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We develop a theoretical framework to study the influences of coupling asymmetry on the thermo-
electrics of a strongly coupled SU(N) Kondo impurity based on a local Fermi liquid theory. Applying
non-equilibrium Keldysh formalism, we investigate charge current driven by the voltage bias and
temperature gradient in the strong coupling regime of an asymmetrically coupled SU(N) quantum
impurity. The thermoelectric characterizations are made via non-linear Seebeck effects. We demon-
strate that the beyond particle-hole (PH) symmetric SU(N) Kondo variants are highly desirable
with respect to the corresponding PH symmetric setups in order to have significantly improved
thermoelectric performance. The greatly enhanced Seebeck coefficients by tailoring the coupling
asymmetry of beyond PH symmetric SU(N) Kondo effects are explored. Apart from presenting
the analytical expressions of asymmetry dependent transport coefficients for general SU(N) Kondo
effects, we make a close connection of our findings with the experimentally studied SU(2) and SU(4)
Kondo effects in quantum dot nano structures. Seebeck effects associated with the theoretically
proposed SU(3) Kondo effects are discussed in detail.

I. INTRODUCTION

The increasing demand of quantum technologies for
energy harvesting has attracted growing attention to-
wards the necessity for the nano material based en-
ergy converters1. The presence of quantization effects
in nano scale systems allows the controllable compre-
hension and subsequent control of underlying transport
processes2. In addition, nano scale systems can offer
greatly enhanced thermoelectric response with respect
to conventional bulk counterparts1–3. These proper-
ties of nano scale systems has rekindled the field of
thermoelectricity4. Over the past years, several ex-
periments has resulted in exciting thermoelectric mea-
surement for nano scale systems, such as quantum dots
(QDs), carbon nano-tubes (CNTs), quantum point con-
tacts (QPCs), etc4–6. The rapid progress of nano tech-
nology has allowed the fine tuning of nano scale trans-
port process, nonetheless, complete understanding of
electron interactions in such small scale remains the
most challenging task7.

A generic nano device consists of a quantum impu-
rity with intrinsic spin S which is tunnel coupled to two
electron reservoirs, the source and the drain. The low
energy transport processes are then controlled by the
strong interaction between localized spin S and itiner-
ant electrons in the reservoirs. The spin S=1/2 impu-
rity interacting with a single orbital channel of conduc-
tion electrons forms a fully screened ground state result-
ing in quasiparticle resonances at the Fermi level. This
paradigmatic screening phenomenon is termed as Kondo
effect8 which is characterized by a low energy scale TK ,
the Kondo temperature. The many-body Kondo res-
onance at the Fermi level opens an effective path to-
wards the enhancement of thermoelectric production at
the nano scale level9. Recent experiments10–15 have fur-
ther expanded the scope of transport measurements in
Kondo correlated nano scale systems. Most of these
studies have been focused on the transport measure-
ment for the spin S=1/2 Kondo impurity described by

the SU(2) symmetry group. However, the conventional
SU(2) Kondo effects, being protected by particle-hole
(PH) symmetry, offer vanishingly small thermoelectric
conversion7. To achieve appreciable thermopower, the
occupation factor of the quantum impurity should be
integer, while the PH symmetry should be lifted16. The
SU(N) Kondo model with integer occupancy m offers
the possibility of avoiding half-filled regime so as to
achieve the enhanced thermoelectric production over the
conventional SU(2) Kondo correlated systems16–18.

The orbital degeneracy of the quantum impurity com-
bines with the true spin symmetry to form the Kondo
effect described by higher symmetry group SU(N). Here
the occupancy factor m takes all possible values starting
from 1 to N−1. The paradigmatic SU(4) Kondo physics
has been experimentally studied in CNTs12,19–23, dou-
ble QDs24 and single-atom transistor25. Various theo-
retical works26–31 have contributed towards better un-
derstanding of SU(4) Kondo physics over past years. In
addition, exciting proposals have been put forth for the
experimental realization of different variants of SU(N)
Kondo systems. Possible realization of SU(3) Kondo ef-
fects using triple QDs with three and four edge states of
the quantum Hall effects was suggested in Ref.32, which
been verified recently using numerical renormalization
group study33. The proposals for the solid-state re-
alization of SU(6)34 and SU(12)35 Kondo effects have
likewise attracted considerable attentions both theoret-
ically and experimentally. Beside obtaining the solid-
state realization of these exotic SU(N) Kondo effects,
an increasing effort has been put in their cold atomic
realization36–39.

Most of the previous studies on SU(N) Kondo effects
have been focused solely on charge current measure-
ments. However, thermoelectric characterization in a
generic nano device usually involves the Seebeck effects.
To the best of our knowledge very few studies have tried
to uncover the thermoelectric measurements of Kondo
effects described by higher symmetry group. The See-
beck effects with a SU(4) Kondo effects have been stud-
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ied in Ref.17 and a general theoretical framework for
thermoelectric transport of a SU(N) Kondo model has
been developed recently in Ref.16. These studies are
limited to the setup with perfectly symmetrical tunnel
coupling, which is very rarely the case of an experiment.
In fact, junction asymmetry could provide important in-
formations about the underlying many body effects40,
thus, has to be taken into account in any calculation to
compare its result with the experimental data41. There-
fore unveiling the effects associated with the coupling
asymmetry towards the thermoelectric characterization,
the Seebeck effects, of a SU(N) Kondo effects has re-
mained a challenging problem for many years. In this
contribution we develop a theoretical framework based
on a local Fermi-liquid theory in combination with the
out of equilibrium Keldysh approach to study the in-
fluences of coupling asymmetry on the thermoelectric
transport of a strongly coupled SU(N) Kondo impurity.

