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We develop a comprehensive theory for the effective dynamics of Bloch electrons based on sym-
metry. We begin with a scheme to systematically derive the irreducible representations (IRs) char-
acterizing the Bloch eigenstates in a crystal. Starting from a tight-binding (TB) approach, we
decompose the TB basis functions into localized symmetry-adapted atomic orbitals and crystal-
periodic symmetry-adapted plane waves. Each of these two subproblems is independent of the
details of a particular crystal structure and it is largely independent of the relevant aspects of the
other subproblem, hence permitting for each subproblem an independent universal solution. Tak-
ing monolayer MoS2 and few-layer graphene as examples, we tabulate the symmetrized p and d
orbitals as well as the symmetrized plane wave spinors relevant for these crystal structures. The
symmetry-adapted basis functions block-diagonalize the TB Hamiltonian such that each block yields
eigenstates transforming according to one of the IRs of the group of the wave vector Gk.

For many crystal structures, it is possible to define multiple distinct coordinate systems such that
for wave vectors k at the border of the Brillouin zone the IRs characterizing the Bloch states depend
on the coordinate system, i.e., these IRs of Gk are not uniquely determined by the symmetry of a
crystal structure. The different coordinate systems are related by a coordinate shift that results in
a rearrangement of the IRs of Gk characterizing the Bloch states. We illustrate this rearrangement
with three coordinate systems for MoS2 and tri-layer graphene.

The freedom to choose different distinct coordinate systems can simplify the symmetry analysis of
the Bloch states. Given the IRs of the Bloch states in one coordinate system, a rearrangement lemma
yields immediately the IRs of the Bloch states in the other coordinate systems. The rearrangement
of the IRs in different coordinate systems does not affect observable physics such as selection rules
or the effective Hamiltonians for the dynamics of Bloch states in external fields.

Using monolayer MoS2 as an example, we combine the symmetry analysis of its bulk Bloch states
with the theory of invariants to construct a generic multiband Hamiltonian for electrons near the
K point of the Brillouin zone. The Hamiltonian includes the effect of spin-orbit coupling, strain
and external electric and magnetic fields. Invariance of the Hamiltonian under time reversal yields
additional constraints for the allowed terms in the Hamiltonian and it determines the phase (real
or imaginary) of the prefactors.

I. INTRODUCTION

Near a band extremum, the electron dynamics in a
crystalline solid resembles the dynamics of free electrons
in the absence of the periodic crystal potential. In the
multi-band envelope-function approximation (EFA) the
electrons are characterized by an N × N Hamiltonian
H for N -component spinors conceptually similar to rel-
ativistic electrons described by the Dirac equation [1–5].
The simplest approach within the EFA is the effective-
mass approximation (EMA) that represents the electron
dynamics by a Schrödinger equation with effective mass
m∗ reflecting the curvature of the band dispersion E(k).
External electric and magnetic fields E and B break the
lattice periodicity of the crystal structure. It is an im-
portant advantage of EFA and EMA that they allow one
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to incorporate the field E by adding the corresponding
scalar potential Φ to the diagonal of the Hamiltonian,
and the operator of crystal momentum ~k = −i~∇ is
replaced by −i~∇+ eA, where A is the vector potential
for the magnetic field B. Other perturbations such as
spin-orbit coupling, strain and electron-phonon coupling
can likewise be included in the Hamiltonian [3]. This
is a major reason why EFA and EMA are very popular
for theoretical studies of both bulk semiconductors (e.g.,
Refs. [3, 6–11]) and semiconductor quantum structures
(e.g., Refs. [4, 5, 12–16]).

The form of the Hamiltonian H depends on the sym-
metry of the crystal structure and more specifically on
the symmetry of the bulk electronic states that are in-
cluded in H [3, 17, 18]. The relevant symmetry group for
states with wave vector k is the point group Gk which in-
cludes those symmetry elements of the crystallographic
point group G0 (crystal class) which either leave k un-
changed or map k onto an equivalent wave vector. The
symmetry of individual states at k is characterized by the
respective irreducible representations (IRs) of Gk accord-
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ing to which these states transform. The general form
of the Hamiltonian H including its dependence on, e.g.,
spin-orbit coupling, strain and external fields can then
be derived from its invariance under Gk [3, 17]. Here we
develop a general theory to determine the IRs of Bloch
functions for a given wave vector k, focusing for clarity
on symmorphic space groups. Using a tight-binding (TB)
approach along with the fact that the atomic orbitals are
localized in the vicinity of the atomic sites we demon-
strate that the TB basis functions can be factorized into
localized symmetry-adapted atomic orbitals and crystal-
periodic symmetry-adapted plane waves. Each of these
two subproblems permits a universal classification, inde-
pendent of the details of a particular crystal structure
and also largely independent of the other subproblem.
The symmetrized atomic orbitals depend only on the an-
gular momentum of the atomic orbitals and the point
group Gk of the wave vector k; but these orbitals are in-
dependent of the specific type of atom and the details of
the crystal structure. The symmetrized plane waves form
discrete Bloch functions that depend on the wave vector
k and the Wyckoff positions of the atoms in a crystal
structure; but they are independent of the type of atoms
occupying these positions. The symmetry-adapted ba-
sis functions block-diagonalize the TB Hamiltonian such
that each block yields eigenstates transforming according
to one of the IRs of the group of the wave vector Gk.

Given the symmetry group G of a quantum system,
the IRs of G are generally assumed to provide a dis-
tinct label for the eigenstates of the Hamiltonian, as
noted by Wigner: “The representation of the group of the
Schrödinger equation which belongs to a particular eigen-
value is uniquely determined up to a similarity transfor-
mation.” (Ref. [19], p. 110, highlighting adopted from
Ref. [19]). This uniqueness of the IRs is immediately
relevant for many physical properties of a physical sys-
tem that depend on the symmetry of its electronic states.
For example, the Wigner-Eckart theorem allows one to
express the selection rules for optical transitions in terms
of the IRs of the initial and final states between which a
transition occurs [19]. Similarly, the EFA Hamiltonians
H depend on the IRs of the bands described by H, as
noted above. We demonstrate that the IRs characterizing
the Bloch eigenstates in certain crystals including transi-
tion metal dichalcogenides (TMDCs) are not unique, but
they depend on the coordinate system used to describe
the space group symmetries of these materials [20–23].
We show that distinct valid coordinate systems are re-
lated by a coordinate shift that defines a rearrangement
representation. The IRs of the electronic states in the
different coordinate systems are then related via a rear-
rangement lemma that facilitates the symmetry analysis
of Bloch states. Also, we show how important physics in-
cluding optical selection rules and EFA Hamiltonians H,
despite the rearrangement of band IRs, does not depend
on the coordinate system being used.

Our general theory applies to any crystalline mate-
rial. For a detailed example, we focus on a monolayer

of the TMDC MoS2. TMDCs are of the general form
TX2, where T is a transition-metal such as Mo or W and
X is a chalcogen which can be S, Se, or Te. 3D bulk
TX2 consists of covalently bonded 2D monolayers cou-
pled vertically by weak van-der-Waals forces [24] mak-
ing it possible to obtain monolayers via, e.g., mechanical
exfoliation [25]. Electronic band structure calculations
for several TMDCs have shown that bulk 2H-MoS2 is a
semiconductor [24]. More recently, optical spectroscopy
[25] and theoretical studies [26–28] found that decreas-
ing the number of layers changes the fundamental gap
from indirect to direct in the limit of a single monolayer.
The spin-dependent dispersion of monolayer TMDCs has
been studied using TB [29, 30] and k ·p methods [16, 31].
See Refs. [32–35] for general reviews of 2D TMDCs. In
this paper, we combine our symmetry analysis for the
bulk Bloch states in monolayer MoS2 with the theory of
invariants [3] to derive a generic multiband EFA Hamil-
tonian for electrons near the K point of the Brillouin
zone (BZ). The Hamiltonian includes the effect of strain,
external electric and magnetic fields, spin and valley de-
grees of freedom. For comparison, we also perform a sym-
metry analysis for few-layer graphene [14] which confirms
earlier work [36, 37]. We note that our work expands on
the theory of IRs for point and space groups [3, 38, 39].
It is conceptually rather different from recent work on
band representations [40–42].

In Sec. II, we develop the general theory of the sym-
metry of TB Bloch functions. The decomposition of
TB wave functions is discussed in Sec. II C followed by
detailed discussions of the symmetrized atomic orbitals
(Sec. II E) and symmetrized plane waves (Sec. II F). The
rearrangement of the IRs of Bloch states under a change
of the coordinate system is discussed in Sec. II G. We use
the general formalism of Sec. II to derive the symmetry
of bulk Bloch states in monolayer TMDCs (Sec. III) such
as MoS2 and to few-layer graphene (Sec. IV). We show
in Sec. V how optical selection rules are not affected by
the rearrangement of IRs under a change of coordinate
system. In Sec. VI we derive the generic invariant expan-
sion of the EFA Hamiltonian H for MoS2. Section VII
contains our conclusions.

II. SYMMETRY OF BLOCH FUNCTIONS

Very generally, the eigenstates of a Hamiltonian trans-
form according to an IR of the symmetry group of the
Hamiltonian. In band theory it is thus an important goal
to determine the IRs of the energy bands En(k) and cor-
responding Bloch functions Ψnk(r), where the symmetry
group Gk at a given wave vector k is called the point
group of the wave vector k. In this section we discuss a
general method for determining the transformation prop-
erties of Bloch functions with a certain wave vector k,
which allows us to determine the corresponding IRs of
Gk. We also discuss a rearrangement lemma for the IRs
characterizing the Bloch functions in a crystal. Applica-
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tions to specific materials such as monolayer MoS2 will
be discussed in subsequent sections.

A. The group of the wave vector

In the following, we will repeatedly need to evaluate
the action of a point symmetry operation g on a plane
wave exp(ik · r). Here, g can be represented via an or-
thogonal 3 × 3 matrix g. (In the context of quasi-2D
materials discussed below g becomes a 2 × 2 matrix.)
Thus we have

g exp(ik · r) = exp(ik · g · r) ≡ exp(ik · r′) (1a)

with

r′ = g · r. (1b)

Note that when transforming the position vector r, the
wave vector k is a fixed parameter characterizing the
plane wave exp(ik · r) that does not change under g.
Nonetheless, since g is an orthogonal transformation, we
can also write Eq. (1a) as

g exp(ik · r) = exp[i(g−1 · k) · r] (2a)

= exp(ik′ · r) (2b)

with

k′ = g−1 · k. (2c)

Thus we can evaluate g either by transforming the posi-
tion vector r or by inversely transforming the wave vec-
tor k.

In the group theory of crystallographic space groups,
the point-group symmetries g of Bloch functions Ψk(r)
with wave vector k form the point group Gk of the wave
vector k [3, 38, 39]. Given the point group G0 of a crystal
structure, the group Gk is defined by the condition that
it contains the symmetry elements of G0 that map k onto
a vector k′ such that

k′ = g−1 · k = k + bg, (3)

where bg is a reciprocal lattice vector with the possibility
bg = 0. Indeed, since g represents point group opera-
tions, we can have bg 6= 0 only if k is from the border of
the BZ. For positions r = a that are lattice vectors we
have

g exp(ik · a) = exp(ik′ · a) = exp(ik · a) (4)

by definition of Gk.

B. Tight-binding Hamiltonian

We denote the tight-binding (TB) basis functions (that
are Bloch functions) as

ΦWµ
νk (r) =

eik·r√
N

∑
j

e−ik·(r−RWµ
j ) φWν (r−RWµ

j ), (5)

where φWν (r − RWµ
j ) are the atomic orbitals of type ν

centered about the positions RWµ
j of the atoms. The

label W denotes the Wyckoff letter of the atomic posi-
tions of the crystal structure [43]. The label µ has values
µ = 1, . . . ,m where m is the multiplicity of W . The in-
dex j labels the unit cells of the crystal structure; it runs
through the positions in a Bravais lattice. The matrix
elements of the TB Hamiltonian can then be written as

H(k)WµW ′µ′

νν′ =

∫
ΦWµ∗
νk (r)H ΦW

′µ′

ν′k (r) d3r (6a)

= εWν δνν′ δWW ′ δµµ′ +
∑′

jj′

tWW ′µµ′

νν′jj′ , (6b)

where

εWν ≡
∫
φW∗ν (r−RWµ

j )H φWν (r−RWµ
j ) d3r (7a)

=

∫
φW∗ν (r)H φWν (r) d3r (7b)

denotes the on-site energies for the atomic orbitals (that
do not depend on the indices µ and j) and

tWW ′µµ′

νν′jj′ ≡ e
−ik·(RWµ

j −RW ′µ′

j′ )

×
∫
φW∗ν (r−RWµ

j )H φW
′

ν′ (r−RW ′µ′

j′ ) d3r

(8)

are the hopping integrals. The prime on the summation
sign in Eq. (6b) indicates that the sum excludes the on-
site term εWν . The TB approximation implies that this
sum is restricted to nth-nearest neighbors with a small
value of n. The hopping integrals can be written in terms
of the Slater-Koster parameters [44] for hopping integrals

between atomic orbitals at positions RWµ
j and RW ′µ′

j′ .

C. Decomposition of TB wave functions

Generally, the basis functions (5) for a given wave vec-
tor k transform according to a representation ΓΦ

kW of
the group of the wave vector Gk that need not be irre-
ducible. (Here the generic superscript Φ accounts for the
fact that multiple atomic orbitals with different indices
ν may transform jointly according to the same represen-
tation. By definition of Wyckoff letters W , orbitals at
different positions µ of a given Wyckoff letter W trans-
form jointly according to one representation.) As a con-
sequence of the Wigner-Eckart theorem [19, 45] and the
fact that H transforms according to the identity repre-
sentation Γ1 of Gk, the hopping integrals (8) vanish when

the product of the representations ΓΦ
kW and ΓΦ′

kW ′ does
not contain the identity representation. In the follow-
ing, we present a general scheme for transforming the
set of basis functions (5) into a symmetry-adapted set
of basis functions, where each function transforms irre-
ducibly under Gk, so that two such basis functions only
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couple when they both transform according to the same
IR of Gk. This scheme is based on a decomposition of
the basis functions into symmetry-adapted plane waves
and symmetry-adapted atomic orbitals.

We denote

φ̃Wνk(r−RWµ
j ) ≡ e−ik·(r−RWµ

j ) φWν (r−RWµ
j ), (9)

so that Eq. (5) becomes

ΦWµ
νk (r) =

eik·r√
N

∑
j

φ̃Wνk(r−RWµ
j ). (10)

Assuming for conceptual simplicity that the atomic or-
bitals φWν are localized over a region much smaller
than the nearest-neighbor distance [46], the functions

φ̃Wνk(r − RWµ
j ) are only nonzero for r close to RWµ

j .

Hence, in the vicinity of any atomic position RWµ
j , i.e.,

for r ≡ RWµ
j + δr with small δr, we have

φ̃Wνk(r−RWµ
j ) ≈ φWν (r−RWµ

j ). (11)

Therefore, the TB basis function ΦWµ
νk (r) can be approx-

imated as

ΦWµ
νk (r) ≈ eik·r√

N

∑
j

φWν (r−RWµ
j ) (12a)

= eik·r AWµ
ν (r) (12b)

with atomic functions

AWµ
ν (r) =

1√
N

∑
j

φWν (r−RWµ
j ) (13)

independent of the wave vector k. For strongly localized

atomic orbitals and positions r = RWµ
j + δr we have

AWµ
ν (r = RWµ

j + δr) =
1√
N

∑
j

φWν (δr) ∝ φWν (δr),

(14)

that is, near an atomic site RWµ
j , the atomic functions

AWµ
ν (r) are simply proportional to φWν (δr), independent

of the index µ. Therefore, the atomic functions AWµ
ν (r =

RWµ
j + δr) have the same symmetry properties as the

atomic orbitals φWν (δr).

The plane wave eik·r for positions r = RWµ
j + δr near

an atomic site RWµ
j is approximately given by

exp[ik · (RWµ
j + δr)] ≈ exp(ik ·RWµ

j ) ≡ qk(RWµ
j ), (15)

where qk(RWµ
j ) denotes the plane wave with wave vector

k associated with the Wyckoff position RWµ
j for fixed W

and µ, but j runs over all positions in a Bravais lattice.

These discrete quantities qk(RWµ
j ) will be discussed in

more detail in Sec. II F. The TB basis function thus can
be factorized (ignoring normalization)

ΦWµ
νk (r = RWµ

j + δr) ≈ qk(RWµ
j )φWν (δr). (16)

This expression will be analyzed further in the following
sections.

As a side remark, we note that the eigenfunctions of
the TB Hamiltonian (6) for the band n and wave vector
k expressed in terms of the basis functions (5) take the
form

Ψnk(r) =
∑
Wµν

ψWµ
νnk ΦWµ

νk (r) (17)

with expansion coefficients ψWµ
νnk. These eigenfunctions

permit a factorization similar to Eq. (16)

Ψnk(r = RWµ
j + δr) ≈

∑
Wµ

qk(RWµ
j )

∑
ν

ψWµ
νnk φ

W
ν (δr).

(18)
However, the discussion of the TB wave functions Ψnk(r)
is greatly simplified if instead of the basis functions (5)
we use symmetry-adapted basis functions to be discussed
in the following.

