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Using a large-N theory in combination with the Keldysh non-equilibrium Greens function formal-
ism, we investigate the current, differential conductance, zero-frequency shot-noise and Fano factor
as measured by scanning tunneling shot noise spectroscopy (STSNS) using a scanning tunneling
microscope (STM) near single Kondo impurities and in Kondo lattices. We show that the Fano
factor F exhibits a characteristic bias dependence arising from Kondo screening that is similar to
the Kondo resonance observed in the differential conductance. Moreover, the lineshape of F is
strongly dependent on the ratio of the tunneling amplitudes for electron tunneling from the STM
tip into the conduction band and electronic levels of the magnetic adatoms. We demonstrate that
the Fano factor can be enhanced or suppressed due to interference effects and as such, is not only a
sensitive probe for the correlation effects arising from Kondo screening, but also for quantum inter-
ference between tunneling electrons. We identify a correlation between the form of the differential
conductance and the Fano factor that could be tested in future STSNS experiments.

I. INTRODUCTION

The Kondo screening of a magnetic impurity by con-
duction electrons is one of the most fascinating phe-
nomena in condensed matter physics1. Its local spec-
troscopic signature, the Kondo resonance, has been well
studied using scanning tunneling spectroscopy (STS)
experiments2–6. By measuring the local differential con-
ductance near magnetic adatoms such as a Co atom lo-
cated on metallic Cu(111) or Au(111) surfaces, it was
observed that the Kondo resonance exhibits a lineshape
(i.e., a bias dependence) with a characteristic asymme-
try that can be well described phenomenologically using
the Fano formula7. A microscopic derivation of the Fano
formula7–9 has shown that the asymmetry of the Kondo
resonance arises not only from the particle-hole asym-
metry of the underlying conduction band, but also from
quantum interference between electrons tunneling from
the STM tip either into the conduction band, or the elec-
tronic levels of the magnetic adatoms10 as schematically
shown in Fig. 1.

The recent progress11–15 in the development of scan-
ning tunneling shot noise spectroscopy (STSNS)16–18 us-
ing a scanning tunneling microscope (STM) in which an
STM tip is used to simultaneously measure the IV -curves
as well as the zero-frequency shot noise – the current-
current correlation function – has raised the question of
whether such a characteristic signature as the Kondo res-
onance can also be found in the bias dependence of the
shot-noise, or of the Fano factor, defined as

F =
S(ω = 0)

2e|I|
(1)

where I is the current flowing from the tip into the
system, and S(ω = 0) is the associated zero-frequency
shot-noise. Indeed, recent STSNS experiments have
found a strong suppression of the Fano factor from its
Poissonian value of unity around magnetic and non-
magnetic adatoms on a Au(111) surface11, and ob-

served an enhanced current noise near defects in cuprate
superconductors14,15. Furthermore, it was argued that
the observation of shot-noise via STSNS could provide
insight into the local spin susceptibility associated with
unscreened magnetic adatoms19, and that measurements
of conductance-conductance correlations using an STM
tip could provide insight into the local spin structure of
the Kondo screening cloud20.

Shot-noise and the Fano factor have been extensively
studied in mesoscopic systems21–23, in particular in the
context of the Kondo effect on a quantum dot24–33 or
in carbon nanotubes34, in a set-up that is qualitatively
different from that of STSNS experiments. While it
was shown that the Fano factor in quantum dot sys-
tems is suppressed by Kondo correlations25, it was also
predicted29 that in the unitary limit, the Fano factor as-
sociated solely with the backscattered current can ex-
ceed the Poissonian limit of unity. An enhancement
in this modified Fano factor was subsequently observed
experimentally30,32. We note that the screening of a mag-
netic moment on a quantum dot arises from its coupling
to the leads, while in STSNS experiments, the screening
of an adatom’s moment on a Cu(111) or Au(111) surface
arises from the surface bands. As a result, in the latter
case the screening takes place even in the absence of the
STM tip, i.e., the lead.