The paper is organized as follows. In Sec. II we dis-
cuss in detail on the formulation of the model, for ther-
moelectric transport calculations at the strong-coupling
regime of SU(N) Kondo effects, capturing the effects
of coupling asymmetry and arbitrary temperature and
chemical potentials of the electron reservoirs. We out-
line the charge current calculations for a SU(N) Kondo
impurity which account for both elastic and inelas-
tic effects using the nonequilibrium Keldysh formalism
in Sec. III. The Sec. IV is devoted to the summary
of our results for the thermoelectric transport coeffi-
cients of SU(N) Kondo correlated systems characteriz-
ing the non-linear Seebeck effects. In this section, apart
from presenting the analytical expressions of coupling
asymmetry dependent transport coefficients for general
SU(N ) Kondo effects, we made a separate analysis of
thermoelectrics with i) experimentally studied SU(2)
and SU(4) Kondo effects and ii) theoretically proposed
SU(3) Kondo effects. The last section V contains the
conclusion of our work together with the possible future
research plans based on the present work.

II. MODEL DESCRIPTION

We consider a quantum impurity tunnel coupled to
two conducting reservoirs as shown in Fig. 1. The im-
purity possess N -fold degeneracy by combining the spin
and other degrees of freedom, such as the orbital de-
generacy. In addition, there are N -species (orbitals) of
electrons in both left (L) and right (R) reservoirs. The
rotation of the reservoir’s electrons is then described
by the SU(N) transformation. Therefore, to describe
our system we start form SU(N) impurity Anderson
model42,43,

H=
∑
k,r

εk

[
c†L,krcL,kr + c†R,krcR,kr

]
+Himp +Htun. (1)

Here we introduce the notation “r” to represent the or-
bital index that takes all possible values starting from

1 to N . The operator c†γ,kr creates an electron with

momentum k in r-th orbital of the γ (=L,R) reservoir.

FIG. 1. Upper panel: Schematic representation of experi-
mental setup for investigating Seebeck effect in nanostruc-
tures, where a SU(N) quantum impurity is sandwiched be-
tween two conducting reservoirs. The left (red) and right
(blue) reservoirs are in thermal equilibrium, separately, at
temperature TL and TR respectively. The tunneling-matrix
elements from the impurity to the left/right reservoirs are
characterized by tL=t cos θ and tR=t sin θ with θ ∈ (0, π/2).
Lower panel: The asymmetry of the tunneling junction is ac-
counted for by introducing a parameter C ≡ (ΓL−ΓR)/(ΓL+
ΓR)= cos 2θ with ΓL/R=πρres|tL/R|2, ρres being the density
of states of the reservoirs. The magenta line represents the
variation of asymmetry parameter C with respect to the
asymmetry angle θ. We choose the Fermi level in such a way
that the chemical potentials of the left and right reservoirs
take some specific values µL/R=± e∆V

2
(1∓ C). This choice

of chemical potentials amounts to greatly simplify the calcu-
lation of charge and heat current through a strongly coupled
Kondo impurity (see text for detail). These chemical poten-
tials are represented by the red and blue curve respectively.

The energy of conduction electrons εk is measured with
respect to the chemical potential µ. The second term
of Eq. (1) represents the Hamiltonian of the impurity
possessing N degenerate flavors with single energy level
εd. Then we write the impurity Hamiltonian as

Himp = εd
∑
r

d†rdr + U
∑
r<r′

d†rdrd
†
r′dr′ , (2)

where d†r is the electron creation operator of the impu-
rity and U represents the charging energy which is as-
sumed to be the largest energy scale of the model. The
tunneling processes from the impurity to the reservoirs
are accounted for by the very last term of the Eq. (1),

Htun =
∑
k,r

(
tLc
†
L,kr + tRc

†
R,kr

)
dr + H.c., (3)

We explicitly assume the tunneling asymmetry by as-
signing the tunneling-matrix elements tγ such that
tL=t cos θ and tR=t sin θ with θ∈ (0, π/2). Then the in-
trinsic total local level width associated with the tunnel-
ing is given by Γγ=πρres|tγ |2 with ρres being the density
of states of the reservoirs. For the sake of clarity, we in-
troduce the parameter C ≡ (ΓL−ΓR)/(ΓL+ΓR)= cos 2θ
to characterize the asymmetry of the tunneling junction.
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This asymmetry further appears in the Glazman-Raikh
rotation44 of Eq. (1) in the basis of reservoirs electrons(

bkr
akr

)
=

(
cos θ sin θ
sin θ − cos θ

)(
cL,kr
cR,kr

)
. (4)

Note that the transformation Eq. (4) effectively decou-
ples the operators akr from the impurity degrees of free-
dom. Here we consider the general case of having arbi-
trary number of electrons m=1, 2, · · · , N − 1 in the im-
purity. Therefore, the specific choice of impurity level
εd=U(1−m−m/N) provides the fundamental represen-
tation with

∑
r d
†
rdr ≡

∑
r nr=m. We then perform the

Schrieffer-Wolff transformation45 followed by the rota-
tion Eq. (4) of the Hamiltonian Eq. (1) to project out
the charge states, which results in

H =
∑
k,r

εk

(
a†krakr + b†krbkr

)
+HKondo. (5)

The Kondo Hamiltonian is expressed in terms of anti-
ferromagnetic coupling JK between the impurity spin
~S and the spin operator of reservoir electrons placed at

the origin ~T as40,46,47

HKondo = JK ~S · ~T , JK =
t2

U

N2

m(N −m)
. (6)

The N2−1 traceless components of impurity spin
Si(i=1, 2 · · ·N2−1) are given by Sr,r′=d†rdr′−m/Nδr,r′
with the constraint r, r′ 6=N,N ′. Likewise, the spin
operator of reservoir electrons placed at the origin

is expressed as ~T=
∑
kk′,rr′ b

†
krΛ

i
rr′bk′r′ , Λi being the

N × N generators of SU(N) group. Note that Si are
N !

m!(N−m)! ×
N !

m!(N−m)! matrices acting on states with m

electrons.
The ground state of spin S=1/2 SU(N) impurity con-

sidered in this work is characterized by the complete
screening of impurity spin which results in the forma-
tion of Kondo singlet. The low-energy regime of fully-
screened Kondo effect is consistently describe by FL the-
ory48–50. Applying the standard point-splitting proce-
dure16,40,47,49 to the Hamiltonian Eq. (6) imparts the
low energy FL Hamiltonian of SU(N) Kondo impurity,

H0 = ν
∑
r

∫
ε

ε
[
a†εraεr + b†εrbεr

]
, (7)

Hel = −
∑
r

∫
ε1−2

[α1

2π
(ε1+ε2)+

α2

4π
(ε1+ε2)2

]
b†ε1rbε2r,

Hint =
∑
r<r′

∫
ε1−4

 φ1
πν

+
φ2

4πν

4∑
j=1

εj

 :b†ε1rbε2rb
†
ε3r′

bε4r′ :.

