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We examine the time evolution of the entanglement spectrum of a small subsystem of a non-
integrable spin chain following a quench from a product state. We identify signatures in this en-
tanglement spectrum of the distinct dynamical velocities (related to entanglement and operator
spreading) that control thermalization. We show that the onset of level repulsion in the entangle-
ment spectrum occurs on different timescales depending on the “entanglement energy”, and that
this dependence reflects the shape of the operator front. Level repulsion spreads across the entire en-
tanglement spectrum on a timescale that is parametrically shorter than that for full thermalization
of the subsystem. This timescale is also close to when the mutual information between individual
spins at the ends of the subsystem reaches its maximum. We provide an analytical understanding
of this phenomenon and show supporting numerical data for both random unitary circuits and a
microscopic Hamiltonian.

I. INTRODUCTION

Quantum quenches, which track the dynamics of an
isolated quantum system from a simple initial state (e.g.,
product state), are of widespread experimental relevance
in ultracold atomic systems as well as solid-state sys-
tems probed on ultrafast timescales1–3. How such sys-
tems approach local thermal equilibrium after a quench,
i.e., “thermalization”, is a central theme in many-body
physics4–10. While the late-time thermal behavior is un-
derstood in terms of eigenstate thermalization and ran-
dom matrix theory6,11–16, less is known about early and
intermediate times, i.e., how the local density matrix
morphs from a product state to a thermal state. Charac-
terizing the intermediate, locally thermal regime is a key
step, both for understanding thermalization and for de-
vising efficient numerical methods to study dynamics17.

Different aspects of quantum information propagate at
distinct and well-separated speeds18–20, so a local sub-
system has a spectrum of thermalization timescales, and
exhibits rich intermediate-time structures. In particular,
two central aspect of thermalization are the growth of the
von Neumann entropy of subsystems (which eventually
saturates to the thermal entropy) and the ‘scrambling’ of
quantum information. Several definitions of scrambling
exist21,22; the intuitive picture is that quantum infor-
mation contained in the system initially gets distributed
over many different degrees of freedom and thus becomes
inaccesible by local measurements. A way to keep track
of this process is by following the dynamics of initially lo-
cal observables in the Heisenberg picture: these tend to
become linear combinations of exponentially many non-
local operators, a fact picked up by so-called out-of-time-
order correlators18,23,24.
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FIG. 1. (a) Representation of the reduced density matrix
ρĀ after a few steps of time evolution under a local unitary
circuit. Tracing over subsystem A causes unitaries to can-
cel inside the red shaded region. Consequently, ρĀ factors
as a tensor product, and the entanglement spectrum (ES)
decouples into left/right contributions. (b) ES dynamics for
a random unitary circuit, showing the linear subsystem-size-
dependent crossover from Poisson to RMT level statistics of
the ES (solid) and mutual information between spins on ei-
ther side of subsystem A (dashed); (c) shows similar data for
Hamiltonian dynamics of the nonintegrable Ising model (8).
In both cases the level statistics are computed for entangle-
ment energies E ≤ 10.

In this work, we explore this intermediate-time regime
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and tease apart the various dynamical timescales by
studying the full spectrum of the reduced density ma-
trix (RDM) ρA of a subsystem A of size l � 1 that is
small compared to system size L, at times t that are
short compared with the timescale for the full thermal-
ization of ρA

18,25. In this regime, ρA is not thermal,
but chaos is expected on length-scales smaller than l, so
one expects some aspects of the dynamics to be univer-
sal. Further, since this regime involves weakly entan-
gled states, large-scale simulations using matrix-product
states (MPSs) are feasible. We argue that the spectral
correlations of ρA identify the timescales involved in ther-
malization. These correlations are often quantified via
the entanglement spectrum, i.e. the eigenvalues of the
so-called entanglement Hamiltonian Hent ≡ − ln ρA. The
entanglement spectrum was originally introduced26 as a
powerful tool for characterizing ground states; more re-
cently, it has been used in non-equilibrium settings27–35.
We continue in this vein and explore its post-quench dy-
namics. Following a quench, degrees of freedom near ei-
ther end of A quickly become entangled with the outside
world, but take longer to become entangled with those at
the other end of A. This is reflected in the spectrum of
ρA: its large eigenvalues (i.e., low-energy part of the en-
tanglement spectrum) correspond to eigenstates that are
localized on either end of the system, leading to Pois-
sonian level statistics on short timescales, whereas small
eigenvalues of ρA (i.e., high-energy part of the entangle-
ment spectrum) couple and become essentially random
on much shorter times. We examine the crossover be-
tween these two sectors of the entanglement spectrum
with time, and link it with the spread of operators and
entanglement across the subsystem.