In this article, we will investigate the relation between
the bias dependence of the current, the differential con-
ductance, the zero-frequency shot-noise, and the Fano
factor around magnetic adatoms located on metallic sur-
faces, exhibiting a Kondo effect, as well as in Kondo lat-
tices, as observed by scanning tunneling shot noise spec-
troscopy. We will show that the Fano factor exhibits a
characteristic lineshape that reflects not only the strong
correlations arising from Kondo screening, but also quan-
tum interference effects due to multiple tunneling paths.
This characteristic lineshape of F is not unlike the Kondo
resonance observed in the differential conductance, and
presents an additional test for our understanding of the
Kondo effect.
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The rest of the paper is organized as follows. In Sec.
II we present our theoretical model and derive the form
of the current and shot-noise measured by an STM tip.
This model was previously employed to successfully de-
scribe the Kondo resonance of a Co adatom located on a
Au(111) surface. In Sec. III we discuss our results for the
shot noise around a single magnetic adatom, the relation
between the differential conductance and the shot noise
lineshape, and the effects of tunneling interference. In
Sec. IV we discuss the form of the shot noise and Fano
factor in Kondo lattice systems. Finally, in Sec. V we
present our conclusions.

II. THEORETICAL MODEL

We begin by discussing the model for the current and
shot noise measured by STSNS around a single Kondo
impurity, and will subsequently extend it to the Kondo
lattice. To study the properties of a single Kondo impu-
rity, we employ the theoretical model of Ref.8 which was
used to successfully describe the lineshape of the Kondo
resonance in the differential conductance, dI/dV , mea-
sured around a single magnetic Co adatom located on a
metallic Au(111) surface2. Such a system is described by
the Hamiltonian1

Ĥ = −
∑
r,r′,σ

trr′c
†
r,σcr′,σ + JSKR · scR (2)

where c†r,σ (cr,σ) creates (annihilates) a conduction elec-
tron with spin σ at site r on the Au(111) surface. Here,
trr′ = 1.3 eV is the fermionic hopping element between
nearest-neighbor sites in the triangular Au(111) surface
lattice, and µ = −7.34 eV is its chemical potential. These
parameters describe the dispersion of the experimentally
observed Au(111) surface state35 that takes part in the
Kondo screening of the Co adatom. Moreover, J > 0
is the Kondo coupling, and SKR and scR are the spin op-
erators of the magnetic Co adatom and the conduction
electron at site R, respectively.

To describe the Kondo screening of the Co adatom by
the two-dimensional Au(111) surface state, we employ
a large-N expansion36–42. Here, SKR is generalized to
SU(N) and represented via Abrikosov pseudofermions
f†m, fm which obey the constraint

∑
m=1..N f

†
mfm = 1

with N = 2S + 1 being the spin degeneracy of the mag-
netic adatom. This constraint is enforced by means of
a Lagrange multiplier εf , while the exchange interaction
in Eq.(2) is decoupled via the hybridization field, s. The
hybridization represents the hopping between the con-
duction electron states and the pseudofermion f -electron
states with the resulting Kondo temperature scaling as37,
TK ∼ s2. For fixed J , εf and s are obtained on the saddle
point level by minimizing the effective action40. Finally,
the tunneling of electrons from the STM tip into the sys-

FIG. 1. Paths of electrons tunneling from the STM tip ei-
ther into the conduction band sites (grey spheres) or into the
magnetic level of the Kondo impurity (green sphere), with
tunneling amplitudes tc and tf , respectively.

tem is described by the Hamiltonian

Ĥ =
∑
σ

tcc
†
R,σdσ + tff

†
R,σdσ +H.c. (3)

where tc (tf ) are the amplitudes for tunneling of elec-
trons from the tip into the Au(111) surface band (the
magnetic f -level), as schematically shown in Fig. 1, and
dσ annihilates a fermion in the STM tip.