The PH symmetric version of Eq. (7) is originally
proposed by Nozieres48 which is commonly known as
Nozieres FL theory. In Eq. (7) the density of states per
species for a one dimensional channel is represented by
the symbol ν. The scattering (elastic) effects in the FL

are accounted for by the Hamiltonian Hel, where α1 and
α2 are the first and second generations of Nozieres FL
coefficients respectively. The four fermions term rep-
resents the interaction part of the Hamiltonian Hint

which is expressed in terms of FL parameters φ1 and
φ2. These FL parameters are related to the associated
Kondo temperature of the corresponding SU(N) impu-
rity. The FL parameters characterizing the scattering
effects are connected to those of interaction effects by
the relation, α1=(N−1)φ1 and α2=(N−1)φ2/4. In ad-
dition the Bethe ansatz provides further link between
α1 and α2

40,47,

A ≡ α2

α2
1

=
N − 2

N − 1

Γ(1/N) tan(π/N)
√
πΓ
(
1
2 + 1

N

) cot
[mπ
N

]
. (8)

Where Γ(x) is the Euler’s gamma-function. Therefore
the low energy FL Hamiltonian Eq. (7) is completely
specified by only one FL parameter, say α1. We make
a connection of α1 with the corresponding Kondo tem-

perature such that T
SU(N)
K =1/α1, the N -dependence in

FL parameters is implicit. Note that we have retained
upto the four fermions term in Eq. (7), the higher-order
terms produce the current correction beyond cubic or-
der in applied bias and temperature gradient which is
beyond the scope of present work.

It is then a straightforward procedure to proceed with
the calculation of physical observables by treating the
scattering Hamiltonian Hel and interaction part Hint

perturbatively. However, in the spirit of Nozieres phe-
nomenology, the scattering effects are fully described by
an energy-dependent phase shift δelr (ε). The Kondo sin-
glet acts as the scatterer for the incoming electrons from
the leads. Outgoing and incoming electrons are then dif-
fer from each other by the elastic phase shift δelr (ε). The
Nozieres FL parameters α1 and α2 are the first and sec-
ond order coefficients in the Taylor-series expansion of
elastic phase shift. While the scattering effects are easily
accounted for by the elastic phase-shift, the perturba-
tive treatment of Hint produces complicated self-energy
diagrams. This complication can be simplified a bit by
including the Hartree contribution of self-energy in the
elastic phase shift40,47. Then the Taylor expansion of
phase shift reads

δr(ε) = δ0 + α1ε+ α2ε
2 −

∑
r′ 6=r

[
φ1

∫ ∞
−∞

dεδnr′(ε)

+
φ2
2

(
ε

∫ ∞
−∞

dεδnr′(ε) +

∫ ∞
−∞

dεεδnr′(ε)

)]
. (9)

Here the zero-energy phase shift of SU(N) Kondo im-
purity with m electrons is

δ0 =
mπ

N
. (10)

In Eq. (9) we used the definition of the actual FL quasi-
particle distribution relative to the Fermi-energy εF as

δnr(ε) ≡ nr(ε) − Θ(εF − ε) = 〈b†krbkr〉 − Θ(εF − ε), Θ
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being the step function. Using Eq. (4) we expressed

the average 〈b†krbkr〉 in terms of the equilibrium Fermi-

distribution functions fγ(ε)=
[
1 + exp

(
ε−µγ

Tγ

)]−1
of

the left and right reservoirs; 〈b†krbkr〉 = cos2 θfL +

sin2 θfR. In addition, we have implemented the specific
choice of Fermi-level such that∫ ∞

−∞
dεδnr(ε) = 0. (11)

This equation is always satisfied as far as the condition
µL cos2 θ + µR sin2 θ = εF is full-filled. We then made
the following specification for the chemical potentials of
the reservoirs,

µL = e∆V sin2 θ ≡ e∆V

2
(1− C) , (12)

µR = −e∆V cos2 θ ≡ −e∆V
2

(1 + C) , (13)

to make εF=0. It is also noted that the details related to
the choice of the temperatures in the reservoirs do not
affects the necessary condition to satisfy the Eq. (11).
To be more general, we do not yet impose any restriction
on the choice of TL and TR. Using these specification of
chemical potentials and temperatures of the reservoirs,
the straightforward integration of phase shift expression
Eq. (9) leads

δr(ε) = δ0 + α1ε+ α2

(
ε2 −A

)
. (14)

To obtained Eq. (14) we have made the use of FL iden-
tity α2 = (N−1)φ2/4 and the new definition,

A=
1

6

[
(πTL)2(1+C)+(πTR)2(1−C)+3

2
(1−C2)(e∆V )2

]
.

In the following section the scattering effects in addition
to the Hartree contribution to the self energy correction
will be accounted for by the Eq. (14). To obtain the self
energy correction beyond Hartree contribution we will
be treating the interaction Hamiltonian Hint perturba-

tively with the small parameters (e∆V, TL, TR) /T
SU(N)
K .