II. ANALYTICAL ARGUMENT

We begin by giving an analytical argument, describing
how level repulsion develops in the entanglement spec-
trum during time evolution. We first focus on a simple
system which has an exact light cone, and argue that
this leads to a lack of level repulsion at short times at all
entanglement energies. We then generalize this to arbi-
trary locally interacting chains, using a combination of
Lieb-Robinson bounds and perturbation theory, and ar-
gue that level repulsion initially develops at high energies
and moves down towards low energies, linearly in time.
Eventually, the entire spectrum develops level repulsion,
on a time scale set by the Lieb-Robinson speed.

A. Strict light cone

For clarity, let us first focus on random unitary cir-
cuit (RUC) dynamics19,23,24,33,36, where the existence of
a strict light cone velocity vLC streamlines the discus-
sion. We generate time evolution under RUCs in terms
of two-site unitary gates that act on even (odd) bonds

at integer (half-integer) time steps as shown in Fig. 1(a),
so that vLC = 2; note that such a representation can
also be used to approximate Hamiltonian dynamics to
arbitrary accuracy via a Trotter decomposition. Apart
from the light cone velocity, the random circuit has two
other distinct characteristic scales, the butterfly velocity
vB, which sets how fast operators spread in space, and
the entanglement velocity vE, related to the speed of en-
tanglement growth when the chain is partitioned into two
halves; these satisfy vLC > vB > vE

18,23,24.
We begin with a pure product state at t = 0 and evolve

it to time t by applying a depth-t RUC. The RDM ρA
of subsystem A is obtained by constructing the density
matrix of the whole system, ρ = |ψ(t)〉〈ψ(t)|, and then
tracing over degrees of freedom outside A. However, since
the spectrum of ρA is identical (up to zero modes) to that
of the RDM of the complement of A (denoted ρĀ) we may
instead perform the trace over the degrees of freedom
within A, corresponding to the circuit on the LHS of
Fig. 1(a), where the purple dots denote the degrees of
freedom in Ā. After canceling conjugate pairs of gates
U and U†, this circuit separates into a tensor product:
ρĀ = ρL ⊗ ρR, where L/R denote regions to the left
and right of A respectively. Therefore the eigenvalues

of ρĀ, and hence those of ρA, take the form λαLλ
β
R, and

the entanglement spectrum is the sum of the spectra of
independent random matrices, leading to Poisson level
statistics. After an initial non-universal transient (from
the singular entanglement spectrum of each edge in the
initial state) we expect such behavior up to time l/2vLC.

Consider now times shortly after t = l/2vLC: cancel-
ing pairs of conjugate unitaries no longer partitions the
circuit into disjoint pieces, so the RDM no longer factor-
izes. However, the left and right blocks are initially only
weakly entangled, since any entanglement between them
is produced only by the few gates between the corners of
the light-cone region and the bottom/top of the circuit.
This idea can be formalized by considering the mutual
information between the regions L and R that are left
and right of A: I(L,R) = SL +SR−SĀ. At short times,
when the RDM of Ā factorizes, I(L,R) = 0. At times
only shortly after l/2vLC, the mutual information I(L,R)
becomes finite, but it is still much below its upper bound,
2vLCt − l. This is due to the fact that in our two-level
circuits, the “butterfly velocity” vB that characterizes
the spread of operators, is much slower than vLC, so on
times comparable to vLC, only rare low-amplitude oper-
ators entangle the two halves of the subsystem, which is
thus almost separable. As a consequence of this, level
repulsion initially only appears at high energies in the
spectrum of Hent, as we discuss in the following section.

B. General case

We now generalize the above argument to the case
of arbitrary short-range interacting chains, including
Hamiltonian evolution (either time-independent or peri-
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odically driven). While generically there is no strict light
cone, and therefore the RDM does not factorize into left
and right parts, such a factorization still applies approxi-
mately at short enough times, as can be established using
Lieb-Robinson bounds. We then argue that this approx-
imate factorization implies a lack of level repulsion at
low entanglement energies, but not at high energies. The
edge separating the two regimes in the spectrum moves
downwards in time, until the entire spectrum becomes
RMT-like. This happens at times when the von Neu-
mann entropy of the subsystem (i.e., the typical entan-
glement energy) is still far from its equilibrium value.