To compute the current and associated shot-noise mea-
sured by the STM tip, we employ the non-equilibrium
Keldysh Greens function formalism43,44. Unless other-
wise stated, all results presented in Secs. III and IV were
obtained at zero temperature. When the STM tip is posi-
tioned above the magnetic adatom at site R, the current
flowing from the STM tip into the system is given by45

IR(V ) = −2e

~
Re

∫ V

0

dω

2π

[
tc Ĝ

<
12(ω) + tf Ĝ

<
13(ω)

]
,(4)

with the full lesser Greens function matrix given by

Ĝ<(ω) = [1̂− ĝr(ω)t̂]−1ĝ<(ω)[1̂− t̂ĝa(ω)]−1 ;

ĝ<(ω) = −2in̂F (ω)Im [ĝr(ω)] ;

ĝr(ω) =

grt (ω) 0 0
0 grcc(R,R, ω) grcf (R,R, ω)
0 grfc(R, r, ω) grff (R,R, ω)

 . (5)

Here, t̂ is the symmetric hopping matrix with non-zero
elements t̂12 = tc, t̂13 = tf . n̂F is diagonal containing the
Fermi-distribution functions of the tip, ntF (ω), and of the
f - and c-electron states, nF (ω). grt is the retarded Greens
function of the tip, and gαβ(r′, r, τ) = −〈Tταr′(τ)β†r(0)〉
(α, β = c, f) describes the many-body effects arising from
the hybridization of the conduction band with the f -
electron level, and the concomitant screening of the mag-
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netic moment, with

grff (R,R, ω) =
[
ω − εf − s2gr0(R,R, ω)

]−1
;

grcc(R,R, ω) =

{
[gr0(R,R, ω)]

−1 − s2

ω − εf + iδ

}−1
grcf (R,R, ω) = gr0(R,R, ω)sgrff (R,R, ω) , (6)

where gr0 is the retarded Greens function of the unhy-
bridized conduction electron band. For a more in-depth
discussion, see Ref.9.

It is instructive to consider the weak-tunneling limit
(tc, tf → 0) of the current by expanding Eq.(4) up to
second order in the tunneling amplitudes, in which case
one obtains from Eq.(4)

IR(V ) = −4πe

~
πNt

∫ ∞
−∞

dε

2π

[
ntF (ε)− nF (ε)

]
×
[
t2cImg

r
cc(ε) + 2tctf Imgrcf (ε) + t2f Imgrff (ε)

]
(7)

where all grα,β (α, β = c, f) are the local retarded Greens’
functions at the site of the magnetic adatom, and Nt
is the density of states on the tip. We previously
demonstrated8 that the experimental dI/dV lineshape
measured at the site of a Co adatom on a Au(111)
surface2 can be described by computing the differential
conductance from Eq.(7) using the parameters J = 1.39
eV, tf/tc = −0.066, andN = 4. Note that due to a differ-
ent sign convention for the hybridization s in Ref.8, tf/tc
also changes sign, such that tf/tc = +0.066 was used in
Ref.8. These two simultaneous sign changes, however,
do not affect the asymmetry of the dI/dV curves shown
below.

We next consider the shot-noise which is defined as the
current-current correlation function21,22

S(t, t′) = 〈{δI(t), δI(t′)}〉 = 〈{I(t), I(t′)}〉 − 2〈I〉2 . (8)

We then obtain for the zero frequency noise S0 = S(ω =
0) at the site of the adatom

S0 = 2

(
ie

~

)2 ∫ ∞
−∞

dε

2π
t2c{2G>dc(ε)G

<
dc(ε)−G

>
dd(ε)G

<
cc(ε)

−G<dd(ε)G
>
cc(ε)}+ 2tctf{G>df (ε)G<dc(ε) +G<df (ε)G>dc(ε)

−G>dd(ε)G
<
fc(ε)−G

<
dd(ε)G

>
fc(ε)}+ t2f{2G>df (ε)G<df (ε)

−G>dd(ε)G
<
ff (ε)−G<dd(ε)G

>
ff (ε)} (9)

where G> are the greater Greens functions and all Greens
functions in Eq.(9) are local Greens function at the site
of the adatom.