III. CURRENT CALCULATION

The nonlinear Seebeck coefficient, the central object
of this work, directly follows from the solution of zero
charge current condition (see section IV). The charge
current in SU(N) Kondo regime consists of two parts:
the elastic and inelastic. While the elastic effects are ac-
counted for by the scattering phase shift, inelastic cor-
rections have to be treated perturbatively as illustrated
earlier. Therefore, to proceed further with the calcu-
lation, one need to have an expression of an operator
representing the charge current. Though there exists
several possible way of writing the charge current40, we
use the the basis of scattering states that includes the

elastic effects and Hartree term, to write the charge cur-
rent operator into the form40,51

Î=
e

2hν

∑
r

sin 2θ
[
a†r(x)br(x)−a†r(−x)E br(−x)+H.c.

]
,

(15)
for br(x)=

∑
k bkre

ikx and E br(x)=
∑
k Ekbkreikx. To

write Eq. (15) we have also omitted the terms of the
form

∑
r,p=± pa†r(px)ar(px) since they do not produce

finite contribution to the mean current. In addition, we
expressed N ×N scattering matrix Ek in terms of phase
shift expression Eq. (14) such that Ek= exp[2iδr(εk)].
To compute the various observables from Eq. (15) we
need the following averages directly obtained from the
Glazman-Raikh rotation 〈b†kbk〉〈a†kak〉

〈b†kak〉

=

 cos2 θ sin2 θ 0
sin2 θ cos2 θ 0
sin 2θ

2 − sin 2θ
2 0

 fL(εk)
fR(εk)

0

 .

(16)
The average of Eq. (15) provides the elastic current (in-
cluding the corresponding Hartree contribution) which
have the compact form analogous to the Landauer-
Büttiker expression

Iel =
e

h

N∑
r

∫ ∞
−∞

dε Tr(ε) [fL(ε)− fR(ε)] . (17)

The effective transmission coefficient Tr(ε) is com-
pletely specified by the phase shift expression Eq. (14);
Tr(ε)≡

(
1− C2

)
sin2[δr(ε)]. To write Tr(ε) into more

tractable form, we perform its Taylor expansion in en-
ergy and retained upto the second order terms,

Tr(ε) =
(
1− C2

)[
T0 − α2A sin 2δ0 + α1 sin 2δ0 ε

+
(
α2
1 cos 2δ0 + α2 sin 2δ0

)
ε2
]
. (18)

Here T0= sin2 δ0 is the zero energy transmission coeffi-
cient. Then it is trivial procedure to compute the elastic
current by plugging in Eq. (18) into Eq. (17). The exact
computation of Eq. (17) follows from the consideration
of following integrals51,52,

Kn =

∫ ∞
−∞

εn [fL(ε)− fR(ε)] dε, n = 0, 1 and 2. (19)

Conventional way of calculating the integrals in Eq. (19)
consists of Sommerfeld expansion of ∆f(ε) ≡ fL(ε) −
fR(ε) in the small parameters ∆T≡TL−TR and ∆V .
However, the Fourier-transform technique allows us to
compute Eq. (19) exactly. Fourier transforming the
function ∆f(ε) into real time reads,

∆f(t) =
1

2π

∫ ∞
−∞

dε e−iεt∆f(ε). (20)

Performing the n-times partial differentiation of Eq. (20)
and taking the limit t→0 we get,

2π

(−i)n
∂n∆f(t)

∂tn

∣∣∣∣
t=0

=

∫ ∞
−∞

dεεn∆f(ε). (21)
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Fourier transformation of the Fermi distributions of left
and right reservoirs allows us to write

∆f(t) =
i

2

[
TLe

−iµLt

sinh(πTLt)
− TRe

−iµRt

sinh(πTRt)

]
. (22)

Plugging in Eq. (22) into Eq. (21) with the chemical
potentials as specified in Eqs. (12) and (13) we obtain
K0=e∆V , K1=

[
(πTL)2−(πTR)2−3C(e∆V )2

]
/6 and

K2=
e∆V

3

[ (e∆V )2

4

(
1+3C2

)
+

1−C
2

(πTL)2+
1+C

2
(πTR)2

]
.

For completeness we re-express the elastic current in
terms of the integrals in Eq. (19) as

Iel =
Ne
(
1− C2

)
h

[
(T0 − α2A sin 2δ0)K0 + α1 sin 2δ0K1

+
(
α2
1 cos 2δ0 + α2 sin 2δ0

)
K2

]
.

(23)

Now we turn to the discussion of inelastic effects leav-
ing aside the Hartree contributions, which has been
already accounted for by the phase shift expressed in
Eq. (14). As we anticipated earlier, the perturbative
treatment of Hint imparts the interaction corrections
to the charge current. This approach requires the ex-
pressions of non-interaction Green’s functions (GFs) de-
scribed by H0. The matrices of the non-interacting GFs
in Keldysh space53 are given by

Gbb/aa(k, ε)=
1

ε−εk
τz+iπ

(
Fb/a Fb/a+1

Fb/a−1 Fb/a

)
δ(ε−εk),

Gba/ab(k, ε) = iπ

(
1 1
1 1

)
Fab δ(ε− εk). (24)

Here the parameters Fb/a(ε) and Fab(εk) are expressed

in terms of different populations; Fb(εk)=2〈b†kbk〉−1,

Fa(εk)=2〈a†kak〉−1 and Fab=2〈b†kak〉. The z-component
of Pauli-matrix is represented by τz. However, in the
flat-band limit only the off-diagonal parts of Gbb(k, ε),
namely G+−bb (k, ε) and G−+bb (k, ε) produce the finite
contribution to the charge current. The straightfor-
ward mathematical steps provide the following Fourier-
transformed real-time GFs

G+−bb (t)=−πν
2

[
TL(1+C)e−iµLt

sinh(πTLt)
+
TR(1−C)e−iµRt

sinh(πTRt)

]
,

Gab/ba(t)=−πν
2

√
1− C2

[
TLe

−iµLt

sinh(πTLt)
− TRe

−iµRt

sinh(πTRt)

]
.