The starting point of our argument is to approximate
the time evolution operator U(t) using the results of Ref.
37 as

U = Ũ + δU, (1)

where Ũ is a unitary circuit made up by two layers of
unitaries, each acting on vt contiguous spins for some
constant v (i.e. a block with size linear in t) and the error
term has a small operator norm ||δU || = ε. This approxi-
mation is illustrated in Fig. 2. Note that this approxima-
tion is done in the spirit of Lieb-Robinson bounds: there
is a smallest possible velocity (which we will identify with
the Lieb-Robinson velocity) such that the approximation
holds, but one can always increase the accuracy by mak-
ing v larger and thus decreasing the error ε. For systems
with a strict light cone speed, like the RUC discussed in
the previous section, this approximation becomes exact
(ε = 0) for v ≥ vLC.

FIG. 2. Approximating the time evolution generated by a
local Hamiltonian with a two-layer circuit of local unitaries,
as described in Ref. 37.

Making use of the above approximation we can write
the time evolved state after a quench as∣∣ψ(t)

〉
≡ U(t)

∣∣ψ0

〉
=
∣∣ψ̃〉+ ε

∣∣φ〉, (2)

where all the states are normalized to 1 (in principle∣∣φ〉 ≡ δU ∣∣ψ0

〉
/ε can have some norm ≤ 1 which we could

pull out as a prefactor, but for simplicity we set it to 1).
The corresponding reduced density matrix of a block A
of size l is then

ρA = ρ̃A + εδρ1 + ε2δρ2; (3)

δρ1 ≡ trĀ

[∣∣ψ̃〉〈φ∣∣+ h.c.
]

; δρ2 ≡ trĀ
[∣∣φ〉〈φ∣∣] ,

with Ā being the complement of A. At times at which
the light-cone for the approximate unitary Ũ has not yet
penetrated to the middle of the subsystem A, the argu-
ments made in the previous section apply, showing that

the leading term factorizes as ρ̃A = ρL ⊗ ρR. The first-
order correction, δρ1, involves the overlap of two essen-
tially independent vectors on a subsystem of L− l sites;
we expect its matrix elements to be of size O(2(L−l)/2),
going to zero in the thermodynamic limit. It is therefore
safe to neglect this term in the following and focus on the
effect of δρ2 on the spectrum of ρA.

Since ρ̃A factorizes, its eigenvalues are of the form
Λ̃α = λLαλ

R
α . Ref. 33 showed that the density of states

for λL is given by N(λL) ∼ 1/λL, and likewise for λR.
Combining these, we get

N(Λ̃) = N(λL)N(Λ̃/λL) ∼
∫
dλ

1

λ

1

Λ̃/λ
∼ 1

Λ̃
. (4)

To leading order, the normalization of N(Λ̃) is set by
the number of nonzero eigenvalues of the RDM, so the
density of states at Λ̃ is

N(Λ̃) ≈ 22vt/Λ̃ + δ(Λ̃)(2l − 22vt), (5)

up to terms polynomial in t that we neglect33. We work
in the eigenbasis of ρ̃ and consider the matrix elements
of δρ2 between two eigenstates. This takes the form
〈α|φ〉〈φ|β〉, where |α〉, |β〉 are Schmidt states of ρ̃. We
approximate |φ〉 as a random state, so its overlap with
any basis state is of magnitude 2−l/2, and consequently
the typical matrix element of δρ2 between two eigenstates
of ρ̃ has magnitude ε2/2l. To see if nearby energy lev-
els hybridize, we compare this typical matrix element to
the energy difference between two adjacent eigenstates of
the RDM at energy Λ̃. Any zero modes in Eq. (5) will
hybridize by this criterion. For the nonzero eigenvalues,
hybridization occurs when Λ̃ ≤ ε222vt−l.