Considering again the weak-tunneling limit tc, tf → 0,
the expression for the shot noise in Eq.(9) up to second

order in the tunneling amplitudes simplifies to

S0 = −8π

(
e

~

)2

NT

∫ ∞
−∞

dε

2π{[
1− nTF (ε)

]
nF (ε) + [1− nF (ε)]nTF (ε)

}[
t2cImg

r
cc(ε) + 2tctf Imgrcf (ε) + t2f Imgrff (ε)

]
. (10)

By comparing the expressions for the current, Eq.(7),
and shot-noise, Eq.(10) in the weak-tunneling limit, i.e.,
up to second order in the tunneling amplitudes, we find
that at zero temperature the Fano factor, Eq.(1), is given
by F = 1, implying that the noise is Poissonian. How-
ever, the inclusion of higher order tunneling terms in the
calculation of the current and shot-noise using Eqs.(4)
and (9) respectively, yields not only deviations of F from
the Poissonian limit, but also a characteristic bias de-
pendence, that similar to the differential conductance,
reflects the Kondo screening process, as shown below.
Finally, we note that the definition of the Fano factor
given in Eq.(1) differs from that used in Refs.29,32, as
Eq.(1) involves the total current and noise measured by
the STM tip.

To study the shot noise in Kondo lattice systems, we
generalize the Hamiltonian in Eq.(2) to

Ĥ = −
∑
r,r′,σ

trr′c
†
r,σcr′,σ + J

∑
r

SKr · scr +
∑
〈r,r′〉

Ir,r′S
K
r SKr′

(11)
where the sums run over all sites r of the conduction elec-
tron lattice. The last term represents the antiferromag-
netic interaction between the magnetic moments where
we assume that Ir,r′ > 0 is non-zero for nearest-neighbor
sites only. Introducing again an Abrikosov pseudo-
fermion representation of SKr , the antiferromagnetic in-
teraction term can be decoupled using χ0 = I〈f†r,αfr′,α〉,
which is a measure for the strength of the magnetic cor-
relations in the system. With this decoupling, the full
Green’s functions in momentum space, which describe
the hybridization between the c- and f -electron bands,
are given by

gff (k, α, ω) =
[
(g0ff (k, α, ω))−1 − s2g0cc(k, α, ω)

]−1
;

gcc(k, α, ω) =
[
(g0cc(k, α, ω))−1 − s2g0ff (k, α, ω)

]−1
;

gcf (k, α, ω) = −g0cc(k, α, ω)sgff (k, α, ω) , (12)

where

g0cc =
1

ω + iδ − εck

g0ff =
1

ω + iδ − εfk
εfk = −2χ0(cos kx + cos ky) + εf

εck = −2t(cos kx + cos ky)− µc . (13)

Here, εfk and εck are the dispersions of the unhybridized
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conduction electron and f -electron bands, respectively.
The dispersions of the hybridized conduction and f -
electron bands are then given by

E±k =
εck + εfk

2
±

√√√√(εck − εfk
2

)2

+ s2 . (14)

Finally, we note that the formal expressions for the cur-
rent and the shot-noise in the Kondo lattice are the same
as given in Eqs.(4) and (9), respectively, with the local
Greens functions in Eq.(6) being computed via Fourier
transform from their momentum space form in Eq.(12).