(25)

Here G+−bb (t) and G−+bb (t) are connected by causality re-
lations. In practice, the GFs expressed in Eqs. (24)
and (25) are sufficient for the calculation of charge cur-
rent. To calculate the inelastic correction to the charge
current we then apply the perturbation theory using
Keldysh formalism53,

δIin = 〈TC Î(t)e−i
∫
dt′Hint(t

′)〉, (26)

where C denotes the double-side η=± Keldysh contour
and TC is corresponding time-ordering operator. We
used the expression of charge current operator Eq. (15)
and interaction Hamiltonian Hint into Eq. (26) to obtain
the interaction correction to the charge current

δIin = Z

∫ ∞
−∞

dε

2π

(
Σ−+ − Σ+−) (ε)iπν∆f(ε). (27)

To arrived from Eq. (26) to Eq. (27) we have al-
ready subtracted the diverging terms, which amounts
the renormalization of FL coefficients (see Ref.40 for
detail). In addition, we introduced the new notation

via; Z =N(N−1)
h eπ

(
1− C2

)
cos 2δ0. The self-energies in

Eq. (27) are expressed in real-time as

Ση1η2(t) =

(
φ1
πν2

)2 ∑
k1−3

[
Gη1η2bb (k1, t)

Gη2η1bb (k2,−t)Gη1η2bb (k3, t)
]
. (28)

For the calculation of self-energies, now we specify the
temperatures of the left and right reservoirs TR=T and
TL=T+∆T with ∆T>0. In practice one can numeri-
cally solve for the self-energy using the GFs of Eq. (25).
However, it is manageable to find the analytical expres-
sion of the self energy difference to the first order in ∆T
and second order in e∆V which reads(
Σ−+−Σ+−) (ε) =

φ21
iπν

[3

4
(e∆V )2(1− C2) + ε2 + (πT )2

+
∆T

T
(πT )2 (1+C)

]
. (29)

To arrive from Eq. (28) to Eq. (29) we came across the
integral of the form,

Z(a, T ) =

∫ ∞
−∞

eiat

sinh3(πTt)
dt. (30)

The singularity of the integral in Eq. (30) is removed by
shifting the time contour by iη, η → 0 in the complex
plane. The parameter η is chosen such that ηD�1 and
(ηT, η∆T, η∆V )� 1 with D the band cutoff. We chose
the rectangular contour enclosing the singularity at t=0
and use the Cauchy’s residue theorem to arrive at the
result,

Z(a, T ) = −iπ a2 + (πT )2

(πT )2
1

exp(a/T ) + 1
. (31)

Equation (29) contains all possible terms up to the lin-
ear response in ∆T and ∆V . Therefore plugging in
Eq. (29) into Eq. (27) provides interaction correction
up to the quadratic order in ∆T and ∆V . To make in-
teraction contributions to the charge current more sym-
metrical with that of elastic effects, we write

δIin =
Ne(1− C2)

h

1

2

1

N − 1
cos 2δ0 α

2
1

[
K2

+

(
∆T

T
(πT )2 (1 + C) + (πT )2

)
K0

]
. (32)
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This equation correctly reproduces the interaction cor-
rection up to the quadratic response with the coefficients
K0,2 given in Eq. (19). Using Eq. (23) and (32), the
charge current is given by

Ic = Iel + δIint. (33)

IV. RESULTS AND DISCUSSION

The non-linear Seebeck effect is quantified by the See-
beck coefficient defined as the ratio of thermo-voltage
developed under the condition of zero charge current,
∆Vth ≡ ∆V |Ic=0, to the applied temperature gradi-

ent54,55,

S ≡ − ∆Vth
TL − TR

∣∣∣∣
Ic=0

. (34)

In fact, the Seebeck coefficient Eq. (34) contains addi-
tional information than the electrical and thermal con-
ductance measurements56. While the electrical conduc-
tance depends merely on the density of states at the
Fermi level, Seebeck coefficient reveals its slope57. In
addition, the Seebeck coefficient provides the useful in-
formations related to the average energy of charge carri-
ers contributing to the transport processes58. We char-
acterize the Seebeck coefficient of a SU(N) Kondo impu-
rity by defining the dimensionless form of charge current
accounting upto the quadratic responses,

J (N,m) ≡ Ic(N,m)

G0(N)T
SU(N)
K

(35)

= L 1
1 ∆V+L 1

2 ∆T+L 2
1 ∆V

2
+L 2

2 ∆T
2
+L 11

12 ∆V∆T .

The maximum conductance of SU(N) Kondo impurity
in the presence of asymmetry is expressed by the rela-
tionG0(N) =

(
1− C2

)
Ne2/h. From now we use specify

the electronic charge e=−1 and the convention ∆V >0
and ∆T > 0. The quantities written in over-line letters
represent that they are normalized with corresponding

Kondo temperature: T ≡ T/T SU(N)
K , ∆T ≡ ∆T/T

SU(N)
K

and ∆V ≡ ∆V/T
SU(N)
K . From Eq. (23) and (32) we ob-

tained the transport coefficients L i
j and L 11

12 , i, j = 1, 2
for the SU(N) Kondo impurity,

L 1
1 =

[
sin2

(πm
N

)
+

1

3

N + 1

N − 1
cos

(
2πm

N

)
(πT )2

]
,

L 1
2 =− π2

3
T sin

(
2πm

N

)
, L 2

1 =
1

2
C sin

(
2πm

N

)
,

L 2
2 =− π2

6
sin

(
2πm

N

)
,

L 11
12 =− π2

3
T
[
B cos

(
2πm

N

)
+ 2CA sin

(
2πm

N

)]
.