D. Symmetry-adapted basis functions

The main advantage of the approximate expression
(16) lies in the fact that the function (16) has the same
symmetry properties as the TB basis function (5). Yet
the factorization in Eq. (16) allows one to discuss the

symmetry of the plane waves qk(RWµ
j ) (characterized

by a representation ΓqkW of Gk, see Sec. II F) separate
from the symmetry of the atomic orbitals φWν (δr) (char-

acterized by a representation ΓφkW of Gk, see Sec. II E).
Often, these representations are irreducible, though gen-
erally they can be reducible. The TB basis functions (5)
at one Wyckoff letter W then transform according to the
product representation

ΓΦ
kW ≡ ΓqkW × ΓφkW . (19)

The representation ΓΦ
kW may be reducible (even if ΓqkW

and ΓφkW are irreducible), giving the decomposition

ΓΦ
kW =

∑
I

aIΓI , (20)

where aI ≥ 0 are the multiplicities with which the IRs ΓI
of Gk appear in ΓΦ

kW . Generally, the IRs ΓI contained in
ΓΦ

kW give symmetry-adapted basis functions

ΦWIαβ
k (r) =

∑
µν

C
Wµνk
Iαβ ΦWµ

νk (r), (21)

where α = 1, 2, . . . , aI and β labels the different functions
transforming jointly according to ΓI . The coefficients
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C
Wµνk
Iαβ represent the weights with which the functions

ΦWµ
νk (r) contribute to the symmetry-adapted basis func-

tions ΦWIαβ
k (r). Given symmetry-adapted plane waves

transforming according to the IR ΓJ and atomic orbitals
transforming according to the IR ΓJ′ (see discussion be-

low), the expansion coefficients C
Wµνk
Iαβ are given by the

Clebsch-Gordan coefficients for coupling ΓJ and ΓJ′ to
obtain ΓI .

For the symmetry-adapted basis functions (21), the
matrix elements (6) of the TB Hamiltonian become
block-diagonal with respect to different IRs ΓI

H(k)WW ′II′

αα′ββ′ = δII′
[
εWIα δWW ′ δαα′ δββ′+

∑′

jj′

tWW ′I αα′

ββ′ jj′

]
.

(22)
Here

εWIα ≡
∫

ΦWIαβ∗
k (r)H ΦWIαβ

k (r) d3r (23)

denotes the on-site energies. These can always be made
diagonal in the index α by a suitable definition of the aI
sets of basis functions (21) transforming according to ΓI .
The hopping matrix elements become

tWW ′I αα′

ββ′ jj′ ≡
∫

ΦWIαβ∗
k (r)H ΦW

′Iα′β′

k (r′) d3r (24)

with r = RWµ
j + δr and r′ = RW ′µ′

j′ + δr. We remark

that in actual TB models it may happen that a block (22)
can be further decomposed into subblocks if symmetry-
allowed couplings between distant neighbors are ignored
within the TB approximation.

Each block (22) of the TB Hamiltonian yields eigen-
functions

ΨIβ
nk(r) =

∑
W,α

CWIα
nk ΦWIαβ

k (r) (25)

with expansion coefficients CWIαβ
nk that transform irre-

ducibly according to the βth component of the IR ΓI of
Gk. To proceed, we discuss first the symmetry of the
atomic orbitals φWν (δr), followed by a discussion of the

symmetry of the plane waves qk(RWµ
j ).

E. Transformation of atomic orbitals φWν (δr)

We can study the symmetry of the atomic function

AWµ
ν (r) in the vicinity of the atomic positions RWµ

j by

only looking at the orbitals φWν (δr). Obviously, this
problem is independent of the index µ, the band index n,
and the wave vector k though, of course, we are generally
interested in the transformational behavior of these or-
bitals with respect to the group Gk of the wave vector k.
For symmetry operations g ∈ Gk we have

g φWν (δr) = φWν (g δr) =
∑
ν′

D
φ
kW (g)νν′φ

W
ν′ (δr), (26)

where ΓφkW = {Dφ
kW (g) : g ∈ Gk} is the represen-

tation describing the transformation of the atomic or-
bitals φWν . As usual, we assume that the atomic or-
bitals are characterized by some orbital angular momen-

tum l = 0, 1, 2, . . ., so that the matrices D
φ
kW (g) acquire

a block structure corresponding to different values of l,
indicating that there exists no mixing between atomic or-
bitals with different angular momenta under symmetry
transformations g ∈ Gk.

In general, the representation ΓφkW is reducible [47].
The projection operators (A1) yield symmetry-adapted
atomic orbitals φWIβ(δr) transforming like component β
of the IR ΓI of Gk,

φWIβ(δr) ≡ ΠIβ φ
W
ν (δr) (27a)

=
nI
h

∑
g

DI(g)∗ββ g φ
W
ν (δr) (27b)

=
∑
ν′

cWν′

Iβ φWν′ (δr) (27c)

with expansion coefficients

cWν′

Iβ =
nI
h

∑
g

DI(g)∗ββ D
φ
kW (g)νν′ . (27d)

We note that this analysis applies to the spinless case
when the angular part of the atomic orbitals is given by
the usual spherical harmonics Y ml . It can likewise be
used in the spin-dependent case when the angular part
of the atomic orbitals is given by spin-angular functions
and the projection operators ΠIβ project on the double-
group representations of Gk.

F. Transformation of plane waves qk(RWµ
j )

While the IRs of TB eigenfunctions (17) depend on
the band index n, the symmetry of the plane waves

qk(RWµ
j ) can be discussed independent of the index n.

Very generally, for a given Wyckoff letter W , the posi-

tions RWµ
j transform among themselves under the op-

erations of the space group. Hence, using the matrix g
defined in Eq. (1), we have

gRWµ
j = g ·RWµ

j ≡ RWµ′

j′ , (28)

i.e., a symmetry transformation g ∈ Gk generally changes
both µ and j. We rewrite this as

g ·RWµ
j = RWµ′

j +
[
RWµ′

j′ −RWµ′

j

]
, (29)

where the term in square brackets is a lattice vector. Ap-

plying the operation g to the plane wave qk(RWµ
j ) yields

g qk(RWµ
j ) = exp(ik ·RWµ′

j′ ) (30a)

= qk(RWµ′

j ) exp[ik · (RWµ′

j′ −RWµ′

j )].

(30b)
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Hence, the symmetry operation g generally maps the

plane wave qk(RWµ
j ) onto qk(RWµ′

j ) multiplied by a
phase factor.

To analyze the mappings (30) further, we interpret

the discrete plane waves {qk(RWµ
j ) : µ = 1, . . . ,m} as

basis vectors in an m-dimensional vector space. Rel-
ative to this basis, we can express arbitrary points as
m-component spinors. It facilitates this analysis to in-

troduce m-component base spinors {qk(RWµ
j ) : µ =

1, . . . ,m} with components ν equal to δµν . Using these

base spinors, a plane wave at positions RW
j ≡ {R

Wµ
j :

µ = 1, . . . ,m} becomes

Qk(RW
j ) =

∑
µ

qk(RWµ
j ) =

 1
...
1

 . (31)

Applying a symmetry transformation g to Qk(RW
j ) gives

g Qk(RW
j ) = D

q
kW (g)Qk(RW

j ), (32)

where D
q
kW (g) is an m×m matrix corresponding to the

group element g. Each row and each column of D
q
kW (g)

has only one nonzero matrix element which, according to
Eq. (30), is given by

D
q
kW (g)µ′µ = exp[ik · (RWµ′

j′ −RWµ′

j )], (33)

where the g dependence on the RHS is given by Eq. (29).

We show in the following that ΓqkW ≡ {D
q
kW (g) : g ∈

Gk} defines an m-dimensional representation of Gk, i.e.,
for any two group elements g1, g2 ∈ Gk we have

D
q
kW (g2)Dq

kW (g1) = D
q
kW (g2g1). (34)

Given a position RWµ0

j0
and using Eq. (29), we have

g1R
Wµ0

j0
= g1 ·R

Wµ0

j0

≡ RWµ1

j1
= RWµ1

j0
+
[
RWµ1

j1
−RWµ1

j0

]
, (35a)

g2R
Wµ1

j0
= g2 ·R

Wµ1

j0

≡ RWµ2

j2
= RWµ2

j0
+
[
RWµ2

j2
−RWµ2

j0

]
, (35b)

so that the phase (33) for the group elements g1 and g2

becomes

D
q
kW (g1)µ1µ0

= exp[ik · (RWµ1

j1
−RWµ1

j0
)], (36a)

D
q
kW (g2)µ2µ1

= exp[ik · (RWµ2

j2
−RWµ2

j0
)]. (36b)

The product g2 g1, i.e., the transformation g1 followed by
g2, is also an element of Gk, giving

g2 g1 qk(RWµ0

j0
) = exp(ik · g2R

Wµ1

j1
) (37a)

= exp(ik · g2R
Wµ1

j0
) exp[ik · g2(RWµ1

j1
−RWµ1

j0
)] (37b)

= exp(ik ·RWµ2

j0
) exp[ik · (RWµ2

j2
−RWµ2

j0
)] exp[ik · g2(RWµ1

j1
−RWµ1

j0
)]. (37c)

As RWµ1

j1
−RWµ1

j0
is a lattice vector, it follows from Eq.

(4)

g2 g1 qk(RWµ0

j0
) = qk(RWµ2

j0
) Dq

kW (g2 g1)µ2µ0
(38)

with

D
q
kW (g2 g1)µ2µ0 = exp[ik·(RWµ2

j2
−RWµ2

j0
+RWµ1

j1
−RWµ1

j0
)].

(39)
This confirms Eq. (34).

We remark that for k = 0 the representation ΓqkW is
known as permutation representation [48] or equivalence
representation [39], where it characterizes the permuta-
tions ofm objects under the symmetry operations g ∈ G0.

Using the fact that g is an orthogonal transformation,
we can also write Eq. (33) as

D
q
kW (g)µ′µ = exp[ik · (RWµ′

j′ −RWµ′

j )] (40a)

= exp[ik · (g ·RWµ
j −RWµ′

j )] (40b)

= exp{i[(g−1 · k) ·RWµ
j − k ·RWµ′

j ]}.
(40c)

For k inside the Brillouin zone, where g−1 · k = k by
definition of Gk, the nonzero matrix elements of D

q
kW (g)

therefore become

D
q
kW (g)µ′µ ≡ exp[ik · (RWµ

j −RWµ′

j )]. (41)

We see that the representation is generally non-trivial

for m > 1. However, for m = 1, we have RWµ
j = RWµ′

j ,

so that qk(RWµ
j ) transforms according to the identity

representation Γ1.

1. Wyckoff positions with multiplicity m = 1

We consider first the special case of Wyckoff positions
with multiplicity m = 1. Here we drop the index µ,
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denoting atomic positions as RW
j . This case is equiv-

alent to atomic positions RW
j forming a Bravais lat-

tice. Note also that multiplicities m = 1 occur only
for symmorphic space groups [43]. Here, plane waves

Qk(RW
j ) = qk(RW

j ) transform according to the one-
dimensional IR

D
q
kW (g) = exp[ik · (RW

j′ −RW
j )]. (42)

We saw in Eq. (41) that for wave vectors k inside the
BZ this becomes the identity representation Γ1. It is
illuminating to rederive this result by writing Eq. (42) as

D
q
kW (g) = exp[i (k · g − k) ·RW

j ] (43a)

= exp[i (g−1 · k− k) ·RW
j ]. (43b)

It follows from Eq. (3) that k′ = g−1 · k = k + bg with
a reciprocal lattice vector bg. Thus Eq. (42) describing
the effect of g in real space is equivalent to

D
q
kW (g) = exp[ibg ·RW

j ] (44)

describing the effect of g in reciprocal space. Hence, for
m = 1 plane waves Qk(RW

j ) transform under Gk in a
non-trivial way only if the vector k is from the border of
the BZ when k′ = g−1 ·k and k can differ by a reciprocal
lattice vector bg 6= 0. Otherwise, k′ = k implies that

QWk (RW
j ) transforms according to Γ1 of Gk.

If a space group has Wyckoff positions W 6= W ′ each
with multiplicity m = 1, we can compare the IRs of the

plane waves at the positions RW
j and RW ′

j . We have

D
q
kW (g) = exp(ibg ·RW

j ), (45a)

D
q
kW ′(g) = exp(ibg ·RW ′

j ). (45b)

Hence

D
q
kW (g) = D

q
kW ′(g) exp[ibg · (RW

j −RW ′

j )]. (46)

For W 6= W ′, the vector RW
j − RW ′

j is not equal to a
lattice vector, so that for nonzero bg (i.e., for k on the
boundary of the Brillouin zone) we generally have

ΓqkW 6= ΓqkW ′ . (47)

This implies that a nontrivial change of the coordinate
system which requires a relabeling of the Wyckoff letters
associated with atomic positions changes the IRs of the
plane waves at these positions. This relabeling of IR
assignments will be discussed in Sec. II F 2.

As a simple example for Eq. (47), consider the case

where the positions RW
j are equal to lattice vectors, i.e.,

one of the positions RW
j is at the origin of the coordinate

system. Hence, Eq. (44) gives ΓqkW = {Dq
kW (g) = 1 : g ∈

Gk}, i.e., the plane wave Qk(RW
j ) transforms according

to the identity representation. On the other hand, the

IR ΓqkW ′ at a different Wyckoff position W ′ can never be
the identity representation.

Examples of Wyckoff positions with multiplicity m = 1
are the positions occupied by the Mo atoms and the cen-
ter of the hexagon in monolayer MoS2. The plane wave
at these positions transforms according to different IRs.
In a certain coordinate system where one of these two in-
equivalent positions are located at the origin, the plane
waves at that Wyckoff position transform as the iden-
tity representation, while the plane waves at the other
Wyckoff position transform according to a different IR.
Another example is given by the inequivalent IRs of the
plane waves at the positions of C atoms in the central
layer of graphene with odd number of layers such as the
trilayer graphene discussed in Sec. IV A 3.

2. Wyckoff positions with multiplicity m > 1

For Wyckoff positions with multiplicity m > 1 the
simple analysis based on Eq. (3) is not valid as it does

not keep track of how positions RWµ
j are mapped onto

each other by symmetry operations g ∈ Gk. Instead we
need to use the plane-wave spinors (31). For multiplicity
m > 1, the representation ΓqkW characterizing the plane-

wave spinors Qk(RW
j ) is generally reducible. Using the

projection operator (A1), we can construct linear com-

binations Q
Iβ
k (RW

j ) of the base spinors qk(RWµ
j ) trans-

forming like component β of the IR ΓI of Gk contained
in ΓqkW

Q
Iβ
k (RW

j ) ≡ ΠIβ
k Qk(RW

j ) (48a)

=
nI
h

∑
g

DI(g)∗ββ g Qk(RW
j ) (48b)

=
nI
h

∑
g

DI(g)∗ββ D
q
kW (g)Qk(RW

j ), (48c)

where we used Eq. (32). This yields

Q
Iβ
k (RW

j ) =
∑
m

uIβkWµ qk(RWµ
j ) =

 uIβkW1
...

uIβkWm

 (49)

with expansion coefficients

uIβkWµ =
nI
h

∑
g

DI(g)∗ββ
∑
µ̃

D
q
kW (g)µµ̃ (50)

that completely characterize each symmetrized spinor

Q
Iβ
k (RW

j ).
Upon translation by a lattice vector a, the plane waves

qk(RWµ
j ) acquire a phase exp(ik · a)

qk(RWµ
j + a) = exp(ik · a) qk(RWµ

j ). (51)

This implies that qk(RWµ
j ) represents (for each µ) a dis-

crete Bloch function for wave vector k. Similarly, linear
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combinations of these base spinors including the spinors

Qk(RW
j ) and Q

Iβ
k (RW

j ) are thus discrete Bloch func-

tions for wave vector k. The expansion coefficients uIβkWµ
take the role of lattice-periodic functions for these dis-
crete Bloch functions.

The projection (48) is valid for all wave vectors k in
the Brillouin zone (though trivial for m = 1 when k is
inside the Brillouin zone, as noted above). In general, the

projectors ΠIβ
k decompose a plane wave spinor Qk(RW

j )

into multiple Bloch functions QIβk (RW
j ) corresponding to

different IRs ΓI of Gk. Yet we often have sets of special
positions RIk

Wj = {RIk
Wµj : µ = 1, . . . ,m} within the unit

cell where only the Bloch functions Q
Iβ
k (RW

j ) for one IR
ΓI are nonzero, but all other projections vanish. This
greatly simplifies further discussion of TB Bloch func-
tions at positions RIk

Wj . The positions RIk
Wj are charac-

terized by two different groups, the group describing the
site symmetry [43] denoted as GW and the group of the

wave vector Gk. Often the positions RIk
Wj with nontriv-

ial Gk coincide with Wyckoff positions with a non-trivial
GW . For Wyckoff positions with multiplicity m = 1, we
always have GW = G0, so that Gk ⊆ GW . However, for
m > 1 we will find below that in general there is no sim-
ple relation between the group GW characterizing such
special positions RIk

Wj and the group of the wave vector
Gk for which this happens [49].

The symmetrized plane waves Q
Iβ
k (RW

j ) including the

positions RIk
Wj are universal features of each space group,

independent of the “atomistic realization” of a space
group in different crystal structures (e.g., the number
and positions of atoms in a unit cell). They apply both
to spinless models and models that include the spin de-
gree of freedom. We note that the symmetrized plane

waves QIβk (RW
j ) introduced here in the context of the TB

approximation for Wyckoff positions RW
j are conceptu-

ally different from the symmetrized plane waves discussed
previously in the context of the nearly-free electron ap-
proximation, see, e.g., Refs. [38, 39, 50].

