = 3.1µeV is four times larger than at the one
at ε = 18.6µeV (these two first-order sweet spots are in-
dicated by squares in Fig. 5(b)), but the phonon-induced
relaxation rate and the charge noise dephasing rates are
also 16 and 9 times higher, respectively. The first order
sweet spot situated at larger detuning could therefore
serve as idle point, while the one at lower detuning is
used as operating point. Finally, as shown in Fig. 5(b),
an even larger average gate fidelity can be achieved by
operating close to the second order sweet spot. Note
that the best fidelity does not correspond exactly to the
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Figure 5. Single-qubit average gate infidelity 1 − F̄ as a
function of detuning ε and interdot tunnel coupling tc for
(a) gµBbz = 0.16µeV and (b) gµBbz = 0.5µeV. The homo-
geneous field Zeeman energy is Ez = 24µeV and the trans-
verse inhomogeneous component is gµBbx = 2µeV. The other
parameters are chosen to be Ωc/2π = 500MHz, γ1,c/2π =
18MHz, γφ/2π = 600MHz, and γM/2π = 2MHz. The black
dashed lines indicate the first order sweet spot positions. In
panel (b) the squares mark the position of the first order sweet
spots for tc = 13µeV and the circle indicates the position of
the second order sweet spot.

second order sweet spot, since phonon relaxation and nu-
clear spin induced dephasing are also present.

V. CONCLUSIONS

The flopping-mode configuration is shown to be useful
not only for achieving a strong coupling between cav-
ity photons and single spins 15,16,20, but also for coher-
ent electrical spin manipulation. We have analyzed the
variation of the performance of the flopping-mode EDSR
method from the symmetric (ε = 0) DQD to the highly
biased (|ε| � 2tc) SQD regime. Importantly, the applied
power of the electric field necessary to obtain a given
Rabi frequency will be reduced by orders of magnitude by
working in the DQD regime. This efficient single spin ma-
nipulation implemented in silicon QDs would constitute
a fundamental step towards a fully electrically control-
lable quantum processing architecture for spin qubits, a
platform which already benefits from mature silicon pro-
cessing technology.
Given the presence of environmental charge noise in

typical QD devices, it is important to know the position
of the exact first order sweet spot, which can be shifted
a few µeVs away from zero detuning in the presence of
a longitudinal magnetic field gradient. Interestingly, it
is also possible to find two first order sweet spots for
the same value of tunnel coupling, with different Rabi
frequency and decoherence rate, which could be poten-
tially exploited for different steps of qubit manipulation.
Finally, we predict the existence of second order sweet
spots, where the qubit is insensitive to electrical fluctua-
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tions up to second order.
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Appendix A: Electric dipole moment and dephasing

In this Appendix we calculate the Rabi frequencies for
the different transitions in the flopping-mode spin qubit,
the phonon-induced spin relaxation rates and the pure
dephasing rates due to low-frequency electrical fluctua-
tions in the DQD detuning. In Eq. (2) we have expressed
the electric dipole moment operator in the eigenbasis of
Eq. (1), which is the model Hamiltonian for ε = 0 and
bz = 0. For detuned QDs (ε 6= 0), we can write the
electric dipole moment in the eigenbasis of the Hamilto-
nian in Eq. (7) and find that the electric field couples to
all possible electronic transitions, as shown in Fig. 1(b),
since the electric dipole moment operator has the form
p = ed cos θ(T + Z/2), with the off-diagonal component

T =− cos Φ cos φ̄τx + cos Φ sin φ̄σxτz (A1)
+ (sin Φ cosφ− + tan θ sinφ−) (σ+τ− + h.c.)
− (sin Φ cosφ+ − tan θ sinφ+) (σ+τ+ + h.c.) ,

and the diagonal component

Z = {tan θ (cosφ+ + cosφ−)
+ sin Φ (sinφ+ − sinφ−)} τz

+ {tan θ (cosφ+ − cosφ−)
+ sin Φ (sinφ+ + sinφ−)}σz . (A2)

The first terms in the off-diagonal component determine
the Rabi frequencies Ωτ(σ) and the direct phonon relax-
ation rates γ1,τ(σ) given in Sec. III. The term in the sec-
ond line of Eq. (A1) corresponds to transitions between
the first and second excited states, and it opens a new
channel for spin relaxation in the case Ez > Ω. We have
neglected this channel here because the corresponding
phonon emission rate is suppressed by the small energy
gap between these two states for the relevant parameter
regimes.
The electrical fluctuations also couple to the system via

the electric dipole moment. If the amplitude δε and fre-
quency of these fluctuations is small, we can calculate the
spin qubit dephasing rate by treating them within time-
independent perturbation theory47–49, obtaining the de-
phasing Hamiltonian

Hδε =
∑
η=τ,σ

(
∂Eη
∂ε

δε + 1
2
∂2Eη
∂ε2 δ2

ε

)
ηz
2 , (A3)

where the first order contribution relates directly to the
diagonal components in Eq. (A2), since

∂Eτ(σ)

∂ε
= cos θ

2 {tan θ (cosφ+ ± cosφ−)

+ sin Φ (sinφ+ ∓ sinφ−)} . (A4)

and all the terms of the off-diagonal component Eq. (A1)
contribute to second order49. More precisely, the second
derivatives read

∂2Eτ(σ)

∂ε2 = cos2 θ

{
cos2 Φ cos2 φ̄

Eτ(σ)

+(sin Φ cosφ+ − tan θ sinφ+)2

2(Eτ + Eσ)

± (sin Φ cosφ− + tan θ sinφ−)2

2(Eτ − Eσ)

}
. (A5)

Assuming Gaussian distributed low frequency noise
leads to a Gaussian decay of coherence ∝ e−Γ2

φt
2
with the

total pure spin dephasing rate related to the variance of
the noise function

Γφ =
[
Var

(
∂Es
∂ε

δε + 1
2
∂2Es
∂ε2 δ2

ε

)
/2
]1/2

=
[
γ

(1)
φ,s

2
+ γ

(2)
φ,s

2]1/2
, (A6)

where γ(1)
φ,s = γφ

∂εEs
∂ε , γ(2)

φ,s = γ2
φ
∂2
εEs
∂ε2 , and γφ = σε/

√
2,

where σε is the standard deviation of the fluctuations δε.