(36)

The coefficient A is defined in Eq. (8) and B stands for

B ≡ C(N − 2)−N − 1

N − 1
. (37)

The Eq. (36) shows that the transport coefficients ac-
counting for the linear and quadratic correction in tem-
perature gradient are connected by the relation L 1

2 =
2TL 2

2 . It is apparent that, merely the asymmetry of the
junction is responsible to have the quadratic correction
in voltage bias. For half-filled SU(N) Kondo effects, we
observed that L 1

2 = L 2
1 = L 2

2 = 0, therefore, corre-
sponding thermoelectric properties are governed by only
two coefficients L 1

1 and L 11
12 . This fact explains that

the half-filled SU(N) Kondo impurity do not offers finite
thermo-power even in quadratic-response level of calcu-
lations. Another important conclusion can be drawn
form Eq. (36) is as follows; for the perfectly symmetri-
cal quarter-filled SU(N) Kondo correlated systems, the
combine effects of temperature gradient and voltage bias
tend to vanish L 11

12

∣∣
C=0

(N,N/4)=0. Furthermore, the
coefficients characterizing the voltage response do not
acquire the temperature correction. These facts should
make the non-linear thermoelectric measurement of be-
yond half-filled SU(4) systems as a trivial procedure. To
have more insights of the thermoelectric production in
SU(N) Kondo systems, we solve the zero current condi-
tion of the Eq. (35) to get the thermo-voltage upto the
quadratic terms in ∆T ,

−∆V th = SLR∆T + δS(∆T )2 +O(∆T )3. (38)

The Seebeck coefficient S as defined in Eq. (34) then
takes the form,

S = SLR + δS∆T +O(∆T )2. (39)

Here SLR is the linear response Seebeck coefficient and
its first order ∆T correction is defined by δS,

SLR ≡ L 1
2

L 1
1

, (40)

δS ≡

[
L 2

2

L 1
1

− L 1
2 L 11

12

(L 1
1 )

2 +

(
L 1

2

)2
L 2

1

(L 1
1 )

3

]
. (41)

The transport coefficients defining the linear response
Seebeck coefficient SLR are independent of asymmetry
parameter C. However, the first order correction δS
bears the strong dependences on the asymmetry param-
eter via the transport coefficients L 2

1 and L 11
12 . In ad-

dition, for the symmetrical setups, we use the Eq. (36)
to express the correction factor δS entirely in terms of
linear-response coefficients,

δS|C=0 =
SLR

T

[
sin2

(
πm
N

)
L 1

1

− 1

2

]
. (42)

To study the effects of coupling asymmetry on the
thermoelectric transport properties, we categorize the
SU(N) Kondo impurity into two broad classes, namely,
half-filled (PH symmetric) and beyond half-filled and
discuss them separately.
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FIG. 2. Linear (LR) and non linear (BLR) Seebeck coeffi-
cients with PH symmetric SU(2) and SU(4) Kondo effects
for fixed value of the potential scattering δP.

1. PH symmetric SU(N) Kondo effects

The low energy regime of the SU(N) Kondo effects
with the half-filling m=N/2 is protected by the emer-
gent PH symmetry, example includes the conventional
SU(2) Kondo effect. In these systems, the zero en-
ergy phase-shift reaches the unitary value δ0=π/2 re-
sulting in the maximal conductance. While the PH
symmetry is responsible for enhanced electronic prop-
erties, corresponding thermoelectric transport coeffi-
cient gets suppressed due to effect of highly symmet-
rical transmission coefficient. As we anticipated ear-
lier that the half-filled Kondo effects satisfy the relation
L 1

2 =L 2
1 =L 2

2 =0, therefore, corresponding thermoelec-
tric properties are derived solely from the coefficients
L 1

1 and L 11
12 . The non-zero transport coefficients of PH

symmetric SU(N) Kondo effects are summarized below,

L 1
1 (N,N/2) =

[
1− 1

3

N + 1

N − 1
(πT )2

]
, (43)

L 11
12 (N,N/2) =

1

3T

[
C(N − 2)−N − 1

N − 1

]
(πT )2. (44)

While for the conventional SU(2) Kondo effects the pa-
rameter C does not affects the cross-coefficient, the cor-
responding measurement in SU(N > 2) PH symmetric
systems depends on the coupling asymmetry.

The PH symmetry of the Kondo impurity realized
in QDs is exact only if the dot is tuned to the mid-
dle of Coulomb valley59. This indicates the possibility
of breaking the underlying PH symmetry. This weakly
broken PH symmetry of Kondo correlated systems is ac-
counted for by re-normalizing the reference phase shifts
such that60–62,

δ0 → δ̃0 = δ0 + δP, δ0 � δP. (45)

This potential scattering provides the repulsive interac-
tions which breaks the Kondo singlet and contributes
to inelastic processes63. The first order transport coef-
ficients in Eq. (36) for PH symmetric Kondo correlated
systems with an account of the potential scattering ef-

fects are then given by

L 1
1 (N,N/2)

∣∣
P

= cos2 δP

[
1− (πT )2

3

N+1

N−1

2 cos 2δP
1+ cos 2δP

]
,

L 1
2 (N,N/2)

∣∣
P

= cos2 δP

[
(πT )2

3T

2 sin 2δP
1 + cos 2δP

]
. (46)

Eq. (46) allows us to compute the linear response See-
beck coefficient of PH symmetric SU(N) Kondo effects
with small potential scattering,

SLR(N,N/2)
∣∣
P

=
2

3

1

T

(πT )2

1− (πT )2

3
N+1
N−1

δP +O(δP)3.

(47)
Note that due to the numerical factor (N+1)/(N−1) in
the denominator of Eq. (47), among PH symmetric gen-
eralizations of SU(N) the SU(2) Kondo correlated sys-
tems offer highest value of the linear response Seebeck
coefficient in the presence of finite potential scattering.
Plugging in the Eq. (45) into the transport coefficients
Eq. (36) and using them into Eq. (41), we get the first
order correction to the Seebeck coefficient upto the lin-
ear order in δP,

δS(N,N/2)|P =
π2

3

1− (πT )2

3

(
N+1
N−1+2B

)
[
1− (πT )2

3
N+1
N−1

]2 δP+O(δP)3.