G. Rearrangement of IRs of Bloch states under a
change of the coordinate system

The Bloch states in certain crystal structures are char-
acterized by IRs of the group Gk that depend in a non-
trivial way on the location of the origin or the orien-
tation of the coordinate system relative to the position
of the atoms [20–23]. Cornwell [22] has given a general
discussion of the origin dependence of the symmetry la-
beling of electron states in such systems. Here we review
and extend these findings, focusing on symmorphic space
groups and adopting a notation matching other parts of
this study. We show that for different choices of the ori-
gin we get a rearrangement of the IRs of Bloch states.
We exploit this rearrangement lemma when discussing
band symmetries for specific materials further below.

We consider a crystal structure with space group G.
For the coordinate system r = (x, y, z), the lattice-
periodic (single-electron) Hamiltonian is H(r). The

eigenfunctions of H(r) are Bloch functions ΨIβ
nk(r), obey-

ing the eigenvalue equation

H(r) ΨIβ
nk(r) = En(k) ΨIβ

nk(r) (52)

with energy En(k). For a given wave vector k, the index
I denotes the IR ΓI of the point group Gk of the wave
vector, to be discussed in more detail below. The eigen-

function ΨIβ
nk(r) transforms according to the βth compo-

nent of the IR ΓI . For brevity, we drop in this section
the band index n.

We denote coordinate transformations using the Seitz
notation as {g |τ}, where g is a (proper or improper)
rotation that is followed by a translation τ . We seek to
identify a pure translation T ≡ {11|τ} of the coordinate
system r, where τ equals a fraction of a lattice vector
such that for the shifted, primed coordinated system r′ =
(x′, y′, z′) the crystal structure has the same space group
symmetry G as for the unprimed coordinate system r =
(x, y, z). The translation T transforms the Bloch function

ΨIβ
k (r) into

ΨI′β
k (r′) ≡ T ΨIβ

k (r). (53)

The index I ′ 6= I will be justified below. As T = {11|τ}
commutes with primitive translations {11|a} we get

{11|a}ΨI′β
k (r′) = exp(−ik · a) ΨI′β

k (r′), (54)

so that the transformed Bloch function ΨI′β
k (r′) has, in-

deed, the same wave vector k as ΨIβ
k (r). Furthermore,

the Hamiltonian in the primed coordinate system be-
comes

H(r′) = T H(r)T−1. (55)

Thus

H(r′) ΨI′β
k (r′) = T H(r) ΨIβ

k (r) (56a)

= E(k) ΨI′β
k (r′), (56b)

so that the transformed function ΨI′β
k (r′) is an eigenfunc-

tion of H(r′) with the same eigenvalue E(k) as ΨIβ
k (r).

Given the space group G of the crystal, the invariance
of H(r) under the symmetry operations T≡ {g |a} ∈ G

reads

TH(r) T−1 = H(r) ∀T∈ G. (57)

For the Hamiltonian H(r′) in the primed coordinate sys-
tem we get

TH(r′) T−1 = T
(
T−1 TT

)
H(r)

(
T−1 TT

)−1
T−1.

(58)
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Hence the primed Hamiltonian H(r′) obeys an invariance
condition analogous to Eq. (57) if (T−1 TT ) commutes
with H(r)

[T−1 TT,H(r)] = 0. (59)

This requires in turn, given Eq. (57), that for all T∈ G

T−1 TT = {11| − τ} {g |a} {11|τ} (60a)

= {g |g τ − τ + a} (60b)

is an element of the space group G, so that g τ − τ must
be equal to a lattice vector a′ of the crystal

g τ − τ = a′ ∀ g ≡ {g |0} ∈ G0, (61)

where G0 is the point group corresponding to the space
group G. A nontrivial solution to this problem is a vec-
tor τ that is not equal to a lattice vector a. Equation
(61) defines the allowed shifts τ (up to a lattice vector)
that provide alternative descriptions of a crystal struc-
ture with space group G.

We obtain nontrivial solutions to Eq. (61), for exam-
ple, if a crystal consists of atoms at Wyckoff positions
W = A,B, . . . each with multiplicity m = 1 [51]. We
denote these positions in the unit cell as tA, tB, tC, . . . ,
respectively. By definition of the space group G, these
positions tW obey the condition

g tW − tW = a′ ∀ g ∈ G0, W = A,B,C, . . . (62)

with lattice vectors a′. Hence, any linear combination of
these position vectors {tW } with integer prefactors (e.g.,
τ = tW − tW ′ with W 6= W ′) yields a translation τ
consistent with Eq. (61).

In the unprimed coordinate system the eigenfunctions

ΨIβ
k (r) transform according to the βth component of an

IR ΓI of the point group Gk of the wave vector k

{g |0}ΨIβ
k (r) =

∑
β′

DI(g)β′β ΨIβ′

k (r) (63)

with representation matrices DI(g)β′β . We can evaluate
the action of a symmetry operation g ∈ Gk on primed

Bloch functions ΨI′β
k (r′) as follows

{g |0}ΨI′β
k (r′)

= {g |0} {11|τ}ΨIβ
k (r) (64a)

= {11|τ} {11|g τ − τ} {g |0}ΨIβ
k (r) (64b)

=
∑
β′

DI(g)β′β {11|τ} {11|g τ − τ}ΨIβ′

k (r) (64c)

=
∑
β′

DI(g)β′β exp[−ik · (g τ − τ )] {11|τ}ΨIβ′

k (r)

(64d)

=
∑
β′

DI′(g)β′β ΨI′β′

k (r), (64e)

where the primed representation matrices DI′(g)β′β be-
come

DI′(g)β′β = DI(g)β′β exp[−ik · (g τ − τ )]. (65)

We denote the phase factors in Eq. (65) by

Dk
τ (g) = exp[−ik · (g τ − τ )]. (66)

Using Eq. (3), this becomes

Dk
τ (g) = exp(−ibg · τ ) (67a)

with a reciprocal lattice vector

bg = g−1k− k. (67b)

The phase Dk
τ (g) is therefore nontrivial when bg 6= 0,

which can only happen at the border of the Brillouin
zone.

We show in the next paragraph that Γτ ≡ {Dk
τ (g) :

g ∈ Gk} defines a one-dimensional IR of Gk (for every
wave vector k in the Brillouin zone). Therefore, the IR
ΓI′ of a Bloch function in the primed coordinate system is
given by Γτ times the IR ΓI of the Bloch function in the
unprimed coordinate system, so that Eq. (65) becomes

ΓI′ = Γτ × ΓI . (68)

The rearrangement lemma for IRs discussed in Ap-
pendix B applied to Eq. (68) shows that, unless we have
the trivial case that Γτ is the identity representation,
each IR ΓI of Gk in the unprimed coordinate system is
mapped on an IR ΓI′ 6= ΓI in the primed coordinate sys-
tem. Hence we call Eq. (68) the rearrangement lemma
for the IRs of Bloch states and Γτ the rearrangement
representation (RAR) for the coordinate shift τ . Exam-
ples for this rearrangement of IRs of Bloch states will
be given below when we study the symmetries of the
Bloch functions in monolayer MoS2 (Sec. III B) and tri-
layer graphene (Sec. IV A 3). It follows from Eq. (67) that
only at the border of the Brillouin zone the IR labeling of
Bloch states can depend on the origin of the coordinate
system [22]. Also, Eq. (67) implies Γ−τ = Γ∗τ . Generally,
the shift τ is defined up to a lattice vector a. It follows
immediately from Eq. (67) that τ and τ̃ ≡ τ + a define
the same RAR Γτ .

To show that Γτ = {Dk
τ (g) : g ∈ Gk} defines a one-

dimensional IR of Gk we consider two group elements gi ∈
Gk (i = 1, 2). According to Eq. (61), the transformations
gi τ differ from τ by lattice vectors ai

gi τ = τ + ai, (69)

so that

Dk
τ (gi) = exp[−ik · (gi τ − τ )] = exp(−ik · ai) (70)

and

Dk
τ (g1)Dk

τ (g2) = exp[−ik · (a1 + a2)]. (71)
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We can also write g1g2 τ as

g1g2 τ = g1 τ + g1 a2 (72a)

= τ + a1 + a2 + g1 a2 − a2. (72b)

Hence

Dk
τ (g1g2) = exp[−ik · (g1g2 τ − τ )] (73a)

= exp[−ik · (a1 + a2 + g1 a2 − a2)] (73b)

= Dk
τ (g1)Dk

τ (g2) exp[−ik · (g1 a2 − a2)].
(73c)

We get similar to Eq. (2) and using Eq. (3)

exp[−ik · (g1a2 − a2)] = exp[−i(g−1
1 k− k) · a2)] (74a)

= exp[−ibg1 · a2] = 1. (74b)

This gives us finally

Dk
τ (g1g2) = Dk

τ (g1)Dk
τ (g2), (75)

so that, indeed, Γτ = {Dk
τ (g) : g ∈ Gk} is a one-dimen-

sional IR of the group Gk.
The above argument [22] is based on the full Bloch

functions Ψk(r). We showed in Eq. (16) that in a TB
description, these Bloch functions can be factorized as

ΦWµ
νk (r) = qk(RWµ

j )φWν (δr), so that the symmetry of

the plane waves qk(RWµ
j ) can be discussed separately

from the symmetry of the atomic orbitals φWν (δr). The
orbitals φWν (δr) only depend on δr but not on the actual

positions RWµ
j . Hence it follows immediately that the

symmetry of the orbitals φWν (δr) is independent of the
coordinate system used, see also Eq. (26). Only the rep-

resentation ΓqkW of the plane waves qk(RWµ
j ) depends, in

general, on the coordinate system. A translation of the

coordinate system by τ maps the positions RWµ
j onto

the atomic position RW ′µ
j = RWµ

j − τ . The new coor-
dinate system is valid if and only if g τ − τ are lattice
vectors for all g ∈ Gk [see Eq. (61)], so that the plane
waves transform as ΓqkW ′ . We have

RW ′µ′

j′ ≡ gRW ′µ
j = g (RWµ

j − τ ) (76a)

= gRWµ
j − g τ (76b)

= RWµ′

j′ − g τ , (76c)

so that for the transformed Wyckoff letter W ′, Eq. (33)
becomes

DW ′

k (g)µ′µ = exp[ik · (RW ′µ′

j′ −RW ′µ′

j )] (77a)

= exp[ik · (RWµ′

j′ − g τ −RWµ
j + τ )] (77b)

= exp[ik · (RWµ′

j′ −RWµ
j )] exp[−ik · (g τ − τ )]

(77c)

= D
q
kW (g)µ′µ Dk

τ (g) (77d)

with Dk
τ (g) given by Eq. (66). This gives us the rear-

rangement lemma for the representations of plane waves

ΓqkW ′ = Γτ × ΓqkW . (78)

Hence we confirm that the nontrivial case ΓqkW ′ 6= ΓqkW
requires that Γτ = {Dk

τ (g) : g ∈ Gk} is not the iden-
tity representation. As mentioned above, the symme-

try of plane waves qk(RWµ
j ) is a universal problem for

each space group G, independent of the detailed real-
ization of a crystal structure. This holds, in particu-
lar, if the atoms are located at positions RIk

Wµj where

the q
Iβ
k (RIk

Wµj) transforms according to only one IR ΓI .
Hence it is possible to discuss the rearrangement lemma
for the IRs of Bloch states independent of a particular
crystal structure, but it depends only on the space group
G. Among all 230 space groups, 159 contain Wyckoff
sites with origin-dependent site symmetries [52]. Though
a necessary criterion, it is however not a sufficient crite-
rion for a rearrangement of the IRs of Bloch states under
a change of the coordinate system [22].

H. Effect of time reversal

In the absence of an external magnetic field, the eigen-
functions of the TB Hamiltonian obey time-reversal sym-

metry Θ. This implies that if an eigenfunction ΨIβ
k (r)

with energy E(k) transforms according to the βth com-
ponent of the IR ΓI of Gk, the time-reversed wave func-

tion Θ ΨIβ
k (r) = ΨIβ

k (r)∗ = ΨĨ,β′

−k (r) [which is like-
wise an eigenfunction of the Hamiltonian with energy
E(−k) = E(k)] transforms according to the β′th com-
ponent of the complex conjugate IR Γ∗I of G−k = Gk.
Therefore, if the eigenfunctions of the TB Hamiltonian
for some energy E(k) contain atomic orbitals transform-

ing according to an IR ΓφJ of Gk and symmetry-adapted
plane waves transforming according to ΓqJ′ , the eigen-
functions for wave vector −k with energy E(−k) = E(k)
contain atomic orbitals transforming according to the

complex conjugate IR Γφ∗J and plane waves transforming
according to Γq∗J′ . Here, the symmetry-adapted atomic
orbitals at −k are the complex conjugates of the corre-
sponding atomic orbitals at k. We obtain the symmetry-
adapted plane waves at −k from the corresponding plane
waves at k by replacing k→ −k.

Degeneracies of Bloch states due to time-reversal sym-
metry are discussed in Refs. [3, 38, 53]. In general, three
cases must be distinguished [54]. In case (a), eigenfunc-
tions Ψ and Θ Ψ of the crystal Hamiltonian H(r) are
linearly dependent. In case (b), eigenfunctions Ψ and
Θ Ψ of H(r) are linearly independent and transform ac-
cording to inequivalent representations ΓI and Γ∗I , i.e.,
χI(g) 6= χ∗I(g) for some g ∈ Gk. Finally, in case (c),
eigenfunctions Ψ and Θ Ψ of H(r) are linearly indepen-
dent and transform according to equivalent representa-
tions ΓI and Γ∗I , i.e., χI(g) = χ∗I(g) for all g ∈ Gk. In
cases (b) and (c) invariance under time reversal causes
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additional degeneracy. We have for symmorphic space
groups [3, 38, 53]

f

h

∑
g∈G0

χI(g
2) δgk+k,b =


Θ2 case (a)

0 case (b)

−Θ2 case (c)

, (79)

where f is the number of points of the star of k, h is
the order of the crystallographic point group G0 of the
crystal, χI(g) are the characters of the IR ΓI of the point
group Gk of the wave vector k, and gk + k may be zero
or a reciprocal lattice vector b. We have Θ2 = +1 for
single-group representations and Θ2 = −1 for double-
group representations. The criterion (79) applies to the
IRs ΓI of Gk independent of the origin of the coordinate
system. If a crystal structure permits a change of the
coordinate system characterized by a vector τ with RAR
Γτ , a Bloch function transforming according to the IR ΓI
of Gk in the old coordinate system transforms according
to ΓI′ = Γτ × ΓI in the new coordinate, see Eq. (68).
Therefore, the IRs ΓI and ΓI′ of Gk must fall into the
same category according to Eq. (79).

In a more detailed analysis [3, 38, 55], for each of the
cases (a), (b), and (c) three possibilities must be distin-
guished: (1) the points k and −k are equivalent, i.e.,
k = −k + b; (2) k is not equivalent to −k, but the space
group contains an element R which maps k onto −k

Rk = −k; (80)

(3) the points k and −k are in different stars. For the
systems discussed below, case (1) applies to the Γ and
M points of the BZ, whereas case (2) applies to the K
points.

III. BAND SYMMETRIES IN MoS2

Having derived a systematic theory for the symme-
try of TB Bloch functions, we now apply this theory to
several quasi-2D materials. Our main focus is on mono-
layer MoS2. For comparison, we also discuss single-layer
(SLG), bilayer (BLG), and trilayer (TLG) graphene in
the next section.

A. Crystal structure of MoS2

The crystal structure of single-layer MoS2 is shown in
Fig. 1. It is characterized by the point group D3h and
space group P 6̄m2 (# 187). Three Wyckoff positions
have multiplicity m = 1, the positions of the Mo atom,
the midpoint between a pair of top and bottom S atoms,
and the center of the hexagon. Hence, as discussed in
Sec. II G, three choices α = a, b, c emerge for the origin
of the coordinate system: (a) origin at the center of the
hexagon [Fig. 1(a)], (b) origin at a Mo atom [Fig. 1(b)],
and (c) origin at the midpoint between a top and bottom

(d)

(e)

(a) (b)

(c)

Mo S

x

y
z

yk

kx

Γ

M1

M3
M2

KK’

1

2b

b

(1)

(3)

(2)

(1)(3)

(2)

(1)

(2)

(3)

x

y

x

y

y

x

a1

a2

a2

a1
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a2

R
Mo (a)
j

Rj
Sµ(a)

R
Mo
j

(b)

Rj
Sµ(b)

R
Mo
j

(c)

Rj
Sµ(c)

tMo
a

tS
a

tS
c

tMo
c

tS
b

tMo
b

FIG. 1. Crystal structure of single-layer MoS2. Three coor-
dinate systems α = a, b, c are considered with (a) the origin
located at the center of a hexagon, (b) origin at an Mo atom,
and (c) origin at the midpoint between top and bottom S
atoms. The atomic positions of Mo and S in unit cell j are

denoted by R
Mo(α)
j and R

Sµ(α)
j , respectively. For the S atom,

the top (bottom) atoms are labeled µ = 1 (µ = 2). The
primitive lattice vectors are denoted a1 and a2. The shaded
region shows a unit cell (j = 1). The vectors tαMo and tαS give
the positions of the Mo and S atoms within a unit cell. The
dashed axes (1), (2) and (3) are the two-fold rotation axes
of the point group D3h. (d) Three-dimensional illustration of
single-layer MoS2. (e) The first Brillouin zone.