Turning now to the entanglement spectrum, we esti-
mate that states with unperturbed energy Ẽ ≡ − ln Λ̃
will develop random-matrix statistics when

Ẽ ≥ (l − 2vt) log 2− 2 log ε. (6)

To minimize the error while maintaining the separability
of ρ̃ we choose 2vt = l. Then the error of the approxi-
mation takes the form37 ε ∼ e(κ−µv)t = eκt−µl/2 for some
constants κ, µ. Plugging in this expression we find that

Ẽ ≥ µl − 2κt. (7)

This suggests the crossover energy scale from Poisson to
RMT statistics should drift linearly downwards in energy
as a function of time, consistent with our numerical re-
sults presented in Fig. 3.

The perturbative argument breaks down then ε be-
comes O(1), which is at times t ≈ l/2vLR, where vLR is
the Lieb-Robinson speed. This speed should be close to
the infinite temperature butterfly velocity, which charac-
terizes operator spreading (the only difference is in the
choice of operator norm vs. Frobenius norm for the com-
mutator). These speeds (vLR or vB) are generically larger
then the ‘entanglement velocity’18,25, relevant for the
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growth of von Neumann entropy of a subsystem. There-
fore there should exist an intermediate time scale where
already the entire spectrum shows level repulsion, but
the von Neumann entropy (the size of the typical entan-
glement energy) is still far below its equilibrium value.
This is verified in Fig. 4.

The above discussion clarifies that the energy-
dependence of the level repulsion captures certain aspects
of the shape of the wavefront of an evolving operator.
For a sharp, δ-function like wavefront, i.e. vB = vLC,
all enetanglement energies would develop level repulson
simultaneously. The fact that there is instead a delay be-
tween high and low energies corresponds to the fact that
there are exponential tails outside of the wavefront. It is
an interesting open question to see whether other details
of the front shape, such as its diffusive broadening23,24

can also be diagonsed from a more careful analysis of the
entanglement spectrum.

Note that our entire discussion is independent of the
initial state: it therefore provides a lower bound on the
times needed for the entanglement spectrum to become
RMT-like. We expect that this is the relevant time scale
for e.g. a random product state, while the actual time
scale can be different for other initial states. We provide
an example of this in Sec. IV, where the time scales in-
crease by a factor of 2 for certain initial states due to a
conservation law.

III. NUMERICAL SIMULATIONS

We now turn to the numerical confirmation of the ana-
lytical arguments outlined above. Our dynamical regime
of interest consists of not too large subsystems at inter-
mediate times. Since the relevant time evolution only
generates modest entanglement, it is feasible to simu-
late it efficiently using matrix-product state (MPS) tech-
niques. We simulate dynamics using the time-evolving
block decimation (TEBD) algorithm38 on systems of size
L = 60, and compute the entanglement spectra of sub-
systems ranging in size from l = 4 to l = 14. Note that
the limiting factor in going to larger l lies in the fact
that, unlike in typical applications of MPS technology,
we are interested in the entire entanglement spectrum
rather than its low-energy sector. We have verified that
L is sufficiently large that it does not produce any signif-
icant finite-size effects; all finite-size scaling is controlled
by l. For RUCs, we draw two-site unitary gates at ran-
dom from the Haar measure, and average results over 100
realizations. Here, the time t counts the number of full
time steps in which each even and each odd bond is acted
upon exactly once by a 2-site gate. For the Hamiltonian
case, we study the Ising model in a tilted magnetic field,

H =
∑

i
Jiσ

x
i σ

x
i+1 + hzi σ

z
i + hxi σ

x
i , (8)

where σµi with µ = x, y, z are Pauli matrices at lattice
site i. We chose Ji = J = 1 to be uniform and measure
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FIG. 3. Time evolution of energy-resolved ES level statistics
for the non-integrable Ising model shows successively lower-
energy states crossing over from Poisson to RMT behavior.
The color of each dot corresponds to the r-ratio and the size
to the number of states in the energy window of size ∆E = 1.
Bottom: histograms of low/high energy parts at representa-
tive early, intermediate, and late times.

time in units of 1/J . To avoid dealing with subtleties of
thermalization within symmetry sectors, and to make the
two edges of the block inequivalent, we add weak on-site
disorder, taking hz,x ∈ [hz,x − W

2 , h
z,x + W

2 ] and choose

their averages to be hz = 0.9045, hz = 0.709 and the
disorder strength W = 0.05; the tilted-field Ising chain
is known to be ergodic for this choice39. We average the
results over 50 disorder realizations. For both models, we
begin with an initial Néel state

∣∣Ψ(t = 0)
〉

=
∣∣ ↑↓↑↓ . . . 〉.