(48)
For SU(2) Kondo effects the correction Eq. (48) is inde-
pendent of the asymmetry parameter as can be inferred
from Eq. (37). However for SU(4) and other PH sym-
metric version of SU(N), the first order correction to
the Seebeck effect is weakly asymmetry dependent via
the coefficient B(C). The linear and non linear Seebeck
coefficient with PH symmetric SU(2) and SU(4) Kondo
effects are shown in Fig. 2 with the choice of poten-
tial scattering term δP = 0.1 and temperature gradient
∆T = 0.05. These significant enhancement of BLR See-
beck coefficients with respect to the corresponding LR
contribution get further improve at relatively high ref-
erence temperature and large temperature drop across
the junction.

2. Beyond half-filled SU(N) Kondo effects

The SU(N) Kondo effect with an arbitrary integer
filling factor m<N offers the possibility of avoiding un-
desirable PH symmetric regime for the enhanced ther-
moelectric coefficient. The Kondo physics beyond half
filled regime m/N 6=1/2 is describe by the asymmetric
shape of transmission coefficient, which is highly desir-
able to achieve huge thermopower production. In gen-
eral, the Kondo correlated systems with N>2 provide
the realization of paradigmatic PH-asymmetric setups.
In particular, the experimentally studied SU(4) Kondo
effect consisting of either single electron or three elec-
trons would, thus, represents an ideal testbed for the
study of beyond half filled Kondo physics. The special
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case of SU(3) Kondo effect can fulfill the two filling con-
dition m/N=1/3 or 2/3 both away from the PH sym-
metric regime. Considering that, we first start form the
SU(3) Kondo effects and following subsection will be
devoted to the discussion of SU(4) Kondo regime.

The SU(3) Kondo effect can occur either with single
electron or two electrons. The physics of SU(3) Kondo
effect with one and two electrons is related with each
other by PH symmetry transformation. Therefore, we
discuss the single electron SU(3) Kondo systems, which
will ultimately provide the corresponding informations
of two electron case. For single electron SU(3) Kondo ef-
fects the transport coefficients in Eq. (36) are simplified
as

L 1
1 (3, 1) =

3

4

[
1− 4

9
(πT )2

]
, L 1

2 (3, 1) = −π
2T

2
√

3
,

L 2
1 (3, 1) = C

√
3

4
, L 2

2 (3, 1) = − π2

4
√

3
,

L 11
12 (3, 1) = −π

2

3
T

[
C
4

(
1− 2

√
3

π

Γ[1/3]

Γ[5/6]

)
− 1

]
. (49)

Therefore while the cross coefficient L 11
12 (3, 1) is

weakly asymmetry dependent, the coefficient L 2
1 (3, 1)

is strongly influenced by C. Since all the transport coef-
ficients in Eq. (49) are non-zero, one can solve the zero-
current equation to get the thermo-voltage developed in
SU(3) Kondo effects.

The SU(4) Kondo effects can accommodate upto
three electrons. While the two electron case is suffers
from the PH symmetry, the single and three electron
SU(4) systems are regarded to have good thermoelec-
tric performance. Furthermore, the single electron and
three electron systems are related to each other by the
PH symmetry transformation. Therefore we discuss in
details about the thermoelectric of single electron SU(4)
Kondo effects. The corresponding transport coefficients
are obtained as

L 1
1 (4, 1) =

1

2
, L 1

2 (4, 1) = −π
2

3
T , L 2

1 (4, 1) =
C
2
,

L 2
2 (4, 1) = −π

2

6
, L 11

12 (4, 1) = −4π2CT
9
√
π

Γ[1/4]

Γ[3/4]
. (50)

The cross coefficient L 11
12 (4, 1)'−7.32CT is very large

as compared to other coefficients for relatively large
asymmetry parameter. In addition the other coefficient
L 2

1 (4, 1) is also strongly asymmetry dependent. Pres-
ence of these coefficients is solely manifested by the finite
asymmetry of the junction. Therefore we argue that
measuring this cross coefficient would be useful while
identifying the asymmetry of the junction in addition
to its physical implications. Just form the structure of
Eq. (50), it is seen that the thermoelectric transport
properties of beyond half-filled SU(4) Kondo effects can
be easily manipulated by tuning the junction asymme-
try. It appears that the effect of asymmetry becomes
more pronounce in relatively high temperature gradi-
ent regime. The asymmetry parameter C mainly causes

LR

FIG. 3. Left panel: Plot of asymmetry dependent zero cur-
rent lines in PH asymmetric SU(4) Kondo effects within
the qudratic response level of calculations as a function of
applied voltage bias and temperature gradient at reference
temperature T=0.1. Right panel: Corresponding Seebeck
coefficients for given asymmetry parameter.

to shift the zero-current line either upward or downward
with respect to the perfectly symmetric setup. As shown
in Fig. 3 the positive value of the asymmetry parame-
ter increases the thermo-voltage, while the opposite ef-
fects are apparent for the corresponding negative values.
In addition, the beyond linear response contribution al-
ways overshoots the corresponding linear response value
irrespective of the coupling asymmetry.

3. Paradigmatic SU(4) Kondo effects

The cosine factor cos 2δ0 in front of the expression
of the inelastic current dramatically modifies the low
energy transport behavior of SU(N) Kondo effects. In
case of the SU(N) systems with m electrons satisfy-
ing the specific combination such that m/N=(2n +
1)/4 for n = 0 and 1, the cosine factor cos 2δ0 in Eq. (32)
amounts to nullify the whole expression. For these spe-
cific systems, the beyond Hartree contribution to the
self-energy becomes zero being corresponding Hartree
contribution finite. In addition, for PH symmetric
SU(N) Kondo effects the Hartree contribution vanishes
and beyond Hartree contribution becomes finite. In-
terestingly, the PH asymmetric SU(4) Kondo corre-
lated systems offer vanishing non-Hartree contribution
to the self-energy. Since the Hartree contributions can
be straightforwardly accounted for by including it in
phase shift, the beyond-half filled SU(4) systems can
be exactly solved within cubic response and even be-
yond. This paradigmatic simplication is also applica-
ble for some SU(12) generalizations. From Eq. (23)
we obtained two non-zero cubic response coefficients
L 3

1 (4, 1) and L 12
12 (4, 1) contributing to the charge cur-

rent of beyond-half filled SU(4) Kondo impurity as

J (4, 1)|cubic = L 3
1 (4, 1)(∆V )3 + L 12

12 (4, 1)∆V (∆T )2.