S atom [Fig. 1(c)]. In either case, the Mo atoms have site
symmetry D3h and Wyckoff multiplicity m = 1. Yet the
Wyckoff letters for these positions listed in Table I de-
pend on the coordinate system [52]. For coordinate sys-
tem (a), the Mo and S atoms have Wyckoff letters e and
h respectively, whereas these letters become a and i in
coordinate system (b), and c and g in coordinate system
(c). The S atoms have site symmetry C3v and multiplic-
ity m = 2. The positions of Mo and S atoms in unit cell

j are denoted by R
Mo(α)
j and R

Sµ(α)
j respectively. For

the S atom, the top (bottom) atoms are labeled µ = 1
(µ = 2). There are yet other coordinate systems that can
be used for MoS2. For example, Ref. [31] used a coordi-
nate system that differs from coordinate system (a) by a
reflection about the xz plane. Here, we do not consider
these additional coordinate systems [23].

The Brillouin zone for single-layer MoS2 is shown in
Fig. 1(e). In the following, we will focus on the Γ point
k = 0, the K, and the M points. The star of the K point
includes two inequivalent wave vectors denoted K and
K′. The star of the M point includes three inequivalent
wave vectors denoted M1, M2, and M3.
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TABLE I. Site symmetries in monolayer MoS2 and single-layer (SLG), bilayer (BLG) and tri-layer (TLG) graphene. We
include here the Wyckoff positions occupied by atoms as well as the unoccupied center of the hexagon denoted by Rcenter

j . The
coordinate systems α = a, b, c for MoS2 and TLG are depicted in Figs. 1 and 7, respectively.

(α) MoS2 (P 6̄m2, # 187, D3h)

positions R
Wµ(α)
j R

Mo(α)
j {RS1(α)

j ,R
S2(α)
j } R

center(α)
j

site symmetry 6̄m2 (D3h) 3m (C3v) 6̄m2 (D3h)

multiplicity 1 2 1

Wyckoff letter (a) e h a

(b) a i c

(c) c g e

SLG (P6/mmm, # 191, D6h)

positions RWµ
j {Rc1

j ,R
c2
j } Rcenter

j

site symmetry 6̄m2 (D3h) 6/mmm (D6h)

multiplicity 2 1

Wyckoff letter c a

BLG (P 3̄m1, # 164, D3d)

positions RWµ
j {Rc1

j ,R
c2
j } {Rd1

j ,R
d2
j }

site symmetry 3m (C3v) 3m (C3v)

multiplicity 2 2

Wyckoff letter c d

(α) TLG (P 6̄m2, # 187, D3h)

positions R
Wµ(α)
j RA

j RB
j {RA′1

j ,RA′2
j } {RB′1

j ,RB′2
j }

site symmetry 6̄m2 (D3h) 6̄m2 (D3h) 3m (C3v) 3m (C3v)

multiplicity 1 1 2 2

Wyckoff letter (a) c e g h

(b) e a h i

(c) a c i g

The point group of single-layer MoS2 is D3h. This is
also the point group of the wave vector at the Γ point.
It contains a 120◦ counter-clockwise rotation C3 about
the z axis. The reflection plane of σh is the xy-plane
and S3 = σhC3. The rotation axes of the three two-fold

rotations C
′(i)
2 are the axes i = 1, 2, 3 shown in Fig. 1.

These axes are also shown as dashed lines in Fig. 2(a).

The reflection plane of σ
(i)
v is the plane passing through

the axis i and the z axis. The characters of D3h are
listed in Table XXV (Appendix C). We label the IRs of
the crystallographic point groups following Koster et al.
[56].

At the K point [Fig. 2(b)], the point group of the wave
vector becomes GK = C3h whose characters are listed in
Table XXVII (Appendix C). Finally, at the inequivalent
points Mi (i = 1, 2, 3), the group of the wave vector is
GM = C2v, the character table of which is reproduced
in Table XXVIII (Appendix C). This group contains the
two-fold rotation C2, the axis of which is indicated as
dashed line in Figs. 2(c)-(e), the reflection σv about the
xy plane, and the reflection σ′v for which the reflection
plane includes the dashed line and the z axis.

The primitive lattice vectors a1 and a2 are

a1 =
a

2

(
1√
3

)
, a2 =

a

2

(
1

−
√

3

)
, (81)

where a is the lattice constant. Ignoring for brevity the
z component, the positions tαMo of Mo and tαS of S in the
unit cell are

taMo =
a

2

(
1
1√
3

)
, taS =

a

2

(
1
− 1√

3

)
, (82a)

tbMo =
a

2

(
0
0

)
, tbS =

a

2

(
0
− 2√

3

)
, (82b)

tcMo =
a

2

(
0
2√
3

)
, tcS =

a

2

(
0
0

)
, (82c)

where the superscript α = a, b, c denotes the coordinate
system. The primitive vectors b1 and b2 of the reciprocal
lattice are

b1 =
2π

a

(
1

1/
√

3

)
, b2 =

2π

a

(
1

−1/
√

3

)
. (83)

The two inequivalent corner points of the Brillouin zone
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(a) Γ: D3h
(b) K,K′: C3h

(c) M1: C2v (d) M2: C2v (e) M3: C2v

C
′(1)
2 , σ

(1)
v

C
′(2)
2 , σ

(2)
v

C
′(3)
2 , σ

(3)
v

C2, σ
′

v

C2, σ
′

v

C2, σ
′

v

FIG. 2. Groups of the wave vector in monolayer MoS2 and
TLG. (a) The point Γ has the point group D3h with the z axis
(out of plane) as the three-fold rotation axis. The dashed

lines (i) are the axes for two-fold rotations C
′(i)
2 with i =

1, 2, 3. The reflection σ
(i)
v is about a plane that includes the

dashed axis i and the z axis. (b) The points K and K′ have
the point group C3h with three-fold rotations about the z
axis. The reflection plane of σh is the xy-plane. The dotted
lines indicate the two-fold rotation axes that appear in the
point group D3h but are not symmetry elements of C3h. (c)-
(e) The points M1, M2, and M1 have the point group C2v.
The dashed line is the axis of the two-fold rotation C2. The
reflection plane of σv is the xy-plane. The reflection plane of
σ′v contains the dashed line and the z axis.

are

K =
2π

a

(
2/3
0

)
, K′ =

2π

a

(
−2/3

0

)
, (84)

and the M points are

M1 =
π

a

(
1

1/
√

3

)
, M2 =

2π

a

(
0

1/
√

3

)
,

M3 =
π

a

(
−1

1/
√

3

)
, (85)

see Fig. 1(e).

B. Rearrangement of IRs of Bloch states in MoS2

The crystal structure of monolayer MoS2 can be de-
scribed by three different coordinate systems α = a, b, c
shown in Fig. 1. This provides an example for the rear-
rangement of the IRs of Bloch states discussed in general
terms in Sec. II G. The coordinate systems α and β are
related via a translation ταβ . For the shifts a→ b, b→ c,
and c → a, the translation vectors (apart from a lattice

TABLE II. Rearrangement of the IRs of C3h at the K point of
monolayer MoS2 when we go from one of the three coordinate
systems α = a, b, c to a different coordinate system β (see
Fig. 1).

a Γ1 Γ2 Γ3 Γ4 Γ5 Γ6

b Γ3 Γ1 Γ2 Γ6 Γ4 Γ5

c Γ2 Γ3 Γ1 Γ5 Γ6 Γ4

vector) are given by

τ ab = τ bc = τ ca =
a

2

(
1

1/
√

3

)
(86)

and τβα = −ταβ .
For wave vectors k inside the BZ such as the Γ point as

well as for the M points, the RARs ΓΓ
αβ and ΓM

αβ are given

by Eq. (67) with bg = 0 for all g ∈ Gk. These RARs are,
therefore, given by the identity representation Γ1, i.e., at
both the Γ and M points the labeling of Bloch states is
independent of the coordinate system. However, a shift
of the coordinate system rearranges the IRs at the K
point. Using Eq. (67b) at the K point, where the group
of the wave vector is C3h, we get

bE = bσh = 0, (87a)

bC3 = bS3 = −b1 = −2π

a

(
1

1/
√

3

)
, (87b)

bC−1
3

= bS−1
3

= −b2 = −2π

a

(
1

−1/
√

3

)
. (87c)

For the shifts a → b, b → c, and c → a, we thus have
using Eq. (67)

DK
αβ(E) = DK

αβ(σh) = exp(−ibE · ταβ) = 1, (88a)

DK
αβ(C3) = DK

αβ(S3) = exp(−ibC3
· ταβ) = ω−4,

(88b)

DK
αβ(C−1

3 ) = DK
αβ(S−1

3 ) = exp(−ibC−1
3
· ταβ) = ω4

(88c)

with ω ≡ exp(iπ/6). This implies ΓK
ab = ΓK

bc = ΓK
ca = Γ3.

Since τβα = −ταβ , we have ΓK
ba = ΓK

cb = ΓK
ac = Γ∗3 = Γ2.

Hence, at the K point, for a Bloch state transforming in
one coordinate system according to a certain IR, we can
multiply this IR with either Γ2 or Γ3 to obtain the IR
of the same Bloch state in a different coordinate system.
The multiplication table for the IRs of C3h is reproduced
in Table XXX (Appendix C). Table II shows how the IRs
of C3h are rearranged when we go from one of the three
coordinate systems α = a, b, c to a different coordinate
system β. At the K′ point, Eq. (66) gives

ΓK′

αβ = Γ−K
αβ = ΓK∗

αβ . (89)
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TABLE III. Mapping of polar vectors P and axial vectors

A under g = C3, C−1
3 , σ

(i)
v , and σh, where the images are

expressed in terms of the original components of these vectors.
C3 is a 120◦ counter-clockwise rotation about the z axis while
σ

(i)
v is a reflection about the plane containing the z axis and

the axis i defined in Fig. 2. We have ω ≡ exp(iπ/6). Note

S±1
3 = σh × C±1

3 and C
′(i)
2 = σh × σ(i)

v .

C±1
3 σ

(1)
v /σ

(3)
v σ

(2)
v σh

Px − 1
2
Px ∓

√
3

2
Py

1
2
Px ±

√
3

2
Py −Px Px

Py ±
√

3
2
Px − 1

2
Py ±

√
3

2
Px − 1

2
Py Py Py

Pz Pz Pz Pz −Pz
P+ ω±4P+ −ω∓4P− −P− P+

P− ω∓4P− −ω±4P+ −P+ P−

Ax − 1
2
Ax ∓

√
3

2
Ay − 1

2
Ax ∓

√
3

2
Ay Ax −Ax

Ay ±
√

3
2
Ax − 1

2
Ay ∓

√
3

2
Ax + 1

2
Ay −Ay −Ay

Az Az −Az −Az Az

A+ ω±4A+ ω∓4A− A− −A+

A− ω∓4A− ω±4A+ A+ −A−

C. Atomic orbitals φWν (δr) at k = Γ, K, and M

The conduction and valence bands in MoS2 are dom-
inated by Mo d and S p orbitals [24]. At the points Γ,
K, and M, the groups of the wave vectors Gk are D3h,
C3h, and C2v, respectively, with character tables repro-
duced in Tables XXV, XXVII, and XXVIII. We use Eq.
(A1) to project these functions onto functions transform-
ing according to the IRs of the various groups Gk. The
relevant symmetry operations are defined in Fig. 2 and
Table III considering both polar vectors P such as posi-
tion r and axial vectors A. The two inequivalent points
K and K′ are related by a vertical reflection that trans-
forms the component x into −x while keeping the y and
z components fixed. Table IV summarizes the IRs of the
p and d orbitals. We note that these results are fully con-
sistent with the full rotation group compatibility tables
in Ref. [56].

D. Transformation of plane waves qk(R
Mo(α)
j )

We now determine the IRs of the plane waves

qk(R
Mo(α)
j ) for the coordinate systems α = a, b, c at the

Γ, K, and M points of the Brillouin zone. Since the
Wyckoff letter corresponding to the positions of the Mo
atoms has multiplicity m = 1, we can use either Eq. (42)

or Eq. (44) to determine the phase D
Mo(α)
k (g) acquired

by the plane waves qk(R
Mo(α)
j ) under a transformation g.

We can then derive the IRs of the plane waves using the
projection operators (A1). The results are summarized
in Table VII.

E. Transformation of plane waves qk(R
Sµ(α)
j )

The S atoms are located at Wyckoff positions with
multiplicity m = 2, so that we represent the plane wave

at the positions R
Sµ(α)
j as a two-component spinor

Qk(R
S(α)
j ) = qk(R

S1(α)
j ) + qk(R

S2(α)
j ) ≡

(
1
1

)
. (90)

We can then use Eq. (33) to determine the phases ac-
quired under symmetry transformations. To obtain the
plane wave IRs, it is again advantageous to consider the
simplest coordinate system. For the S atoms, this is co-
ordinate system (c) where the origin of the coordinate
system is at the midpoint between the S atoms in the
top and bottom layer of a unit cell. In this case, the

transformation g maps R
Sµ(c)
1 either onto itself or onto

R
Sµ′(c)
1 with µ 6= µ′, so that Eq. (33) becomes

D
S(c)
k (g)µ′µ = exp[ik · (RSµ′(c)

1 −R
Sµ′(c)
1 )] = 1 (91)

for all g ∈ Gk. We can then determine the IRs of the
plane waves for the coordinate systems (a) and (b) by
using the respective RAR derived in Sec. III B. The re-
sults are summarized in Table VII.

F. IRs of Bloch states in MoS2

The full symmetry-adapted Bloch functions are writ-
ten as products of symmetrized plane waves and sym-
metrized atomic orbitals. The five symmetry-adapted d

orbitals of the Mo atom times the plane wave qk(R
Mo(α)
j )

and the three symmetry-adapted p orbitals of the S atoms

times the plane waves qk(R
S1(α)
j )±qk(R

S2(α)
j ) therefore

comprises eleven symmetry-adapted basis functions for
MoS2 [30]. The corresponding IRs are listed in Table VIII
for the Γ, K, and M points. We list in Tables IX, X, and
XI the sets of Bloch states transforming according to an
IR of Gk for the wave vectors k = Γ,K,M. Using these
symmetrized Bloch functions, the TB Hamiltonian for a
wave vector k can be written in a block-diagonal form,
where each block refers to the basis functions transform-
ing according to an IR ΓI of Gk [57]. To classify the
additional degeneracy of the Bloch states due to time-
reversal symmetry, we evaluate Eq. (79). All IRs of the
space group for the stars {Γ}, {K}, and {M} belong to
case (a).
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TABLE IV. Symmetry-adapted p and d atomic orbitals for the point groups D3h, C3h and C2v with coordinate systems defined

in Fig. 2 (MoS2 and TLG). For C2v, the symmetrized atomic orbital φ
[i]
ν corresponds to the coordinate systems used for the

point Mi in Figs. 2(c)-(e). The orbital [i(j)] takes the upper (lower) sign. The IRs of the atomic orbitals listed here are
consistent with the compatibility relations in Table VI.

D3h C3h C2v

φν IR φν IR φ
[1(3)]
ν φ

[2]
ν IR

pz Γ4 pz Γ4 pz pz Γ4

{px, py} Γ6 px + ipy Γ2 px ∓
√

3py px Γ2

px − ipy Γ3

√
3px ± py py Γ1

dz2 Γ1 dz2 Γ1 dz2 dz2 Γ1

{dxz, dyz} Γ5 dxz + idyz Γ5 dxz ∓
√

3dyz dxz Γ3

dxz − idyz Γ6

√
3dxz ± dyz dyz Γ4

{dx2−y2 , dxy} Γ6 dx2−y2 + idxy Γ3 dx2−y2 ±
√

3dxy dx2−y2 Γ1

dx2−y2 − idxy Γ2

√
3dx2−y2 ∓ dxy dxy Γ2

TABLE V. Symmetry-adapted p orbitals for the point groups D6h, D3h, and D2h for the coordinate systems shown in Fig. 4
(SLG) and D3d, D3, and C2h for the coordinate system shown in Fig. 6 (BLG). For D2h and C2h, the symmetrized atomic

orbital φ
[i]
ν corresponds to the coordinate systems used for the point Mi in Figs. 4(c)-(e) and 6(c)-(e) respectively. The orbital

[i(j)] takes the upper (lower) sign.

D6h D3h D2h D3d D3 C2h

φν IR φν IR φ
[1(3)]
ν φ

[2]
ν IR φν IR φν IR φ

[1(3)]
ν φ

[2]
ν IR

pz Γ−2 pz Γ4 pz pz Γ−3 pz Γ−2 pz Γ2 pz pz Γ−2

{px, py} Γ−5 {px, py} Γ6 px ∓
√

3py px Γ−4 {px, py} Γ−3 {px, py} Γ3 px ∓
√

3py px Γ−1√
3px ± py py Γ−2

√
3px ± py py Γ−2

TABLE VI. Compatibility relations for the IRs of D3h and the IRs of its subgroups C3h and C2v using the coordinate system in
Fig. 2. The three different orientations of coordinate systems for C2v in Figs. 2(c)-(e) follow the same compatibility relations.