A. Development of level repulsion

Our main results are presented in Fig. 1(b,c) and
Fig. 3. Figure 1(b) shows the time evolution of the level
statistics and the mutual information between the two
edge edges for RUCs, while Fig. 1(c) shows the same
data but for Hamiltonian dynamics (8); note the broad
similarities between the two sets of data, despite the ab-
sence of the strict light cone in the latter. To succinctly
characterize the level statistics via a single parameter,
we use the so called r-ratio, defined as the average over
the entanglement spectrum and disorder realizations of

r = min(δn,δn+1)
max(δn,δn+1) , where δn = En − En−1 is the spacing

between consecutive entanglement energy levels40. The
value r is a measure of level repulsion: for Poisson statis-
tics, r ≈ 0.39, whereas for random matrices in the Gaus-
sian Unitary Ensemble, r ≈ 0.6 [although the Hamilto-
nian (8) is real, the time-evolved state and hence its en-
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tropy (dots) for blocks of l sites in the tilted field Ising model
with weak disorder (W = 0.05). The dash-dotted horizontal
lines denote the thermal values of the von Neumann entropy
SA at infinite temperature, relevant for the initial Neel state
we consider here. At the times when 〈r〉 saturates to its ran-
dom matrix value (dashed horizontal line) the total entropy
is still far from this thermal value and keeps increasing up to
a parametrically longer time scale.

tanglement Hamiltonian are generically complex, so the
unitary ensemble is the appropriate one]. As a proxy for
the mutual information between the left and right halves
of the outside world, we take the mutual information be-
tween two sites just outside the block A on the left/right,
which we denote by I(−l/2, l/2).

The level statistics shows a regime of Poisson behav-
ior after the initial transient, but crosses over to RMT-
like behavior at a time that scales linearly with the sub-
system size l. Note that for the RUC, with a strict
light cone, the mutual information between the bound-
ary spins remains exactly zero until this time, when it
begins to grow. In both Fig. 1(b) and (c), we have cut
off the high-energy part of the entanglement spectrum
when computing r and include only eigenvalues E < 10.
A more fine-grained picture of entanglement level statis-
tics is provided by studying the time evolution of the
energy-resolved r-ratio, takings its average within some
small energy window [E,E+∆E]. For the non-integrable
Ising model (Fig. 3), high entanglement energies exhibit
RMT behavior at relatively short times compared to low
ones, with the ‘edge’ between the two moving roughly
linearly in time41. Representative line-cuts of the data
at t = 3.4, 4.0, 4.6 are shown in the bottom panel of
Fig. 3. The discrete time evolution of RUCs makes their
entanglement spectral crossover abrupt and challenging
to capture on the relatively modest system sizes consid-
ered here, though it is qualitatively similar. Finally, we
note that the entanglement entropy41 remains far from
its thermal volume law value even after the entire entan-
glement spectrum shows RMT behavior, consistent with
our three-stage scenario for thermalization.

B. RMT time scale vs. entanglement saturation

In the analytical part we argued that the time needed
for the entanglement spectrum (including the lowest en-
ergies) to develop level repulsion is parametrically smaller
than the time necessary for the block to become fully en-
tangled with the rest of the system. In particular we
argued that the first of these time scales should be con-
trolled by the Lieb-Robinson / butterfly velocity, vB, that
gives the speed at which local operators spread, while the
time for the entanglement of the block to saturate is set
by the entanglement velocity, vE, i.e. the rate at which
the two sides of a bi-partition become entangled. It is
expected on general grounds that the inequality vE < vB

holds18,25, so there should be a time window where the
spectrum has already acquired RMT statistics but the
amout of entanglement between the block and its envi-
ronment still keeps increasing. In this appendix we pro-
vide numerical evidence for this, in the case of the tilted
field Ising model.

We take the Hamiltonian as defined in Eq. (8) and sim-
ulate its dynamics at weak disorder (W = 0.05). We com-
pute the average r ratio of the entanglement spectrum,
taking only eigenvalues in the low energy part of the spec-
trum (E < 10), and compare their behavior with the von
Neumann entropy of the block SA = −tr(ρA ln ρA). As
expected, we find that at the times when the r ratio sat-
urates, SA is still far from its thermal value, as shown in
Fig. 4.