Here the transport coefficients are

L 3
1 (4, 1)=−1−3C2

9
√
π

Γ[1/4]

Γ[3/4]
, L 12

12 (4, 1)=−C 2π2

9
√
π

Γ[1/4]

Γ[3/4]
.

These equations show that for the perfectly symmetrical
single electron SU(4) Kondo setups, the effects of volt-
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FIG. 4. Left panel: Lines of zero charge currents in a single
electron SU(4) Kondo impurity within cubic response level
of calculations. The temperatures of left and right reser-
voirs (normalized with corresponding Kondo temperature)
are varied for given asymmetry parameter at fixed voltage
drop ∆V=0.05. Right panel: The Seebeck coefficients as
a function of asymmetry parameter with beyond half-filled
SU(4) Kondo effects for fixed voltage drop ∆V=0.05.

age bias and temperature gradient are not correlated
even in cubic response level of calculations. Therefore,
only the asymmetry can derives these systems to have
combine interplay of voltage bias and temperature gra-
dient. The effects of asymmetry parameter on the See-
beck coefficient in cubic response level of calculations
has been presented in Fig. 4 with an example of single
electron SU(4) Kondo effects. From Fig. 4 it is seen
that with the proper choice (positive value) of asym-
metry parameter C the non-linear Seebeck coefficient
gets significantly enhanced over the corresponding per-
fectly symmetrical coupling. This effect is associated
with strong asymmetry of the beyond linear response
transmission coefficient Eq. (18).

Finally we want to mention that the non-linearly
has been also studied by generalizing the definition of
Seebeck coefficient with constant current condition64–66

such that

S(N,m) =
∂J (N,m)

∂∆T

/
∂J (N,m)

∂∆V
. (51)

In the linear response level of calculation the response
coefficient defined in Eq. (51) coincides with the Seebeck
coefficient given by Eq. (34). Though their behaviors in
non-linear regime is quite different, it has been argued

that the coefficient S is indeed experimentally accessi-
ble64 and can provide an important ingredient for the
propose of temperature sensing. These effects have been
already studied in conventional SU(2) Kondo regime ac-
counting for the linear response of temperature gradient
and finite voltage bias64,65. The central result of the pa-
per expressed in Eq. (36) paved a straightforward way
of extending their study with an account of strong non-
linearity in more exotic Kondo correlated system.

V. CONCLUSIONS

We developed a theoretical framework based on a lo-
cal Fermi-liquid theory in combination with the out of
equilibrium Keldysh approach to study the influences
of coupling asymmetry on the thermoelectric transport
of a strongly coupled SU(N) Kondo impurity. While
the linear response Seebeck coefficient is independent
of coupling asymmetry, the fundamental role of non-
linearity towards the enhancement of the Seebeck coef-
ficient with a SU(N) Kondo setup is explored. In ad-
dition, we reported the great enhancement of Seebeck
coefficient of Kondo impurities by proper tailoring the
coupling asymmetry. We explore the importance of po-
tential scattering on the thermoelectric characterization
of PH symmetric SU(N) Kondo effects. The presented
analytical expressions of asymmetry dependent trans-
port coefficients for general SU(N) Kondo effects allow
us to make a close connection of our findings with the ex-
perimentally studied SU(2) and SU(4) Kondo effects in
complex QDs nano structures. Application of developed
theoretical framework for the investigation of thermo-
electric properties of more exotic Kondo problems such
as multi-stage and multi-terminal Kondo screening ap-
pears to be a valid avenues for future research.
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Phys. Rev. B 86, 075303 (2012).

18 D. B. Karki and M. N. Kiselev, arXiv e-prints ,
arXiv:1906.00724 (2019).

19 P. Jarillo-Herrero, J. Kong, H. S. van der Zant, C. Dekker,
L. P. Kouwenhoven, and S. D. Franceschi, Nature 434,
484 (2005).

20 A. Makarovski, J. Liu, and G. Finkelstein, Phys. Rev.
Lett. 99, 066801 (2007).

21 A. Makarovski, A. Zhukov, J. Liu, and G. Finkelstein,
Phys. Rev. B 75, 241407 (2007).

22 M. Ferrier, T. Arakawa, T. Hata, R. Fujiwara, R. Dela-
grange, R. Deblock, Y. Teratani, R. Sakano, A. Oguri,
and K. Kobayashi, Phys. Rev. Lett. 118, 196803 (2017).

23 T. Hata, R. Delagrange, T. Arakawa, S. Lee, R. Deblock,
H. Bouchiat, K. Kobayashi, and M. Ferrier, Phys. Rev.
Lett. 121, 247703 (2018).

24 A. J. Keller, S. Amasha, I. Weymann, C. P. Moca,
I. G. Rau, J. A. Katine, H. Shtrikman, G. Zaránd, and
D. Goldhaber-Gordon, Nature Physics 10, 145 (2014).

25 G. C. Tettamanzi, J. Verduijn, G. P. Lansbergen,
M. Blaauboer, M. J. Calderón, R. Aguado, and S. Rogge,
Phys. Rev. Lett. 108, 046803 (2012).

26 K. Le Hur, P. Simon, and D. Loss, Phys. Rev. B 75,
035332 (2007).
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R. Aguado, Phys. Rev. B 74, 205119 (2006).
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33 R. López, T. c. v. Rejec, J. Martinek, and R. Žitko, Phys.
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