III. SHOT NOISE AROUND A KONDO
IMPURITY

We begin by considering the current and shot-noise
around a single Kondo impurity, using the parameters
previously employed to explain the differential conduc-
tance of a Kondo-screened Co adatom located on a
Au(111) surface2,8. While the Fano factor is unity in
the weak tunneling limit, i.e., up to second order in the
tunneling amplitudes, it deviates from this result with
increasing tunneling amplitude tc, tf , exhibiting a char-
acteristic lineshape that sensitively depends on the ra-
tio of the tunneling amplitudes tf/tc. Thus, in order to
be able to measure experimentally a characteristic Fano
factor, it is desirable to have large tunneling amplitudes,
corresponding to small distances between STM tip and
sample, and hence sufficiently large currents. While the

FIG. 2. (a) dI/dV , (b) current I, (c) noise S0, and (d) Fano
factor F for two different values of tf/tc = −0.066 and tf/tc =
0.01, as well as away from the Kondo impurity at r = ∞.
Results are shown for zero temperature.

ratio tf/tc can be determined by fitting the experimental
dI/dV lineshape, as was done for the case of a Co adatom
on a Au(111) surface in Ref.8, it is difficult to extract the

absolute values of the tunneling amplitudes. Therefore,
in order to determine whether deviations of F from unity
can be observed experimentally, it is necessary to treat
tc, tf as implicit parameters, and correlate the IV -curves
that result from given values for tc, tf with the form of
the Fano factor. We therefore present below the current,
differential conductance and noise in absolute units for
different sets of tc, tf . We note that increasing tc with
constant tf/tc leads to an increase in the current between
the tip and the system, and thus corresponds to decreas-
ing the distance between the STM tip and the sample in
experiments. Current state-of-the-art STS experiments
can achieve currents in the tunneling regime of hundreds
of nA for a bias of a few mV46,47, rendering all theoretical
results shown below within the experimental accessible
region.

Using the same set of parameters as previously em-
ployed in Ref.8, we present in Fig.2(a) the differential
conductance at the site of a single Kondo impurity for
tc = 0.1eV and two values of tf/tc. For tf/tc = −0.066,
we obtain the dI/dV lineshape (black line) that was pre-
viously employed to fit the experimental lineshape mea-
sured above a Co adatom on a Au(111) surface. For
comparison, we also present (i) dI/dV for tf/tc = +0.01
(red dashed line), whose lineshape exhibits an asymmetry
that is reversed from that obtained for tf/tc = −0.066,
and (ii) dI/dV away from the adatom at r = ∞ (blue
dotted-dashed line) which is that of the unhybridized
conduction band. To understand the difference in the
asymmetry of the dI/dV lineshapes, we consider the IV -
curves for these three cases in Fig.2(b). We find that
the Kondo correlations lead to a suppression of the cur-
rent for tf/tc = −0.066 from its value at r = ∞, but
to an enhancement for tf/tc = +0.01. This in turn ac-
counts for the change in the asymmetry of the differential
conductance curves between tf/tc = −0.066 and +0.01.
The origin of this enhancement/suppression can be un-
derstood from the weak tunneling limit of the current,
Eq.(7), as it lies in the interference term ∼ tctf . For
tf < 0, this interference term leads to a backflow of cur-
rent from the system into the tip, reducing the overall
magnitude of the current, as shown in Fig. 3(a) where
we present the contributions to the total current arising
from the three terms proportional to t2c , t

2
f and 2tctf in

Eq.(7). In contrast, for tf > 0, the interference term
leads to an additional current flowing from the tip into
the system as shown in Fig. 3(b), thus increasing the total
current. It also follows from the IV -curves that the mag-
nitude of the current for bias of a few mV falls within the
experimentally accessible range, implying that the value
of tc = 0.1eV is experimentally achievable.