D3h Γ1 Γ2 Γ3 Γ4 Γ5 Γ6

C3h Γ1 Γ1 Γ4 Γ4 Γ5 + Γ6 Γ2 + Γ3

C2v Γ1 Γ2 Γ3 Γ4 Γ3 + Γ4 Γ1 + Γ2
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TABLE VII. Symmetrized plane waves Q
Iβ
k (RW

j ) for monolayer MoS2 and single-layer (SLG), bilayer (BLG) and tri-layer

(TLG) graphene at the Γ, K, and M points for the positions occupied by atoms. The symmetrized plane waves Q
Iβ
K′(R

W
j )

at K′ = −K are obtained from the expressions given for K by replacing K by K′. The corresponding IRs are the complex
conjugates of the IRs at K. The group Gk of the wave vector and the plane wave IRs are shown. At the K point, we distinguish

between the three coordinate systems α = a, b, c for MoS2 and TLG with atomic positions R
W (α)µ
j depicted in Figs. 1 and 7,

respectively. The IRs for the coordinate systems α are then denoted by Γi/j/k. The definition of the symmetrized plane waves
at the points Mi of SLG and BLG contains prefactors γi, where γ1 = γ3 = −1, and γ2 = +1.

k = Γ k = K k = M1,M2,M3

MoS2: D3h C3h C2v

Mo Γ1 qΓ(RMo
j ) Γ2/1/3 qK(RMo

j ) Γ1 qMi(R
Mo
j )

S Γ1,Γ4 qΓ(RS1
j )± qΓ(RS2

j ) Γ3/2/1,Γ6/5/4 qK(RS1
j )± qK(RS2

j ) Γ1,Γ4 qMi(R
S1
j )± qMi(R

S2
j )

SLG: D6h D3h D2h

c Γ+
1 ,Γ

−
3 qΓ(Rc1

j )± qΓ(Rc2
j ) Γ6 {qK(Rc1

j ),qK(Rc2
j )} Γ+

1 ,Γ
−
2 qMi(R

c1
j )± γi qMi(R

c2
j )

BLG: D3d D3 C2h

c Γ+
1 ,Γ

−
2 qΓ(Rc1

j )± qΓ(Rc2
j ) Γ1,Γ2 qK(Rc1

j )± qK(Rc2
j ) Γ+

1 ,Γ
−
2 qMi(R

c1
j )± qMi(R

c2
j )

d Γ+
1 ,Γ

−
2 qΓ(Rd1

j )± qΓ(Rd2
j ) Γ3 {qK(Rd1

j ),qK(Rd2
j )} Γ+

1 ,Γ
−
2 qMi(R

d1
j )± γi qMi(R

d2
j )

TLG: D3h C3h C2v

A Γ1 qΓ(RA
j ) Γ3/2/1 qK(RA

j ) Γ1 qMi(R
A
j )

B Γ1 qΓ(RB
j ) Γ2/1/3 qK(RB

j ) Γ1 qMi(R
B
j )

A′ Γ1,Γ4 qΓ(RA′1
j )± qΓ(RA′2

j ) Γ1/3/2,Γ4/6/5 qK(RA′1
j )± qK(RA′2

j ) Γ1,Γ4 qMi(R
A′1
j )± qMi(R

A′2
j )

B′ Γ1,Γ4 qΓ(RB′1
j )± qΓ(RB′2

j ) Γ3/2/1,Γ6/5/4 qK(RB′1
j )± qK(RB′2

j ) Γ1,Γ4 qMi(R
B′1
j )± qMi(R

B′2
j )

TABLE VIII. IRs of the plane waves (Γqk), the atomic orbitals φν (Γφk), and the full Bloch functions (ΓΦ
k = Γqk×Γφk) for the Mo

and S atoms at the points k = Γ, K, and Mi. At K, we distinguish between the three coordinate systems α = a, b, c. For the
plane waves at K′, the IR ΓqK′(i/j/k) is the complex conjugate of the IR ΓqK(i/j/k). At the points Mi (i = 1, 2, 3), the atomic

orbitals are denoted by φ
[i]
ν .

k = Γ (D3h) k = K,K′ (C3h) k = M1,M2,M3 (C2v)

ΓqΓ φν ΓφΓ ΓΦ
Γ ΓqK(a/b/c) φν ΓφK ΓΦ

K(a/b/c) ΓΦ
K′(a/b/c) ΓqM φ

[1(3)]
ν φ

[2]
ν ΓφM ΓΦ

M

Mo Γ1

dz2 Γ1 Γ1

Γ2/1/3

dz2 Γ1 Γ2/1/3 Γ3/1/2

Γ1

dz2 dz2 Γ1 Γ1

{dx2−y2 , dxy} Γ6 Γ6
dx2−y2 + idxy Γ3 Γ1/3/2 Γ2/3/1 dx2−y2 ±

√
3dxy dx2−y2 Γ1 Γ1

dx2−y2 − idxy Γ2 Γ3/2/1 Γ1/2/3

√
3dx2−y2 ∓ dxy dxy Γ2 Γ2

{dxz, dyz} Γ5 Γ5
dxz + idyz Γ5 Γ6/5/4 Γ4/5/6 dxz ∓

√
3dyz dxz Γ3 Γ3

dxz − idyz Γ6 Γ4/6/5 Γ5/6/4

√
3dxz ± dyz dyz Γ4 Γ4

S
Γ1,
Γ4

pz Γ4
Γ4

Γ3/2/1,

Γ6/5/4

pz Γ4
Γ6/5/4 Γ5/6/4

Γ1,
Γ4

pz pz Γ4
Γ4

Γ1 Γ3/2/1 Γ2/3/1 Γ1

{px, py} Γ6

Γ6 px + ipy Γ2
Γ1/3/2 Γ3/1/2

px ∓
√

3py px Γ2
Γ2

Γ4/6/5 Γ6/4/5 Γ3

Γ5 px − ipy Γ3
Γ2/1/3 Γ1/2/3 √

3px ± py py Γ1
Γ1

Γ5/4/6 Γ4/5/6 Γ4



17

TABLE IX. Symmetry-adapted TB Bloch functions in MoS2 at k = Γ with group of the wave vector GΓ = D3h. The
Bloch functions are written as a product of the plane wave qΓ(RMo

j ) and d orbitals for Mo atoms and the plane waves

q±Γ (RS
j ) = qΓ(RS1

j ) ± qΓ(RS2
j ) and p orbitals for S atoms. Also, qΓ(RW

j ) {dµ, dν} is a short-hand notation for the pair of

Bloch functions {qΓ(RW
j ) dµ,qΓ(RW

j ) dν}. The last column indicates the degeneracy of Bloch states due to time-reversal
symmetry discussed in Sec. II H.

IRs Mo S TR

Γ1 qΓ(RMo
j ) dz2 q−Γ (RS

j ) pz a

Γ4 q+
Γ (RS

j ) pz a

Γ5 qΓ(RMo
j ) {dxz, dyz} q−Γ (RS

j ) {px, py} a

Γ6 qΓ(RMo
j ) {dx2−y2 , dxy} q+

Γ (RS
j ) {px, py} a

TABLE X. Symmetry-adapted TB Bloch functions in MoS2 at k = K,K′ with group of the wave vector GK = GK′ = C3h.
The Bloch functions are written as a product of the plane wave qk(RMo

j ) and d orbitals for Mo atoms and the plane waves

q±k (RS
j ) = qk(RS1

j )± qk(RS2
j ) and p orbitals for S atoms. The IRs Γi/j/k correspond to the coordinate system α = a/b/c in

Fig. 1.

K K′ = −K Mo S TR

Γ1/3/2 Γ∗1/3/2 = Γ1/2/3 qk(RMo
j ) (dx2−y2 ± idxy) q+

k (RS
j ) (px ± ipy) a

Γ2/1/3 Γ∗2/1/3 = Γ3/1/2 qk(RMo
j ) dz2 q+

k (RS
j ) (px ∓ ipy) a

Γ3/2/1 Γ∗3/2/1 = Γ2/3/1 qk(RMo
j ) (dx2−y2 ∓ idxy) q−k (RS

j ) pz a

Γ4/6/5 Γ∗4/6/5 = Γ4/5/6 qk(RMo
j ) (dxz ∓ idyz) q−k (RS

j ) (px ± ipy) a

Γ5/4/6 Γ∗5/4/6 = Γ6/4/5 q−k (RS
j ) (px ∓ ipy) a

Γ6/5/4 Γ∗6/5/4 = Γ5/6/4 qk(RMo
j ) (dxz ± idyz) q+

k (RS
j ) pz a

TABLE XI. Symmetry-adapted TB Bloch functions in MoS2 at k = M with group of the wave vector GM = C2v. The
Bloch functions are written as a product of the plane wave qM(RMo

j ) and d orbitals for Mo atoms and the plane waves

q±M(RS
j ) = qM(RS1

j )± qM(RS2
j ) and p orbitals for S atoms.

M1(M3) M2

IRs Mo S Mo S TR

Γ1 qM(RMo
j ) dz2 ; q−M(RS

j ) pz; qM(RMo
j ) dz2 ; q−M(RS

j ) pz; a

qM(RMo
j ) (dx2−y2 ±

√
3dxy) q+

M(RS
j ) (
√

3px ± py) qM(RMo
j ) dx2−y2 q+

M(RS
j ) py

Γ2 qM(RMo
j ) (

√
3dx2−y2 ∓ dxy) q+

M(RS
j ) (px ∓

√
3py) qM(RMo

j ) dxy q+
M(RS

j ) px a

Γ3 qM(RMo
j ) (dxz ∓

√
3dyz) q−M(RS

j ) (px ∓
√

3py) qM(RMo
j ) dxz q−M(RS

j ) px a

Γ4 qM(RMo
j ) (

√
3dxz ± dyz) q+

M(RS
j ) pz; qM(RMo

j ) dyz q+
M(RS

j ) pz; a

q−M(RS
j ) (
√

3px ± py) q−M(RS
j ) py
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IV. BAND SYMMETRIES IN FEW-LAYER
GRAPHENE

We can also apply the general formalism in Sec. II to
identify the band symmetries in other quasi-2D materials
such as single-layer (SLG), bilayer (BLG), and trilayer
(TLG) graphene.

A. Crystal structure of few-layer graphene

Like the crystal structure of monolayer MoS2, the crys-
tal structures of SLG, BLG, and TLG belong to the
hexagonal crystal system. Therefore, we use the same
expressions for the primitive lattice vectors [Eq. (81)]
and reciprocal lattice vectors [Eq. (83)]; and we have the
same high-symmetry points in the BZ denoted Γ, K [Eq.
(84)], and M [Eq. (85)]. The space groups for few-layer
graphene are listed in Table I. This table also contains
the site symmetries of the high-symmetry points for these
crystal structures.

1. Single-layer graphene

Figure 3 shows the crystal structure of SLG. It is char-
acterized by the point groupD6h (space group P6/mmm,
# 191). The carbon atoms form two distinct Bravais lat-
tices denoted as sublattices A and B. The atomic posi-
tions denoted by {Rc1

j ,R
c2
j } have site symmetries char-

acterized by the point group D3h and Wyckoff letter c.
The center of the hexagon, characterized by site symme-
try D6h is the only Wyckoff position with multiplicity
m = 1. This point is the origin of the coordinate system
for this crystal structure. The positions of the C atoms
in the unit cell are given by

tc1 =
a

2

(
1
− 1√

3

)
, tc2 =

a

2

(
1
1√
3

)
. (92)

The point group D6h of the crystal, which also char-
acterizes the Γ point of the BZ, contains two-fold, three-
fold and six-fold rotations C2, C3 and C6 where the z
axis is the rotation axis. The rotation axes of the three
two-fold rotation C

′(i)
2 and C

′′(jk)
2 are the corresponding

dashed lines shown in Fig. 4(a). The reflection planes for

σ
(i)
v and σ

(ij)
d are perpendicular to the xy-plane passing

through the corresponding dashed lines. The reflection
σh is along the xy-plane and Sn = Cnσh. At the K point,
the group of the wave vector is GK = D3h containing

three two-fold rotations C
′(ij)
2 about the corresponding

dashed axes in Fig. 4(b). The reflection plane of σ
(ij)
v

is perpendicular to the xy plane along the rotation axis

of C
′(ij)
2 . The three-fold rotation axis is the z axis, and

σh is a reflection about the xy-plane. The group of the
wave vector at the Mi points is GM = D2h containing
the symmetry operations C2, C ′2, C ′′2 , σv, σ

′
v, and σ′′v

(b)(a)

yk

kx

Γ

M1

M3
M2

KK’

1

2b

b

x

y

c2t

tc1

a1

a2

Rj
c1

R
c2
j

c1

c2

FIG. 3. (a) Crystal structure of single-layer graphene char-
acterized by the point group D6h. The shaded region shows
a unit cell (j = 1). The C atoms are located at Wyckoff po-
sition c with multiplicity m = 2, hence the label c1 and c2
on one unit cell. The primitive lattice vectors are denoted a1

and a2. The positions of C atoms in unit cell j are denoted by
Rc1
j and Rc2

j . The vectors tc1 and tc2 are the positions of the
atomic positions of C in the unit cell. (b) The first Brillouin
zone with basic reciprocal lattice vectors b1 and b2.

with rotation axes and reflection planes shown in Figs.
4(c)-(e). The character table for D2h is reproduced in
Table XXVI (Appendix C).

2. Bilayer graphene

The point group D3d (space group P 3̄m1, # 164) char-
acterizes BLG as shown in Fig. 5. The only Wyckoff po-
sition with multiplicity m = 1 is the midpoint of two C
atoms on top of each other. We use this point as the
origin of the coordinate system. The atomic positions in
BLG are the Wyckoff positions c and d, each with multi-
plicity m = 2 and site symmetry C3v. The two atoms in
one Wyckoff letter are labeled µ = 1 (µ = 2) for the atom
in the top (bottom) layer. The layers are arranged in an
AB stacking, so that the atomic position Rc1

j is located

on top of Rc2
j . Ignoring the z component, the positions

of the C atoms in the unit cell are

tcµ =
a

2

(
0
0

)
, td1 =

a

2

(
0
2√
3

)
, td2 =

a

2

(
1
1√
3

)
.

(93)
The three-fold proper and six-fold improper rotation axis

is the z axis. The axis of the two-fold rotation C
′(ij)
2 is

the corresponding dashed line in Fig. 6(a). The three re-

flection planes corresponding to σ
(i)
d are perpendicular to

the xy-plane passing through the corresponding dashed
line. The group of the wave vector is GK = D3 at the K
point with three-fold rotations about the z axis and three

two-fold rotations C
′(jk)
2 about the corresponding dashed

line in Fig. 6(b). At the Mi points, the group of the wave
vector is GM = C2h, where σh is perpendicular to the xy-
plane passing through the corresponding dashed line in
Figs. 6(c)-(e), and the two-fold rotation C2 is about the
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x x

x xx

y y

yyy

(a) Γ: D6h
(b) K,K′: D3h

(c) M1: D2h (d) M2: D2h (e) M3: D2h

C
′(1)
2 , σ

(1)
v

C
′(2)
2 , σ

(2)
v

C
′(3)
2 , σ

(3)
v

C
′′(12)
2 , σ

(12)
d

C
′′(23)
2 , σ

(23)
d

C
′′(31)
2 , σ

(31)
d

C
′(12)
2 , σ

(12)
v

C
′(23)
2 , σ

(23)
v

C
′(31)
2 , σ

(31)
v

C ′′

2 , σ
′

v

C ′′

2 , σ
′

v

C ′′

2 , σ
′

v

C ′

2, σ
′′

v

C ′

2, σ
′′

v

C ′

2, σ
′′

v

FIG. 4. Groups of the wave vector in SLG. (a) The point
Γ has the point group D6h with the z axis (out of plane) as
the axis for the n-fold rotations Cn (n = 2, 3, 6) and the xy-
plane as the reflection plane for σh. The dashed lines (i and

ij) are the axes for two-fold rotations C
′(i)
2 and C

′′(ij)
2 with

i, j = 1, 2, 3. The reflection σ
(i)
v [σ

(ij)
d ] is about a plane that

includes the corresponding dashed axis and the z axis. (b)
The points K and K′ have the point group D3h with three-
fold rotations about the z axis. The dashed lines are the
axes for the two-fold rotations C

′(ij)
2 . The reflection plane of

σ
(ij)
v contains the corresponding dashed lines and the z axis.

The reflection plane of σh is the xy-plane. The dotted lines
indicate the two-fold rotation axes that appear in the point
group D6h but are not symmetry elements of D3h. (c)-(e)
The points M1, M2, and M1 have the point group D2h. The
rotation axis of C2 is the z axis and the reflection plane of
σv is the xy-plane. The dashed lines are the axes of the two-
fold rotations C′2 and C′′2 . The reflection planes of σ′v and σ′′v
contain the corresponding dashed line and the z axis.

corresponding dashed line. The character table for C2h

is reproduced in Table XXIX (Appendix C).