Appendix B: Quasistatic magnetic noise

In this Appendix we calculate the dephasing rate of
the flopping-mode spin qubit due to hyperfine interaction
with the nuclear spins. For this we use the quasistatic ap-
proximation45, which assumes that the fluctuations in the
Overhauser field occur in a time scale much longer than
the system dynamics. Then we treat the noise Hamilto-
nian term

Ṽ = ξL(t)σ̃z(1 + τ̃z)/2 + ξR(t)σ̃z(1− τ̃z)/2 , (B1)

with two random variables for the noise in the left and
right QDs, to first order in time-independent perturba-
tion theory. First we transform Eq. (B1) into the eigen-
basis of Eq. (7), obtaining the diagonal component

Z = ξ+ cos Φ
4 {(cosφ+ − cosφ−) τz

+ (cosφ+ + cosφ−)σz}

+ξ− cos Φ sin θ
2 σzτz , (B2)

where ξ± = ξL(t)± ξR(t).
If we assume now Gaussian distributions with zero

mean value and σ2
M = Var (ξR(t)) = Var (ξL(t)), the
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coherences decay as ∝ e−(γM,σ(τ)t)2 , with the dephasing
rates due to nuclear spins

γM,σ(τ) = γM cos Φ
2

√
(cosφ+ ± cosφ−)2 + 4 sin2 θ ,

(B3)
where γM = σM , whose expansion to lowest order in bx
yields Eq. (13).

Appendix C: Single-qubit average gate fidelity

We determine the quality of the quantum gate, rep-
resented by the operator E , via the average fidelity F̄ =
〈ψ|E [|ψi〉]|ψ〉, which compares the targeted pure state |ψ〉
and the obtained mixed state density matrix E [|ψi〉], av-
eraged over all possible pure input states |ψi〉. In this
case the real quantum gate is determined by the simple
two-level system master equation

ρ̇ = −i
[
δ

2σz, ρ
]

+ γ1,s
2 [2σ−ρσ+ − {σ+σ−, ρ}] (C1)

for the qubit density matrix ρ, where δ is the noise mag-
nitude.

We now calculate the entanglement fidelity Fe for the
gate applied to only one qubit of a two-qubit state pre-
pared in a maximally entangled state, since this relates
to the average fidelity as F̄ = (2Fe + 1)/361. This yields

F̄ (δ) = 1
3
{

2 + e−2tgγ1,s (C2)

+e−tgγ1,s
[
cosh (tgγ1,s)− cosh

(
tg

√
γ2

1,s − δ2
)]}

.

Finally, since we consider only low-frequency noise, the
measurable and interesting quantity is the average of this
fidelity over the randomly distributed noise variable δ.

Appendix D: Low power EDSR

In this Appendix, we analyze the power necessary to
drive Rabi oscillations at a given frequency by taking into
account both SQD and flopping-mode EDSR induced by
the micromagnet. Following Refs.26,27, we can complete
Eq. (8) by including the SQD contribution to the Rabi
frequency,

Ωs ≈
edEac

~
gµBbx

(
4t2c

Ω|Ω2 − E2
z |

+ ~2

m∗ed2E2
orb

)
, (D1)

where Eorb is the orbital energy, Eorb ≈ 1 − 3meV, and
m∗e is the electron effective mass. Since the drive power is
proportional to the square of the electric field, P ∝ E2

ac,
the power necessary to drive the spin qubit at a given
Rabi frequency follows50

P ∝ Ω2
s

[
ed

~
gµBbx

(
4t2c

Ω|Ω2 − E2
z |

+ ~2

m∗ed2E2
orb

)]−2

.

(D2)
Appendix E: Effect of bz on the spin Rabi frequency

In this Appendix we investigate the effect of a lon-
gitudinal magnetic field gradient on the flopping-mode
Rabi frequencies. Since bz is the difference in longitudi-
nal magnetic field between the left and the right QDs, it
can be seen as a detuning parameter (similar to ε) that
depends on the spin, therefore its effect can be included
in the form of a spin-dependent orbital basis transforma-
tion,

|+′, σ〉 = cos (θσ/2)|+, σ〉 − sin (θσ/2)|−, σ〉 ,
|−′, σ〉 = sin (θσ/2)|+, σ〉+ cos (θσ/2)|−, σ〉 , (E1)

with orbital angles θ↑(↓) = arctan [(ε± gµBbz)/2tc] and
orbital energies Ω↑(↓) =

√
(ε± gµBbz)2 + 4t2c , instead of

the θ and Ω used in Sec. III. With this, we can treat bx
perturbatively and find the spin Rabi frequency

Ωs ' 2tcgµBbxΩc cos θ̄ Ez/ [Ez − (Ω↑ − Ω↓)/2]
(Ω↑ + Ω↓)2/4− E2

z

, (E2)

that generalizes the result in Eq. (8). Here, θ̄ = (θ↑ +
θ↓)/2. Finally, expanding to lowest order in bz, this sim-
plifies to Eq. (20).
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