In Fig.2(c) we present the zero-frequency shot-noise,
S0, for the cases tf/tc = −0.066,+0.01 and r = ∞.
Similar to the current, we find that the Kondo correla-
tions either suppress (for tf/tc = −0.066) or enhance (for
tf/tc = +0.01) the shot-noise with respect to its form at
r =∞. The reason for this suppression or enhancement
is similar to that for the current: due to the backflow
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FIG. 3. The three contributions to the total current from the
weak-tunneling limit of Eq.(7) which are proportional to t2c , t

2
f

and 2tctf for (a) tf/tc = −0.066, and (b) tf/tc = +0.01.

of the current from the system into the tip arising from
the interference term for tf/tc < 0, the contribution to
the noise arising from the current-current correlation be-
tween the current flowing directly from the tip into the
system, and the backflow is negative, thus reducing the
overall noise. In contrast, for tf/tc > 0 the contribution
to the noise ∼ tctf is positive, leading to an enhanced
noise in the vicinity of the Kondo resonance.

Finally, in Fig.2(d) we present the Fano factor for all
three cases, which exhibits a peak near the Kondo res-
onance for tf/tc = −0.066, and a dip for tf/tc = 0.01.
Moreover, the Fano factor for tf/tc = −0.066 near the
Kondo resonance is enhanced over its value for r = ∞,
while it is suppressed for tf/tc = 0.01. To understand
this difference in the Fano factor near V = 0, we con-
sider the Landauer formula48 for the current

I =
e2

π~
V Teff (15)

where Teff is the effective transmission coefficient be-
tween the tip and the system. A comparison with the
weak-tunneling expression for the current, Eq.(7), shows
that to leading order in V

Teff = −2πNt
[
t2cImg

r
cc(εF ) + 2tctf Imgrcf (εF )

+t2f Imgrff (εF )
]

=
π~
e2

dI

dV

∣∣∣∣
V=0

(16)

It follows from Fig. 2(a) that Teff ∼ dI
dV

∣∣
V=0

is smaller

for tf/tc = −0.066 than for tf/tc = 0.01. Similarly, the
shot-noise can be written in terms of Teff as49

S0 =
2e3

π~
|V |Teff (1− Teff ) . (17)

A comparison of Eq.(17) with the weak tunneling limit
for S0 in Eq.(10) yields the same Teff as in Eq.(16)
to leading order in tc, tf . We note that the term ∼
T 2
eff in Eq.(17) scales as the hopping amplitudes to the

fourth power, and is therefore not contained in the weak-
tunneling limit of S0 in Eq(10). By combining Eqs.(15)
and (17), we obtain for the Fano factor near V = 0

F = (1 − Teff ), which is thus larger for tf/tc = −0.066
than for tf/tc = 0.01, in agreement with our numerical
results shown in Fig.2(d). We thus conclude that there
exist an interesting correlation between the lineshape of
the Kondo resonance (as determined by tf/tc) and the
enhancement or suppression of the Fano factor with re-
spect to the r =∞ result.

FIG. 4. Evolution of the Fano factor F with increasing tc for
(a) tf/tc = −0.066, and (b) tf/tc = 0.01

A unique feature of the Fano factor is that its overall
lineshape, i.e, its bias dependence, is essentially indepen-
dent of tc, varying only with tf/tc. To demonstrate this,
we present in Fig. 4 the Fano factor F for several values of
tc with constant tf/tc. While the overall lineshape of the
Fano factor does not change with increasing tc (for con-
stant tf/tc), its overall variation increases, thus becoming
easier to observe experimentally. It is interesting to note
that the maximum of the Fano factor for tf/tc = −0.066
remains close to unity near the Kondo resonance, im-
plying that the transmission amplitude Teff remains ap-
proximately zero. On the other hand, for tf/tc = +0.01,
the suppression of the Fano factor near the Kondo res-
onance increases, implying that Teff increases with in-
creasing tc.

FIG. 5. (a) Linecut of F through the site the magnetic adatom
for tc = 0.1 eV, V = 5mV and tf/tc = −0.066. (b) Spatial
plot of F .