3. Trilayer graphene

Lastly, Fig. 7 shows the crystal structure of TLG. This
system has the same space group P 6̄m2, # 187 as mono-
layer MoS2 (point group D3h). We designate the Wyckoff
positions of the carbon atoms in the middle layer as A
and B with site symmetry group D3h, and the remaining
positions as A′µ and B′µ with µ = 1 (µ = 2) for the
top (bottom) layer with site symmetry group C3v. The
points A and B as well as the center of the hexagon in
the middle layer are Wyckoff positions with multiplicity
m = 1, which we use as the origin of the three coordi-
nate systems defined in Fig. 7. We therefore associate
with each Wyckoff letter W an index (α) corresponding
to the coordinate systems α = a, b, c. Ignoring the z com-

(b)(a)

yk

kx

Γ

M1

M3
M2

KK’

1

2b

b

y

x

a2

a1

td1

td2
tcµ

Rcµ

j

Rd2
j

Rd1
j

top layer:
c1

d1

c2

d2
bottom layer:

FIG. 5. (a) Crystal structure of bilayer graphene character-
ized by the point group D3d. The shaded region shows a unit
cell (j = 1). The C atoms are located on Wyckoff positions c
and d each with multiplicity m = 2. The atomic position in
unit cell j are denoted by Rcµ

j and Rdµ
j with µ = 1 (µ = 2)

corresponding to the atom at the top (bottom) layer. The
vectors tcµ and tdµ give the positions of the C atoms within a
unit cell. The primitive lattice vectors are denoted by a1 and
a2. (b) The first Brillouin zone with basic reciprocal lattice
vectors b1 and b2.

x x

x xx

y y

yyy

(a) Γ: D3d
(b) K,K′: D3

(c) M1: C2h (d) M2: C2h (e) M3: C2h

σ
(1)
d

σ
(2)
d

σ
(3)
d

C
′(12)
2

C
′(23)
2

C
′(31)
2

C
′(12)
2

C
′(23)
2

C
′(31)
2

C2

C2

C2

σh σh

σh

FIG. 6. Groups of the wave vector in BLG. (a) The point
Γ has the point group D3d with the z axis (out of plane) as
the axis for the three-fold proper rotation C3 and the six-fold
improper rotation S6. The green dashed lines ij are the axes

for two-fold rotations C
′′(ij)
2 with i, j = 1, 2, 3. The reflection

σ
(i)
d is about a plane that includes the corresponding blue

dashed axis and the z axis. (b) The points K and K′ have
the point group D3 with three-fold rotations about the z axis.

The dashed lines are the axes for the two-fold rotations C
′(ij)
2 .

The dotted lines indicate the reflection planes that appear in
the point group D3d but are not symmetry elements of D3.
(c)-(e) The points M1, M2, and M1 have the point group C2h.
The green dashed line is the axis of the two-fold rotation C2.
The reflection plane of σh contains the blue dashed line and
the z axis.
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ponent, the positions of the C atoms in the unit cell for
the three coordinate systems are

taA =
a

2

(
1
− 1√

3

)
, taA′µ =

a

2

(
0
0

)
, (94a)

taB =
a

2

(
1
1√
3

)
, taB′µ =

a

2

(
1
− 1√

3

)
, (94b)

tbA =
a

2

(
0
− 2√

3

)
, tbA′µ =

a

2

(
−1
− 1√

3

)
, (94c)

tbB =
a

2

(
0
0

)
, tbB′µ =

a

2

(
0
− 2√

3

)
, (94d)

tcA =
a

2

(
0
0

)
, tcA′µ =

a

2

(
−1
1√
3

)
, (94e)

tcB =
a

2

(
0
2√
3

)
, tcB′µ =

a

2

(
0
0

)
, (94f)

where the superscripts α = a, b, c denote the coordinate
system. The positions of the six atoms in unit cell j

are denoted by RA
j , RB

j , RA′µ
j and RB′µ

j . In standard

notation [58], the positions A, B , A′µ and B′µ are char-
acterized by the Wyckoff letters c, e, g, and h respectively
in coordinate system (a), by e, a, h, and i in coordinate
system (b), and by a, c, i, and g in coordinate system (c),
see Table I.

The point group D3h of the crystal structure of TLG
is the same as for MoS2 with coordinate system shown in
Fig. 2(a). The group of the wave vector at K is GK = C3h

with coordinate system shown in Fig. 2(b). At the three
points Mi the group of the wave vector is GM = C2v with
coordinate system shown in Figs. 2(c)-(e), which contains
the two-fold rotation C2 about the dashed line, reflection
σ′v about the dashed line and the z axis, and reflection
σv about the xy plane.

B. IRs of Bloch states in graphene

In graphene, the bands near the Fermi level are domi-
nated by the p orbitals of the C atoms. For SLG, us-
ing the coordinate systems in Fig. 4, the IRs of the
symmetry-adapted p orbitals are listed in Table V for
the points Γ, K, and M with groups of the wave vec-
tor D6h, D3h, and D2h respectively. For BLG, Fig. 6
shows the coordinate systems used for the points Γ, K,
and M with group of the wave vector D3d, D3 and C2h,
respectively. The IRs of the p orbitals at these points are
listed in Table V. The coordinate systems used for TLG
are the same as the ones for MoS2 [Fig. 2], so that the
IRs of the p orbitals can be taken from Table IV. The
symmetry-adapted plane waves with the corresponding
IRs are summarized in Table VII.

The IRs of the full Bloch functions for SLG, BLG, and
TLG are listed in Table XII. The sets of Bloch states
transforming as an IR in Gk for the wave vectors k =
Γ,K,M are listed in Tables XIII, XIV, and XV for SLG,

(a) (b)

(c)

(d)

yk

kx

Γ

M1

M3
M2

KK’

1

2b

b

(3)

(1)

(2)

(1)(3)

(2)

(3) (1)

(2)
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a2

ta
B’

ta
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ta
A’

tA
c
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B

a1

a2

tc
B’tc

A’

a2

a1

tA
b tb

B’

tb
B

tb
A’

x x

y

y

x

BAA’1

top layer: middle layer:

A’2 B’2

bottom layer:

B’1

FIG. 7. Crystal structure of trilayer graphene. Three coor-
dinate systems α = a, b, c are considered with (a) the origin
located at the atom A, (b) origin at atom B, and (c) origin
at the midpoint between B′1 and B′2. The dashed axes (1),
(2) and (3) are the two-fold rotation axes of the point group
D3h. The shaded region shows a unit cell (j = 1). The vec-
tors tαA, tαB , tαA′ and tαB′ give the positions of the C atoms
labeled A, B, A′µ and B′µ within a unit cell respectively.
For the A′ and B′ atom, the top (bottom) atoms are labeled
µ = 1 (µ = 2). The positions of these atoms in unit cell j are

denoted by R
A(α)
j , R

B(α)
j , R

A′µ(α)
j , and R

B′µ(α)
j respectively.

(d) The first Brillouin zone.

Tables XVI, XVII, and XVIII for BLG, and Tables XIX,
XX, and XXI for TLG.
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TABLE XII. IRs of the plane waves (Γqk), the atomic orbitals φν (Γφk), and the full Bloch functions (ΓΦ
k = Γqk × Γφk) for single-

layer (SLG), bilayer (BLG), and tri-layer graphene (TLG) at the points k = Γ, K, and Mi. The positions of C atoms in SLG
are characterized by the Wyckoff letter c with multiplicity m = 2. For BLG, the atomic positions have Wyckoff letters c and
d each with multiplicity m = 2. For TLG, the Wyckoff letters of the atomic positions are denoted A and B with multiplicity
m = 1, and A′ and B′ with multiplicity m = 2. For TLG at K, we need to distinguish between the three coordinate systems
α = a, b, c. The IRs of GK and GK′ in SLG and BLG are real, so that ΓqK = ΓqK′ and ΓφK = ΓφK′ , whereas in TLG the IR

ΓqK′(i/j/k) is the complex conjugate of ΓqK(i/j/k). At the points Mi (i = 1, 2, 3), the atomic orbitals are denoted by φ
[i]
ν .

k = Γ k = K k = M1,M2,M3

ΓqΓ φν ΓφΓ ΓΦ
Γ ΓqK φν ΓφK ΓΦ

K ΓqM φ
[1(3)]
ν φ

[2]
ν ΓφM ΓΦ

M

SLG D6h D3h D2h

c
Γ+

1 ,

Γ−3

pz Γ−2
Γ−2

Γ6

pz Γ4 Γ5

Γ+
1 ,

Γ−2

pz pz Γ−3
Γ−3

Γ+
3 Γ+

4

{px, py} Γ−5

Γ−5

{px, py} Γ6

Γ1
px ∓

√
3py px Γ−4

Γ−4

Γ2 Γ+
3

Γ+
6 Γ6

√
3px ± py py Γ−2

Γ−2

Γ+
1

BLG D3d D3 C2h

c
Γ+

1 ,

Γ−2

pz Γ−2
Γ−2

Γ1,
Γ2

pz Γ2
Γ2

Γ+
1 ,

Γ−2

pz pz Γ−2
Γ−2

Γ+
1 Γ1 Γ+

1

{px, py} Γ−3

Γ−3

{px, py} Γ3

Γ3 px ∓
√

3py px Γ−1
Γ−1

Γ+
2

Γ+
3 Γ3

√
3px ± py py Γ−2

Γ−2

Γ+
1

d
Γ+

1 ,

Γ−2

pz Γ−2
Γ−2

Γ3

pz Γ2 Γ3

Γ+
1 ,

Γ−2

pz pz Γ−2
Γ−2

Γ+
1 Γ+

1

{px, py} Γ−3

Γ−3

{px, py} Γ3

Γ1
px ∓

√
3py px Γ−1

Γ−1

Γ2 Γ+
2

Γ+
3 Γ3

√
3px ± py py Γ−2

Γ−2

Γ+
1

TLG
D3h C3h C2v

ΓqΓ φν ΓφΓ ΓΦ
Γ ΓqK(a/b/c) φν ΓφK ΓΦ

K(a/b/c) ΓΦ
K′(a/b/c) ΓqM φ

[1(3)]
ν φ

[2]
ν ΓφM ΓΦ

M

A Γ1

pz Γ4 Γ4

Γ3/2/1

pz Γ4 Γ6/5/4 Γ5/6/4

Γ1

pz pz Γ4 Γ4

{px, py} Γ6 Γ6
px + ipy Γ2 Γ1/3/2 Γ3/1/2 px ∓

√
3py px Γ2 Γ2

px − ipy Γ3 Γ2/1/3 Γ1/2/3

√
3px ± py py Γ1 Γ1

B Γ1

pz Γ4 Γ4

Γ2/1/3

pz Γ4 Γ5/4/6 Γ6/4/5

Γ1

pz pz Γ4 Γ4

{px, py} Γ6 Γ6
px + ipy Γ2 Γ3/2/1 Γ1/2/3 px ∓

√
3py px Γ2 Γ2

px − ipy Γ3 Γ1/3/2 Γ2/3/1

√
3px ± py py Γ1 Γ1

A′
Γ1,
Γ4

pz Γ4
Γ4

Γ1/3/2,

Γ4/6/5

pz Γ4
Γ4/6/5 Γ4/5/6

Γ1,
Γ4

pz pz Γ4
Γ4

Γ1 Γ1/3/2 Γ1/2/3 Γ1

{px, py} Γ6

Γ6 px + ipy Γ2
Γ2/1/3 Γ2/3/1

px ∓
√

3py px Γ2
Γ2

Γ5/4/6 Γ5/6/4 Γ3

Γ5 px − ipy Γ3
Γ3/2/1 Γ3/1/2 √

3px ± py py Γ1
Γ1

Γ6/5/4 Γ6/4/5 Γ4

B′
Γ1,
Γ4

pz Γ4
Γ4

Γ3/2/1,

Γ6/5/4

pz Γ4
Γ6/5/4 Γ5/6/4

Γ1,
Γ4

pz pz Γ4
Γ4

Γ1 Γ3/2/1 Γ2/3/1 Γ1

{px, py} Γ6

Γ6 px + ipy Γ2
Γ1/3/2 Γ3/1/2

px ∓
√

3py px Γ2
Γ2

Γ4/6/5 Γ6/4/5 Γ3

Γ5 px − ipy Γ3
Γ2/1/3 Γ1/2/3 √

3px ± py py Γ1
Γ1

Γ5/4/6 Γ4/5/6 Γ4
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TABLE XIII. Symmetry-adapted TB Bloch functions in SLG
at k = Γ with group of the wave vector GΓ = D6h. The C
atoms are located at Wyckoff position c of multiplicity 2. The
Bloch functions are written as a product of the plane waves
q±Γ (Rc

j) = qΓ(Rc1
j ) ± qΓ(Rc2

j ) and the p orbitals of the C

atoms. Also, qΓ(RW
j ) {px, py} is a short-hand notation for

the pair of Bloch functions {qΓ(RW
j ) px,qΓ(RW

j ) py}. The
last column indicates the degeneracy of Bloch states due to
time-reversal symmetry discussed in Sec. II H.

IRs Bloch function TR

Γ−2 q−Γ (Rc
j) pz a

Γ+
3 q+

Γ (Rc
j) pz a

Γ−5 q+
Γ (Rc

j) {px, py} a

Γ+
6 q−Γ (Rc

j) {px, py} a

TABLE XIV. Symmetry-adapted TB Bloch functions in SLG
at k = K with group of the wave vector GK = D3h. The
same form of the symmetry-adapted TB Bloch functions and
corresponding IRs work for k = K′, that is we replace K with
K′.

IRs Bloch function TR

Γ1 qK(Rc1
j ) py + qK(Rc2

j ) px a

Γ2 qK(Rc1
j ) py − qK(Rc2

j ) px a

Γ5 {qK(Rc1
j ) pz,qK(Rc2

j ) pz} a

Γ6 {qK(Rc1
j ) px,qK(Rc2

j ) py} a

TABLE XV. Symmetry-adapted TB Bloch functions in SLG
at k = M with group of the wave vector GM = D2h.

IRs M1 (M3) M2 TR

Γ+
1 q+

M(Rc
j)(
√

3px ± py) q−M(Rc
j) py a

Γ−2 q−M(Rc
j)(
√

3px ± py) q+
M(Rc

j) py a

Γ+
3 q+

M(Rc
j)(px ∓

√
3py) q−M(Rc

j) px a

Γ−3 q−M(Rc
j) pz q+

M(Rc
j) pz a

Γ+
4 q+

M(Rc
j) pz q−M(Rc

j) pz a

Γ−4 q−M(Rc
j)(px ∓

√
3py) q+

M(Rc
j) px a

TABLE XVI. Symmetry-adapted TB Bloch functions in BLG
at k = Γ with group of the wave vector GΓ = D3d. The
C atoms are located at Wyckoff positions W = c, d each of
multiplicity 2. q±Γ (RW

j ) {px, py} is a short-hand notation for

the pair of Bloch functions {q±Γ (RW
j ) px,q

±
Γ (RW

j ) py}.

IRs W = c, d TR

Γ+
1 q−Γ (RW

j ) pz a

Γ−2 q+
Γ (RW

j ) pz a

Γ+
3 q−Γ (RW

j ) {px, py} a

Γ−3 q+
Γ (RW

j ) {px, py} a

TABLE XVII. Symmetry-adapted TB Bloch functions in
BLG at k = K with group of the wave vector GK = D3.
q±K(RW

j ) {px, py} is a short-hand notation for the pair of

Bloch functions {q±K(RW
j ) px,q

±
K(RW

j ) py}. The same form
of the symmetry-adapted TB Bloch functions and correspond-
ing IRs work for k = K′, that is we replace K with K′.

IRs c d TR

Γ1 q−K(Rc
j) pz qK(Rd1

j ) py + qK(Rd2
j ) px a

Γ2 q+
K(Rc

j) pz qK(Rd1
j ) py − qK(Rd2

j ) px a

Γ3 q−K(Rc
j) {px, py}; {qK(Rd1

j ) pz,qK(Rd2
j ) pz}; a

q+
K(Rc

j) {px, py} {qK(Rd1
j ) px,qK(Rd2

j ) py}
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TABLE XVIII. Symmetry-adapted TB Bloch functions in BLG at k = M with group of the wave vector GM = C2h.

k = M1 (M3) k = M2

IRs c d c d TR

Γ+
1 q−M(Rc

j) pz; q+
M(Rd

j ) pz; q−M(Rc
j) pz; q−M(Rd

j ) pz; a

q−M(Rc
j) (
√

3px ± py) q+
M(Rd

j ) (
√

3px ± py) q−M(Rc
j) py q−M(Rd

j ) py

Γ−1 q+
M(Rc

j) (px ∓
√

3py) q−M(Rd
j ) (px ∓

√
3py) q+

M(Rc
j) px q+

M(Rd
j ) px a

Γ+
2 q−M(Rc

j) (px ∓
√

3py) q+
M(Rd

j ) (px ∓
√

3py) q−M(Rc
j) px q−M(Rd

j ) px a

Γ−2 q+
M(Rc

j) pz; q−M(Rd
j ) pz; q+

M(Rc
j) pz; q+

M(Rd
j ) pz; a

q+
M(Rc

j) (
√

3px ± py) q−M(Rd
j ) (
√

3px ± py) q+
M(Rc

j) py q+
M(Rd

j ) py

TABLE XIX. Symmetry-adapted TB Bloch functions in TLG at k = Γ with group of the wave vector GΓ = D3h. The C atoms
are located at Wyckoff positions W = A,B (W = A′, B′) of multiplicity 1 (2). qΓ(RW

j ) {px, py} is a short-hand notation for

the pair of Bloch functions {qΓ(RW
j ) px,qΓ(RW

j ) py}.