IV. CONSERVATION LAWS

So far, we have focused either on random unitary dy-
namics with no conservation laws, or on Hamiltonian
systems where the only conserved quantity is the en-
ergy. While energy diffusion can affect the low-energy
entanglement spectrum42, this only affects significantly
a small subset of eigenvalues and we do not expect it to
show up in the spectral diagnostics presented here. A
natural question to ask is if the evolution of the entan-
glement spectra for certain classes of initial states can
be constrained by conservation laws. It is known, for in-
stance, that the spreading of operators is sensitive to the
conservation law, that force change transport to be dif-
fusive and thereby lead to hydrodynamic long time tails
in operator dynamics43,44. Accordingly, we simulate a
random unitary circuit with a U(1) symmetry, where the
relevant charge within a region can be viewed as count-
ing the number of up spins in that region. We consider a
domain initial state where all spins within region A are
up, and all those outside of it are down. Fig. 5(a) shows
the resulting entanglement spectrum dynamics, as well
as the boundary-spin mutual information. Observe that
the time scale for the transition towards RMT behavior
as seen in the r-ratio continues to coincide with the onset
of non-zero mutual information between the boundary
spins, and both remain linear in l despite the diffusive
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FIG. 5. (a) Evolution of entanglement level statistics (for
entanglement energies E < 10) and boundary-spin mutual
information in the charge-conserving random circuit, starting
in an domain initial state where the l sites in the subsystem A
are occupied (up) and all other sites are empty (down). The
time scale of the transition towards random matrix statistics
remains linear in l, despite completely diffusive charge trans-
port. However, the time scale increases by a factor of two
compared to e.g. a Neel initial state, due to the fact that the
initial state in the block is an eigenstate of the time evolution.
(b) This can be understood by an argument similar to that for
the non-conserving case by noting that there is an additional
cancellation from the fact that the state inside the domain
is an eigenstate of time evolution, so that the lightly shaded
gates are pure phase gates that produce no entanglement.

charge dynamics. However, we see that the scale for the
Poisson-RMT crossover is now increased by a factor of 2
relative to the non-conserving case, to t = l/vLC.

To understand why this is the case, first observe that
for times 0 ≤ t ≤ l/2vLC, we may simply use the same se-
quence of arguments as for the non-conserving case (see
Fig. 1a). For times l/2vLC ≤ t ≤ l/vLC, the disentan-
gled region constructed by the backward lightcone argu-
ment does not partition the circuit into disjoint regions
and so for a generic circuit the density matrix does not
factorize. However, the local conservation law strongly
constrains the dynamics, as each 2-site gates only acts
nontrivially on (i.e., entangles) spins when they are anti-
parallel. It follows from this that that the dynamics
deep within region A must be essentially trivial at early
times, and can only multiply the system by an overall
phase. Accordingly, the lightly shaded gates in Fig. 5b
do not contribute to the entanglement, and may be ig-
nored. Evidently, this picture allows us to construct a
“forward disentangled region” where the gates act triv-
ially, drawing lightcones inward from the ends of subsys-
tem A to the point (x, t) = (l/2,≤ l/2vLC). Combining
these, we see that the entanglement spectrum factorizes
as long as the two disentangled regions intersect, i.e. for
all times t ≤ l/vLC. Intuitively, this is the time for the
lightcone emanating from one edge to reach the oppo-
site edge. For times longer than this, the two regions no
longer intersect, and the gates that lie in the waist be-
tween them will spoil the factorization and drive RMT

behavior of the entanglement spectrum. We note that
the timescale needed for the high entanglement energies
to develop level repulsion remains linear, despite the fact
that the entanglement growth at the edges of the domain
is initially sub-ballistic45. However, we observe that the
later stage of the process, namely the approach to RMT
level statistics is slower than for the non-conserving case
(cf. Fig. 1(b); we attribute this to the slow mode associ-
ated with charge diffusion in the conserving circuit.

V. DISCUSSION

Our results have shed light on various aspects of how
the density matrix of a generic chaotic quantum system
thermalizes. Our main window into this question was the
spectral statistics of the entanglement Hamiltonian of a
block with two ends: this allowed us to explore the trans-
mission of quantum information across the block. We
found a correspondence between the onset of level repul-
sion in the entanglement spectrum of the block and that
of mutual information between the two regions flanking
the block. A striking numerical observation was that the
small high entanglement energies (i.e., the small eigen-
values of the RDM) are the first to be coupled across the
block. Thus the energy-dependence of the entanglement
level statistics offers a promising if unusual diagnostic for
the shape of the operator front.