The Fano factor exhibits spatial oscillations, as shown
in Fig. 5, where we present a linecut of the Fano fac-
tor through the magnetic adatom [Fig. 5(a)] as well as a
spatial plot of F (r) [Fig. 5(b)]. The spatial plot of F (r)
reveals nearly isotropic oscillations whose wavelength is
given by λ ≈ 6.5a0 which is half of the Fermi wave-length.
We can therefore conclude that the spatial oscillations of
the Fano factor are 2kF r-oscillations, arising from scat-
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tering of the surface conduction electrons from the mag-
netic adatom. Similar spatial oscillations in the conduc-
tance fluctuations were interpreted as a signature of the
Kondo screening cloud20.

FIG. 6. Comparison of the zero-frequency noise, S(ω = 0),
at T = 0 and T = 4K for tc = 0.1eV and (a) tf/tc = −0.066,
and (b) tf/tc = 0.01 (note the different x- and y-axes scales).
Temperature evolution of the Fano factor for tc = 0.1eV and
(c) tf/tc = −0.066, and (d) tf/tc = 0.01.

Finally, we briefly comment on the temperature depen-
dence of the Fano factor. For any non-zero temperature,
there are thermal contributions to the zero-frequency
noise which are non-zero even at V = 0, as shown in
Figs. 6(a) and (b) for tf/tc = −0.066 and 0.01, respec-
tively (note the different x- and y-axes scales). On the
other hand, the current vanishes for V = 0, independent
of temperature. This implies that for any non-zero tem-
perature, the Fano factor exhibits a divergence at V = 0,
as shown in Fig. 6(c) and (d). We note that the bias
range over which the Fano factor at T = 4K is enhanced
over its T = 0 value varies significantly with tf/tc.

IV. SHOT NOISE IN A KONDO LATTICE

We next study the form of the current and shot-noise
in a Kondo lattice. To this end, we consider two different
sets of parameters for the Kondo lattice model of Eq.(11)
previously considered in Ref.8: one in which the antifer-
romagnetic interaction is sufficiently small [I/J = 0.001,
Kondo lattice 1 (KL1)], such that the system exhibits
a hard hybridization gap [see Figs. 7(a) and 8(a)], and
one in which the antiferromagnetic interaction is strong
enough [I/J = 0.015, Kondo lattice 2 (KL2)] such that
the system’s dispersion does not any longer exhibit an
indirect gap [see Fig. 7(b)] and the hybridization gap is
seen as a suppression in dI/dV rather than hard gap (see
Fig. 10(a), for a more in-depth review, see Ref.9).

We begin by considering the form of the noise and

FIG. 7. The dispersions E±
k from Eq.(14) along (0, 0) →

(π, π) with t = 500meV , µ = −3.618t, N = 2, J = 500meV,
Nt = 1eV −1, for (a) Kondo lattice 1 with I/J = 0.001 yielding
s = 48.5meV, εf = 1.2meV, and χ0 = 0.17meV, and (b)
Kondo lattice 2 with I/J = 0.015 yielding s = 48.0meV,
εf = 0.94meV, and χ0 = 2.59meV.

Fano factor for Kondo lattice 1 and present in Fig. 8(a)
the differential conductance for two different values of
tf/tc = ±0.015. As expected, dI/dV exhibits a hard hy-
bridization gap, and very different asymmetries for the
two values of tf/tc, similar to the case of a single Kondo
impurity shown in Fig. 2. In Figs. 8(b) and (c), we

FIG. 8. For Kondo lattice 1: (a) dI/dV , (b) current, (c) noise,
and (d) Fano factor with tc = 0.1 eV and two different values
of tf/tc.

present the resulting current and shot-noise. Both the
current and the shot-noise are bias independent inside
the hybridization gap, but overall show a very similar bias
dependence to that of the single Kondo impurity. Finally,
in Fig. 8(d) we show the resulting Fano factor. Similar to
the single Kondo impurity, the Fano factor is correlated
with the asymmetry of the differential conductance. For
tf/tc = −0.015, the Fano factor is close to unity in the
hybridization gap, implying that the transmission coeffi-
cient is small. In contrast, for tf/tc = +0.015, the Fano
factor is strongly suppressed near the hybridization gap,
implying a much larger transmission coefficient. Compar-
ing the Fano factor with that of an uncorrelated metal
shows that the strong correlations arising from Kondo
screening lead to an overall suppression of the Fano factor
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independent of the value of tf/tc, except for the immedi-
ate vicinity of the hybridization gap for tf/tc = −0.015,
where the Fano factor is slightly larger than that of the
metallic systems.