IRs W = A,B W = A′, B′ TR

Γ1 q−Γ (RW
j ) pz a

Γ4 qΓ(RW
j ) pz q+

Γ (RW
j ) pz a

Γ5 q−Γ (RW
j ) {px, py} a

Γ6 qΓ(RW
j ) {px, py} q+

Γ (RW
j ) {px, py} a

TABLE XX. Symmetry-adapted TB Bloch functions in TLG at k = K,K′ with group of the wave vector GK = GK′ = C3h.
The IRs Γi/j/k correspond to the coordinate system α = a/b/c in Fig. 7. The IRs at K′ are the complex conjugates of the IRs
at K.

K K′ = −K A B A′ B′ TR

Γ1/3/2 Γ∗1/3/2 = Γ1/2/3 qK(RA
j ) (px ± ipy) qK(RB

j ) (px ∓ ipy) q−K(RA′
j ) pz q+

K(RB′
j ) (px ± ipy) a

Γ2/1/3 Γ∗2/1/3 = Γ3/1/2 qK(RA
j ) (px ∓ ipy) q+

K(RA′
j ) (px ± ipy) q+

K(RB′
j ) (px ∓ ipy) a

Γ3/2/1 Γ∗3/2/1 = Γ2/3/1 qK(RB
j ) (px ± ipy) q+

K(RA′
j ) (px ∓ ipy) q−K(RA′

j ) pz a

Γ4/6/5 Γ∗4/6/5 = Γ4/5/6 q+
K(RA′

j ) pz q−K(RB′
j ) (px ± ipy) a

Γ5/4/6 Γ∗5/4/6 = Γ6/4/5 qK(RB
j ) pz q−K(RA′

j ) (px ± ipy) q−K(RB′
j ) (px ∓ ipy) a

Γ6/5/4 Γ∗6/5/4 = Γ5/6/4 qK(RA
j ) pz q−K(RA′

j ) (px ∓ ipy) q+
K(RB′

j ) pz a

TABLE XXI. Symmetry-adapted TB Bloch functions in TLG at k = M with group of the wave vector GM = C2v.

k = M1 (M3) k = M2

IRs W = A,B W = A′, B′ W = A,B W = A′, B′ TR

Γ1 qM(RW
j ) (
√

3px ± py) q+
M(RW

j ) pz; qM(RW
j ) py q−M(RW

j ) pz; a

q+
M(RW

j ) (
√

3px ± py) q+
M(RW

j ) py

Γ2 qM(RW
j ) (px ∓

√
3py) q+

M(RW
j ) (px ∓

√
3py) qM(RW

j ) px q+
M(RW

j ) px a

Γ3 q−M(RW
j ) (px ∓

√
3py) q−M(RW

j ) px a

Γ4 qM(RW
j ) pz q−M(RW

j ) pz; qM(RW
j ) pz q+

M(RW
j ) pz; a

q−M(RW
j ) (
√

3px ± py) q−M(RW
j ) py
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V. SELECTION RULES: EFFECT OF BAND IR
REARRANGEMENT

We show in the following that the selection rules for
the observable matrix elements of a Hermitian operator
O taken between Bloch states are not affected by the re-
arrangement of band IRs discussed in Sec. II G provided
the perturbation of a crystal represented by the operator
O preserves translational invariance. This condition for
the operator O is certainly obeyed by the dipole operator
O = r representing optical transitions, but it does not
apply to localized perturbations such as point defects for
which anyway the specific location of the defect plays a
crucial role [3]. We consider a translation τ of the coordi-
nate system as introduced in Sec. II G, so that T = {11|τ}
is a unitary operator with T † = T−1. This transforms
both the states and operators. A state |ψJβ〉 in the
old coordinate system transforming according to the IR
ΓJ becomes |ψJ′β′〉 = T |ψJβ〉 transforming according to
ΓJ′ = Γτ × ΓJ , with Γτ = {Dk

τ (g) = exp(−ibg · τ ) : g ∈
Gk} [Eq. (67)]. Similarly, 〈ψIα| transforming according
to the IR Γ∗I becomes 〈ψI′α′ | = 〈ψIα|T † transforming ac-
cording to Γ∗I′ = Γ∗τ × Γ∗I . Invariance of the operator O

under translations T implies [O, T ] = 0, or

O′ ≡ T OT−1 = O, (95)

so that both O and O′ transform according to the same
representation (which need not be irreducible)

ΓO = ΓO′ . (96)

Hence, we get (note Γ∗τ × Γτ = Γ1)

Γ∗I′ × ΓO′ × ΓJ′ = Γ∗I × ΓO× ΓJ , (97)

i.e., in the unprimed and primed coordinate system we
get the same selection rules. In the primed coordinate
system, the matrix elements become

O′α′β′ = 〈ψI′α′ |O′|ψJ′β′〉 (98a)

= 〈ψIα|T−1T OT−1T |ψJβ〉 (98b)

= 〈ψIα|O|ψJβ〉 (98c)

= Oαβ . (98d)

Note that for multi-dimensional IRs ΓJ and ΓJ′ = Γτ ×
ΓJ , we can always choose the representation matrices
such that T |ψJβ〉 = |ψJ′β〉, and similarly 〈ψIα|T † =
〈ψI′α|, so that Eq. (98) becomes O′αβ = Oαβ .

VI. THEORY OF INVARIANTS

A. General theory

The Bloch eigenstates ΨIβ
nk(r) at a wave vector k trans-

form according to an IR ΓI of the group of the wave vec-
tor Gk. The knowledge of these IRs suffices to construct

the general form of the effective Hamiltonian character-
izing the Bloch eigenstates near the expansion point k
consistent with the symmetry operations in Gk. This
method is known as the theory of invariants [3]. The
Hamiltonian can be expressed in terms of a general ten-
sor operator denoted as K that may depend on, e.g., the
kinetic wave vector κ measured from k, external electric
and magnetic fields E and B, strain ε and spin S. For
all group elements g ∈ Gk, the Hamiltonian H(K) obeys
the invariance condition [3]

D(g)H(g−1K)D−1(g) = H(K). (99)

According to the theory of invariants, each block HII′

of the matrix H corresponding to a pair of bands trans-
forming according to the IRs ΓI and ΓI′ has the form

HII′(K) =
∑
i,J

aII
′

iJ

LJ∑
l=1

XJ
l K

i,J∗
l , (100)

where J labels the LJ -dimensional IRs ΓJ contained in
the product representation Γ∗I × ΓI′ , the basis matrices
XJ
l and the irreducible tensor operators Ki

J constructed
from the perturbations K transform according to the IR
ΓJ , and aII

′

iJ are constant prefactors. The index i labels
the irreducible tensor operators transforming as ΓJ . In
general, we have multiple blocks HII′(K) corresponding
to different bands n and n′ transforming according to
ΓI and ΓI′ . To simplify the notation, we drop these
additional indices.

B. Effect of band IR rearrangements

A translation of the coordinate system by τ changes
the IR of an eigenfunction ΨI

nk(r) from ΓI to ΓJ = Γτ ×
ΓI , see Eq. (68). We have

Γ∗J × ΓJ′ = (Γτ × ΓI)
∗ × (Γτ × ΓI′) (101a)

= Γ∗I × ΓI′ , (101b)

where we used Γ∗τ ×Γτ = Γ1 for one-dimensional IRs Γτ .
Therefore, the IRs contained in Γ∗J ×ΓJ′ are equal to the
IRs contained in Γ∗I ×ΓI′ . This implies that translations
τ of the coordinate system resulting in a rearrangement
of the IRs assigned to the eigenfunctions do not affect
the invariant expansion of the Hamiltonian H(K).

C. Invariant Hamiltonian for MoS2

As an application of the theory of invariants, we con-
sider monolayer MoS2. In this material, the lowest con-
duction and highest valence band are at the points K
and K′ [29], hence we focus on these points (where
GK = C3h). Table III lists the mapping of axial (A)
and polar vectors (P) under the relevant symmetry op-
erations. This allows one to confirm the examples for
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basis functions listed for C3h in Table XXVII. Crystal
momentum κ and an electric field E transform like polar
vectors, whereas spin S and a magnetic field B transform
like axial vectors. Hence we immediately obtain from
Table XXVII the lowest-order tensor operators listed in
the second column of Table XXII. In general, we obtain
higher-order tensor operators using the Clebsch-Gordan
coefficients that are tabulated in, e.g., Ref. [56]. However,
this procedure is greatly simplified if all IRs of the rele-
vant group are one-dimensional, which holds for C3h. In
such a case, the higher-order tensor operators can be con-
structed using the multiplication table for the IRs that is
reproduced for C3h in Table XXX. Irreducible tensor op-
erators are generally not unique. Given two irreducible
tensor operators K and K′ transforming according to
the same IR ΓI , any linear combinations of these ten-
sors transforms likewise irreducibly according to ΓI [5].
We exploit this freedom to choose linear combinations of
irreducible tensors such as κ3

− and κ3
+ that have also a

well-defined behavior under time reversal symmetry (see
Sec. VI D).

We can also consider the effects of strain. When stress
deforms a crystalline solid, the symmetry of the sys-
tem is altered which changes the energy spectrum of the
material. Suppose under a deformation a point r in a
solid undergoes a displacement u(r). For small homoge-
neous strain, the symmetric strain tensor is defined as
(i, j = x, y, z) [59]

εij =
1

2

(
∂ui
∂rj

+
∂uj
∂ri

+
∂uk
∂ri

∂uk
∂rj

)
. (102)

However, considering MoS2 as a quasi-2D material, strain
due to a perpendicular stress component is not rele-
vant. The components εij transform like the symmetrized
products {κi, κj} [3] so that we get the lowest-order op-
erators listed in the second column of Table XXII while
mixed higher-order tensor operators are listed in the third
column of Table XXII.

Since the IRs of C3h are all one-dimensional, the
Hamiltonian blocks (100) at the points K and K′ of MoS2

are one-dimensional. The 1×1 basis matrices XJ
1 can be

absorbed into the prefactors aII
′

iJ . Hence, Eq. (100) can
be simplified to

HII′(K) =
∑
i

aII
′

i K
i,J∗
l . (103)

The IRs corresponding to the eleven bands at K and K′

that are dominated by the Mo d and S p orbitals are listed
in Table XXIII. Here we focus on constructing a generic
6 × 6 Hamiltonian consisting of a sequence of bands
transforming as Γ1/3/2,Γ2/1/3,Γ3/2/1,Γ4/6/5,Γ5/4/6, and
Γ6/5/4 respectively, (realized, e.g., by the bands
v1, c1, c3, c2, v3, and v2; additional bands will replicate
the behavior obtained for these bands). For these bands,
the Hamiltonian matrix elements HK(K)II′ contain ten-

sors K transforming as

(Γ∗I × ΓI′) =


Γ1 Γ2 Γ3 Γ4 Γ5 Γ6

Γ3 Γ1 Γ2 Γ6 Γ4 Γ5

Γ2 Γ3 Γ1 Γ5 Γ6 Γ4

Γ4 Γ5 Γ6 Γ1 Γ2 Γ3

Γ6 Γ4 Γ5 Γ3 Γ1 Γ2

Γ5 Γ6 Γ4 Γ2 Γ3 Γ1

 , (104)

see Table XXX (Appendix C).

D. Time reversal

At the points K and K′ = −K with GK = C3h,
the Bloch functions ΨI

K and the corresponding time re-
versed functions Θ ΨI

K are linearly dependent on each
other [case (a) according to Eq. (79), see also Table X].
Also, the eigenfunctions at K can be mapped onto the

eigenfunctions at −K by a vertical reflection R = σ
(2)
v or

a 180◦ rotation C
′(2)
2 , which is case (2) as defined in Eq.

(80). [These two operations R are elements of the group
D3h, the point group of MoS2, see Fig. 2(a).] Hence,
for a Bloch state ΨI

K of band I, the time reversed state
Θ ΨI

K and the spatially transformed state RΨI
K, with

R = σ
(2)
v , C

′(2)
2 , obey the linear relation

Θ ΨI
K = (ΨI

K)∗ = tIRRΨI
K, (105)

where tIR is a phase factor (a unitary matrix if the di-
mensions of the IRs ΓI and Γ∗I was larger than one) that
depends on the choice for the operation R. For the phase
conventions used in Table XXIV, we have

tI
σ
(2)
v

=

{
1, I = 1, 2, 3
−1, I = 4, 5, 6,

(106a)

tI
C
′(2)
2

= 1, I = 1, . . . , 6. (106b)

The matrix H(K) must then satisfy the additional con-
dition

(tR)−1 H(R−1 K) tR = H∗(ζK) = Ht(ζK). (107)

where tR is a diagonal matrix with elements (tR)II = tIR,
ζ = +1 (−1) for quantities that are even (odd) under
time reversal such as E and ε (κ, B, and S), ∗ denotes
complex conjugation and t transposition. The compo-
nents of polar vectors P and axial vectors A transform

under σ
(2)
v and C

′(2)
2 as follows (see Table III)

σ(2)
v P± = −P∓, C

′(2)
2 P± = −P∓, (108a)

σ(2)
v Pz = Pz, C

′(2)
2 Pz = −Pz, (108b)

σ(2)
v A± = A∓, C

′(2)
2 A± = −A∓, (108c)

σ(2)
v Az = −Az, C

′(2)
2 Az = −Az. (108d)

It follows from Eq. (107) whether off-diagonal terms
in H(K) have real or imaginary prefactors. Tensor op-
erators that give rise to invariants with real prefactors
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TABLE XXII. Irreducible tensor operators for the point group C3h. For off-diagonal terms in the Hamiltonian H(K), using the
phase conventions in Table XXIV, the bold-face tensor operators give rise to invariants with purely real prefactors, while the
remaining tensor operators give rise to invariants with purely imaginary prefactors. At the same time, these phase conventions
and time-reversal symmetry imply that invariants appearing on the diagonal of H(K) (which transform as Γ1) can only be
formed from tensor operators listed in bold, the remaining tensor operators correspond to invariants that are forbidden by
time reversal symmetry. Tensors transforming according to Γ3 and Γ6 are the Hermitean adjoint of the tensors transforming
according to Γ2 and Γ5, respectively. Notation: V± = Vx ± iVy with V = κ,B, E, and ε± = εxx − εyy ± 2iεxy, ε‖ = εxx + εyy.

lowest order higher order

Γ1 11;Bz;Sz; ε‖ κ
2;κ3
− + κ3

+; iκ3
− − iκ3

+;κ4;κ−E+ + κ+E−; iκ−E+ − iκ+E−;κ2Bz;κ2Sz;

κ−ε− + κ+ε+; iκ−ε− − iκ+ε+;κ2ε‖;BzSz;B−S+ + B+S−; iB−S+ − iB+S−;Bzε‖;

E−ε− + E+ε+; iE−ε− − iE+ε+;Szε‖;κ−B−S− + κ+B+S+; iκ−B−S− − iκ+B+S+;

Ez(κ+S− + κ−S+); iEz(κ+S− − κ−S+);Bz(κ−ε− + κ+ε+); iBz(κ−ε− − κ+ε+);

κ+E+ε− + κ−E−ε+; iκ+E+ε− − iκ−E−ε+
Γ2 κ+; E+; ε− κ2

−;κ2κ+;κ2κ2
−;κ4

+;κ−E−;κ2E+;κ2
+E−;κ+Bz;κ2

−Bz;κ+Sz;κ2
−Sz;κ−ε+;κ2ε−;

E+Sz; EzS+; E−ε+; BzE+; B+Ez;B−S−;κ+B+S−;κ+E+ε+
Γ4 Ez κ+B− + κ−B+; iκ+B− − iκ−B+;κ+S− + κ−S+; iκ+S− − iκ−S+;

B−E+ + B+E−; iB−E+ − iB+E−; E+S− + E−S+; iE+S− − iE−S+;

B−ε− + B+ε+; iB−ε− − iB+ε+;S−ε− + S+ε+; iS−ε− − iS+ε+
Γ5 B+;S+ κ+Ez;κ

2
−Ez;κ−B−;κ−S−;κ2B+;κ2S+;κ2

+B−;κ2
+S−; EzE+; E−B−; E−S−;

B+Bz;B+Sz;BzS+;SzS+; Ezε−;B−ε+;S−ε+;κ+E−S+;κ−Ezε+;κ+B+ε+;κ+S+ε+

TABLE XXIII. IRs Γi/j/k for the eleven TB bands [30] in
MoS2 obtained from Mo d and S p orbitals at the K point
for coordinate systems α = a/b/c in Fig. 1. We denote the
bands by c4, . . . , c1, v1, . . . , v7 arranged in order of decreasing
energy. The seven bands c3, . . . , v4 are used in Ref. [31], while
the three bands c3, c1, and v1 are used in Ref. [60]. The main
(second) atomic orbital for each band is given in the third
(fourth) column (compare Table X).

band IR main orbital second orbital

c4 Γ6/5/4 dxz + idyz pz
c3 Γ3/2/1 dx2−y2 − idxy pz
c2 Γ4/6/5 dxz − idyz px + ipy
c1 Γ2/1/3 dz2 px − ipy
v1 Γ1/3/2 dx2−y2 + idxy px + ipy
v2 Γ6/5/4 pz dxz + idyz
v3 Γ5/4/6 px − ipy
v4 Γ3/2/1 pz dx2−y2 − idxy
v5 Γ1/3/2 px + ipy dx2−y2 + idxy
v6 Γ2/1/3 px − ipy dz2

v7 Γ4/6/5 px + ipy dxz − idyz

are marked in bold in Table XXII. Furthermore, con-
dition (107) provides a general criterion which terms are
allowed by time-reversal symmetry on the diagonal of the
Hamiltonian [when the tensor operators must transform
according to the identity IR Γ1, see Eq. (104)]. Here,
our phase conventions imply that invariants (with real
prefactors) can only be formed from tensor operators
marked in bold in Table XXII. Thus, for example, on
the diagonal of the Hamiltonian the third-order trigonal
term κ3

+ + κ3
− = 2κx(κ2

x − 3κ2
y), as well as the field-

dependent terms iκ−E+− iκ+E− = 2(κyEx−κxEy) and
B+S− + B−S+ = 2(BxSx + BySy) are allowed by sym-

metry and thus present in the Hamiltonian. However,
the terms iκ3

− − iκ3
+ = 2κy(3κ2

x − κ2
y), κ+E− + κ−E+ =

2(κxEx+κyEy) and iB−S+−iB+S− = 2(BySx−BxSy)
are allowed by spatial symmetry; but these terms are for-
bidden by time-reversal symmetry and hence do not ap-
pear in the Hamiltonian. (They are allowed, though, as
off-diagonal terms coupling different bands transforming
according to the same IR, when these terms will have
imaginary prefactors.)

Using the transformation R, one can derive the effec-
tive Hamiltonian for the valley K′ using the transforma-
tion

HK′(K) = HK(R−1 K). (109)

Alternatively, time reversal can be used, see Eq. (107).

Note that the definition of HK′(K) relative to HK(K)
depends on the phase conventions used for the basis func-
tions ΨI

K′ relative to the phase conventions used for ΨI
K.

E. Analysis of the invariant expansion

The invariant Hamiltonian at the point K of the BZ
becomes in lowest order of the wave vector κ and spin-
orbit coupling (spin S)

H(κ,S) = H0 + Hκ + Hso (110)

with

H0 =


E1 0 0 0 0 0
0 E2 0 0 0 0
0 0 E3 0 0 0
0 0 0 E4 0 0
0 0 0 0 E5 0
0 0 0 0 0 E6

 , (111a)
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TABLE XXIV. Linear relation between the Bloch functions at K′ = −K obtained via time reversal Θ and via a spatial
transformation R applied to a Bloch function ΨI

K at wave vector k = K. The K point in the Brillouin zone is mapped onto

−K by a vertical reflection R = σ
(2)
v and by a rotation R = C

′(2)
2 , see Fig. 2(a).

IR ΨI
K Θ ΨI

K σ
(2)
v ΨI

K C
′(2)
2 ΨI

K

Γ1 qK(RMo
j ) (dx2−y2 + idxy); qK′(R

Mo
j ) (dx2−y2 − idxy); Θ Ψ1

K Θ Ψ1
K

iq+
K(RS

j ) (px + ipy) −iq+
K′(R

S
j ) (px − ipy)

Γ2 qK(RMo
j ) dz2 ; qK′(R

Mo
j ) dz2 ; Θ Ψ2

K Θ Ψ2
K

iq+
K(RS

j ) (px − ipy) −iq+
K′(R

S
j ) (px + ipy)

Γ3 qK(RMo
j ) (dx2−y2 − idxy); qK′(R

Mo
j ) (dx2−y2 + idxy); Θ Ψ3

K Θ Ψ3
K

q−K(RS
j ) pz q−K′(R

S
j ) pz

Γ4 qK(RMo
j ) (dxz − idyz); qK′(R

Mo
j ) (dxz + idyz); −Θ Ψ4

K Θ Ψ4
K

q−K(RS
j ) (px + ipy) q−K′(R

S
j ) (px − ipy)

Γ5 q−K(RS
j ) (px − ipy) q−K′(R

S
j ) (px + ipy) −Θ Ψ5

K Θ Ψ5
K

Γ6 qK(RMo
j ) (dxz + idyz); qK′(R

Mo
j ) (dxz − idyz); −Θ Ψ6

K Θ Ψ6
K

iq+
K(RS

j ) pz −iq+
K′(R

S
j ) pz

Hκ =


0 γ12κ+ γ13κ− 0 0 0

γ12κ− 0 γ23κ+ 0 0 0
γ13κ+ γ23κ− 0 0 0 0

0 0 0 0 γ45κ+ γ46κ−
0 0 0 γ45κ− 0 γ56κ+

0 0 0 γ46κ+ γ56κ− 0

 ,

(111b)

Hso =


λ11Sz 0 0 0 λ15S+ λ16S−

0 λ22Sz 0 λ24S− 0 λ26S+

0 0 λ33Sz λ34S+ λ35S− 0
0 λ24S+ λ34S− λ44Sz 0 0

λ15S− 0 λ35S+ 0 λ55Sz 0
λ16S+ λ26S− 0 0 0 λ66Sz

 ,

(111c)

where EI , γij , and λij are material-dependent real pa-
rameters.

The lowest-order strain-dependent terms become

Hε =


ξ11ε‖ ξ12ε− ξ13ε+ 0 0 0
ξ12ε+ ξ22ε‖ ξ23ε− 0 0 0
ξ13ε− ξ23ε+ ξ33ε‖ 0 0 0

0 0 0 ξ44ε‖ ξ45ε− ξ46ε+
0 0 0 ξ45ε+ ξ55ε‖ ξ56ε−
0 0 0 ξ46ε− ξ56ε+ ξ66ε‖

 (112)

with real parameters ξij . The effect of electric and mag-
netic fields Eand B can also be included in the Hamilto-
nian (110). For the electric field, we add on the diagonal
a scalar potential eE · r and we replace crystal momen-
tum by kinetic momentum ~κ = −i~∇ + eA, where A
is the vector potential due to the magnetic field. In ad-
dition, we may have terms that depend explicitly on the
fields E and B. The in-plane components Ex and Ey
transform spatially like the wave vector components κx

and κy. However, E is even under time reversal symme-
try, whereas κ is odd. In lowest order, the E dependent
terms become

HE =


0 η12E+ η13E− η14Ez 0 0

η∗12E− 0 η23E+ 0 η25Ez 0
η∗13E+ η

∗
23E− 0 0 0 η36Ez

η∗14Ez 0 0 0 η45E+ η46E−
0 η∗25Ez 0 η∗45E− 0 η56E+

0 0 η∗36Ez η
∗
46E+ η

∗
56E− 0


(113)

with imaginary prefactors ηij . Since B transforms in
the same way as the spin S both under spatial transfor-
mations and time reversal, the B-dependent terms are
similar to Eq. (111c)

HB =


β11Bz 0 0 0 β15B+ β16B−

0 β22Bz 0 β24B− 0 β26B+

0 0 β33Bz β34B+ β35B− 0
0 β24B+ β34B− β44Bz 0 0

β15B− 0 β35B+ 0 β55Bz 0
β16B+ β26B− 0 0 0 β66Bz


(114)

with real parameters βij .
We can project the multi-band Hamiltonian (110) on

a subspace containing the bands of interest using quasi-
degenerate perturbation theory or Löwdin partitioning
[5]. This gives rise to higher-order terms in the effective
Hamiltonian that may include also mixed terms propor-
tional to products of κ, S, ε, E, and B. In particular,
in the presence of a magnetic field B, the components of
crystal momentum ~κ = −i~∇ + eA do not commute,
[κx, κy] = (e/i~)Bz, so that antisymmetrized products of
κx and κy appearing in higher-order perturbation theory
give rise to terms proportional to Bz. Similarly, terms
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proportional to in-plane electric fields Ex, Ey appear be-
cause of the presence of the scalar potential eE · r and
the relation [ri, κj ] = iδij .

VII. CONCLUSIONS

Starting from a TB approach, we have developed a
comprehensive theory to derive the IRs characterizing
the Bloch eigenstates in a crystal by decomposing the TB
basis functions into localized symmetry-adapted atomic
orbitals and crystal-periodic symmetry-adapted plane
waves. Both the symmetry-adapted atomic orbitals and
the symmetry-adapted plane waves can easily be tabu-
lated, thus accelerating the design and exploration of new
materials. The symmetry-adapted basis functions block-
diagonalize the TB Hamiltonian, which naturally facili-
tates further analysis of the band structure. While our
analysis focused for clarity on symmorphic space groups,
our theory can readily be generalized to non-symmorphic
groups.

The present work was motivated by the goal to develop
a systematic theory of effective multi-band Hamiltonians
for the dynamics of Bloch electrons in external fields that
break the symmetry of the crystal structure. Yet our
general symmetry analysis of Bloch states will likely be
useful for other applications, too.
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work was supported by the NSF under Grant No.
DMR-1310199. Work at Argonne was supported by
DOE BES under Contract No. DE-AC02-06CH11357.

Appendix A: Projection operators

A general method to identify the IRs of the eigenstates
of a Hamiltonian uses projection operators [3, 19, 38, 39].
Given a symmetry group G with IRs ΓI , we can project
a general function f(r) onto its components fIβ(r) trans-
forming according to the βth component of the IR ΓI of
G. Here the projection operators ΠIβ are

ΠIβ ≡
nI
h

∑
g

DI(g)∗ββ P (g), (A1)

where h is the order of the group G, nI is the dimension-
ality of the IR ΓI , DI(g) are the representation matrices
for ΓI , and P (g) are the symmetry operators correspond-
ing to g ∈ G. Often, we denote P (g) simply as g. If we
are not interested in a particular component β of ΓI , we
can use the “coarse-grained” projection operators

ΠI ≡
∑
β

ΠIβ =
nI
h

∑
g

χI(g)∗ P (g), (A2)

where χI(g) ≡ tr DI(g) are the characters for ΓI . For
one-dimensional IRs, the operators ΠI become equivalent
to ΠIβ . The projection operators obey the completeness
relation ∑

I,β

ΠIβ =
∑
I

ΠI = 11. (A3)

Appendix B: Rearrangement lemma for IRs

Generally, if Γ0 is a one-dimensional IR of a group
G, then for any IR ΓI of G, the product representation
ΓI′ = Γ0 × ΓI is irreducible. If two IRs ΓI and ΓJ of
G are (in)equivalent, then the IRs ΓI′ = Γ0 × ΓI and
ΓJ′ = Γ0 × ΓJ are also (in)equivalent. Hence, a mul-
tiplication of the IRs of G by Γ0 simply rearranges the
sequence of IRs of G. These statements can be proven as
follows: For the element g ∈ G, we denote the characters
for the IRs Γ0 and ΓI by χ0(g) and χI(g) respectively.
Hence the character of the representation ΓI′ becomes
χI′(g) = χ0(g)χI(g). Since Γ0 is one-dimensional, its
characters are also its unitary representation matrices
obeying |χ0(g)|2 = 1. Using the orthogonality relations
for characters we get∑

g

|χI′(g)|2 =
∑
g

|χ0(g)χI(g)|2 (B1a)

=
∑
g

|χ0(g)|2 |χI(g)|2 (B1b)

=
∑
g

|χI(g)|2 = h, (B1c)

where h is the order of the group. Hence ΓI′ = Γ0 × ΓI
is irreducible if ΓI is irreducible. Now consider two IRs
ΓI′ = Γ0 × ΓI and ΓJ′ = Γ0 × ΓJ . Using again the
orthogonality relations for characters we get∑

g

χ∗I′(g)χJ′(g) =
∑
g

χ∗I(g)χ∗0(g)χ0(g)χJ(g) (B2a)

=
∑
g

χ∗I(g)χJ(g) = h δIJ , (B2b)

so that ΓI′ and ΓJ′ are indeed (in)equivalent if ΓI and
ΓJ are (in)equivalent.

Appendix C: Group tables

Character tables and basis functions for the groups
D3h, D2h, C3h, C2v, and C2h are reproduced in Ta-
bles XXV – XXIX following the designations by Koster
et al. [39]. The second column in each table gives the
designations for the IRs used by Dresselhaus et al. [39].
Examples of basis functions that transform irreducibly
according to the different IRs are listed in the last col-
umn. These functions are expressed in terms of the carte-
sian components of polar (P) and axial (A) vectors using
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the coordinate systems defined for the respective groups
in Figs. 2, 4, and 6. Finally, we reproduce in Table XXX
the multiplication table for the IRs of the group C3h [56].

TABLE XXV. Character table and basis functions for the
group D3h [56]. The coordinate system for the basis functions
is defined in Fig. 2(a).

E 2C3 3C
′(i)
2 σh 2S3 3σ

(jk)
v bases

Γ1 A′1 1 1 1 1 1 1 11
Γ2 A′2 1 1 −1 1 1 −1 Az
Γ3 A′′1 1 1 1 −1 −1 −1 PzAz
Γ4 A′′2 1 1 −1 −1 −1 1 Pz
Γ5 E′′ 2 −1 0 −2 1 0 Ax, Ay
Γ6 E′ 2 −1 0 2 −1 0 Px, Py

TABLE XXVI. Character table and basis functions for the
group D2h [56]. The coordinate system for the basis functions
is defined in Fig. 4(c-e).

E C2 C′2 C′′2 I σv σ′v σ′′v bases [c(e)] [d]

Γ+
1 A1g 1 1 1 1 1 1 1 1 11 11

Γ+
2 B2g 1 −1 1 −1 1 −1 1 −1

√
3Ax ±Ay Ay

Γ+
3 B1g 1 1 −1 −1 1 1 −1 −1 Az Az

Γ+
4 B3g 1 −1 −1 1 1 −1 −1 1 Ax ∓

√
3Ay Ax

Γ−1 A1u 1 1 1 1 −1 −1 −1 −1 PxPyPz
Γ−2 B2u 1 −1 1 −1 −1 1 −1 1

√
3Px ± Py Py

Γ−3 B1u 1 1 −1 −1 −1 −1 1 1 Pz Pz
Γ−4 B3u 1 −1 −1 1 −1 1 1 −1 Px ∓

√
3Py Px

TABLE XXVII. Character table and basis functions for the
group C3h with ω ≡ exp(iπ/6) [56]. The coordinate system
for the basis functions is defined in Fig. 2(b).

E C3 C−1
3 σh S3 S−1

3 bases

Γ1 A′ 1 1 1 1 1 1 11;Az
Γ2 E′1 1 ω4 ω−4 1 ω4 ω−4 P+

Γ3 E′2 1 ω−4 ω4 1 ω−4 ω4 P−
Γ4 A′′ 1 1 1 −1 −1 −1 Pz
Γ5 E′′1 1 ω4 ω−4 −1 −ω4 −ω−4 A+

Γ6 E′′2 1 ω−4 ω4 −1 −ω−4 −ω4 A−

TABLE XXVIII. Character table and basis functions for the
group C2v [56]. The coordinate system for the basis functions
is defined in Fig. 2(c-e).

E C2 σv σ′v bases [c(e)] [d]

Γ1 A1 1 1 1 1 11;
√

3Px ± Py 11;Py
Γ2 B1 1 −1 1 −1 Px ∓

√
3Py;Az Px;Az

Γ3 A2 1 1 −1 −1
√

3Ax ±Ay Ay
Γ4 B2 1 −1 −1 1 Pz;Ax ∓

√
3Ay Pz;Ax

TABLE XXIX. Character table and basis functions for the
group C2h [56]. The coordinate system for the basis functions
is defined in Fig. 6(c-e).

E C2 I σh bases [c(e)] [d]

Γ+
1 Ag 1 1 1 1 11;Ax ∓

√
3Ay 11;Ax

Γ+
2 Bg 1 −1 1 −1

√
3Ax ±Ay;Az Ay;Az

Γ−1 Au 1 1 −1 −1 Px ∓
√

3Py Px
Γ−2 Bu 1 −1 −1 1

√
3Px ± Py;Pz Py;Pz

TABLE XXX. Multiplication table for the IRs of the group
C3h [56].

Γ1 Γ2 Γ3 Γ4 Γ5 Γ6 Γi × Γj

Γ1 Γ2 Γ3 Γ4 Γ5 Γ6 Γ1

Γ3 Γ1 Γ5 Γ6 Γ4 Γ2

Γ2 Γ6 Γ4 Γ5 Γ3

Γ1 Γ2 Γ3 Γ4

Γ3 Γ1 Γ5

Γ2 Γ6
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[31] A. Kormányos, V. Zólyomi, N. D. Drummond, P. Rakyta,
G. Burkard, and V. I. Fal’ko, Monolayer MoS2: Trigo-
nal warping, the Γ valley, and spin-orbit coupling effects,
Phys. Rev. B 88, 045416 (2013).

[32] D. Jariwala, V. K. Sangwan, L. J. Lauhon, T. J.
Marks, and M. C. Hersam, Emerging device appli-
cations for semiconducting two-dimensional transition
metal dichalcogenides, ACS Nano 8, 1102 (2014).

[33] P. Ajayan, P. Kim, and K. Banerjee, Two-dimensional
van der Waals materials, Phys. Today 69, 38 (2016).

[34] S. Manzeli, D. Ovchinnikov, D. Pasquier, O. V. Yazyev,
and A. Kis, 2D transition metal dichalcogenides, Nature
Reviews Materials 2, 17033 (2017).

[35] G. Wang, A. Chernikov, M. M. Glazov, T. F. Heinz,
X. Marie, T. Amand, and B. Urbaszek, Colloquium:
Excitons in atomically thin transition metal dichalco-
genides, Rev. Mod. Phys. 90, 021001 (2018).

[36] R. Winkler and U. Zülicke, Invariant expansion for the
trigonal band structure of graphene, Phys. Rev. B 82,
245313 (2010).
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