Similar to the case of the single impurity, we find that
the overall shape of the Fano factor is independent of the
tunneling amplitudes tc, tf (for fixed tf/tc), as shown in
Fig. 9, and that only the overall variation of the Fano
factor increases with increasing tunneling amplitudes.

FIG. 9. Evolution of the Fano factor F with increasing tc in
Kondo lattice 1 for (a) tf/tc = −0.015, and (b) tf/tc = 0.015.

We next consider the form of the noise and Fano
factor in Kondo lattice 2, and present in Fig. 10(a) the
resulting differential conductance for two different values
of tf/tc = −0.03, 0.01. The larger antiferromagnetic
interaction (in comparison to KL1), and the resulting
larger value of χ0, give rise to two interesting effects: (a)
dI/dV does not any longer show a hard hybridization
gap, but only a suppression, and (b) the van-Hove
singularity of the heavy f -electron band has been moved
inside the hybridization gap, as particularly evident for
tf/tc = 0.01. Both features are qualitatively similar to
the ones found in the differential conductance of the
heavy fermion material URu2Si2

50,51. Similar to the

FIG. 10. For Kondo lattice 2: (a) dI/dV , (b) current, (c)
noise, and (d) Fano factor with tc = 0.1 eV and two different
values of tf/tc.

dI/dV , the current and shot-noise shown in Figs. 10(b)
and (c) differ significantly for negative bias V < 0, while
being quite similar for positive bias V > 0. In Fig. 10(d)
we present the resulting Fano factor. For tf/tc = −0.03
where the suppression of dI/dV is more pronounced, the
Fano factor is close to unity, implying a vanishing Teff .
Interestingly enough, the van-Hove singularity inside the
hybridization gap leads to a strong suppression of the
Fano factor for tf/tc = 0.015. This strong correlation
between the form of the differential conductance and
the Fano factor represents an important test for future
STSNS experiments.

V. CONCLUSIONS

In conclusion, we have investigated the relation be-
tween the differential conductance, current, shot-noise
and the resulting Fano factor measured via shot noise
scanning tunneling spectroscopy around a single Kondo
impurity as well as in Kondo lattices. We demonstrated
that Kondo screening leads to a characteristic lineshape
of the Fano factor, that is similar to the Kondo resonance
observed in the differential conductance. Moreover, the
lineshape of F is strongly dependent on the ratio of the
tunneling amplitudes tf/tc and can be enhanced or sup-
pressed due to interference effects arising from tunnel-
ing into the conduction and f -electron levels. As such,
it is not only a sensitive probe for the correlation ef-
fects arising from Kondo screening, but also for quantum
interference between tunneling electrons. Moreover, we
showed that near the Fermi energy, there exists a cor-
relation between the form of dI/dV and F through the
effective transmission coefficient Teff , such that a sup-
pression in dI/dV leads to a value of F near unity, while
a peak in dI/dV gives rise to a strong suppression in
F . We also predicted that around a single Kondo impu-
rity, the Fano factor exhibits spatial oscillations whose
wavelength arises from 2kF r oscillations of the scattered
conduction electrons. In Kondo lattices, we find that the
Fano factor possesses a correlation with the differential
conductance that is similar to that in the single Kondo
impurity case. This correlation represents a prediction of
the effects of quantum interference arising from multiple
tunneling paths that could be tested in future STSNS
experiments.
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