Our results suggest many avenues for future study; a
particularly direct one is the extension to higher dimen-
sions d. In d > 1 a generic cut no longer disconnects the
complement of a subsystem. However, it is clear that the
entanglement spectrum of an infinite strip will be Pois-
son as discussed here; it therefore seems plausible that
regions of sufficiently high aspect ratio will exhibit Pois-
sonian entanglement level statistics. Whether an entan-
glement delocalization transition occurs for aspect ratios
of order unity is unclear, however, and we defer this ques-
tion to future work. Other natural extensions involve the
temperature-dependence of the onset of random-matrix
level statistics, as well as the evolution of entanglement
level statistics for a many-body localized system.

A direct implication of our results is that the bulk of
the entanglement spectrum behaves thermally well be-
fore entanglement itself has saturated. This suggests that
the late-time dynamics of entanglement must be related
to the low-energy edge of the entanglement spectrum,
and therefore have to do with its extreme-value statis-
tics, which will be addressed elsewhere.

ACKNOWLEDGMENTS

All the authors acknowledge the hospitality of the
Kavli Institute for Theoretical Physics at the University
of California, Santa Barbara, which is supported from
NSF Grant PHY-1748958, where this work was initiated.
SG thanks P.-Y. Chang, X. Chen, A. Lamacraft, and J.



7

H. Pixley for collaboration on related work. FP and TR
thank C. W. von Keyserlingk for collaboration on related
projects. SG acknowledges support from NSF Grant No.
DMR-1653271. FP and TR acknowledge the support of
the DFG Research Unit FOR 1807 through grants no.

PO 1370/2- 1, TRR80, the Deutsche Forschungsgemein-
schaft (DFG, German Research Foundation) under Ger-
many’s Excellence Strategy – EXC-2111-390814868, and
the European Research Council (ERC) under the Euro-
pean Union’s Horizon 2020 research and innovation pro-
gram (grant agreement no. 771537).

1 I. Bloch, J. Dalibard, and W. Zwerger, Rev. Mod. Phys.
80, 885 (2008).

2 Y. Wang, H. Steinberg, P. Jarillo-Herrero, and N. Gedik,
Science 342, 453 (2013).

3 A. Polkovnikov, K. Sengupta, A. Silva, and M. Vengalat-
tore, Rev. Mod. Phys. 83, 863 (2011).

4 M. Rigol, V. Dunjko, and M. Olshanii, Nature 452, 854
(2008).

5 P. Calabrese and J. L. Cardy, Phys. Rev. Lett. 96, 136801
(2006), arXiv:cond-mat/0601225 [cond-mat].

6 L. D’Alessio, Y. Kafri, A. Polkovnikov, and M. Rigol, Ad-
vances in Physics 65, 239 (2016), arXiv:1509.06411 [cond-
mat.stat-mech].

7 C. Gogolin and J. Eisert, Reports on Progress in Physics
79, 056001 (2016).

8 A. M. Kaufman, M. E. Tai, A. Lukin, M. Rispoli, R. Schit-
tko, P. M. Preiss, and M. Greiner, Science 353, 794 (2016).

9 L. Zhang, H. Kim, and D. A. Huse, Phys. Rev. E 91,
062128 (2015).

10 A. Bohrdt, C. B. Mendl, M. Endres, and M. Knap, New
Journal of Physics 19, 063001 (2017).

11 J. M. Deutsch, Phys. Rev. A 43, 2046 (1991).
12 M. Srednicki, Phys. Rev. E 50, 888 (1994).
13 P. Kos, M. Ljubotina, and T. c. v. Prosen, Phys. Rev. X

8, 021062 (2018).
14 B. Bertini, P. Kos, and T. c. v. Prosen, Phys. Rev. Lett.

121, 264101 (2018).
15 H. Gharibyan, M. Hanada, S. H. Shenker, and M. Tezuka,

Journal of High Energy Physics 2018, 124 (2018).
16 H. Gharibyan, M. Hanada, B. Swingle, and M. Tezuka,

Journal of High Energy Physics 2019, 82 (2019).
17 E. Leviatan, F. Pollmann, J. H. Bardarson, and E. Alt-

man, (2017), arXiv:1702.08894 [cond-mat.stat-mech].
18 M. Mezei and D. Stanford, Journal of High Energy Physics

2017, 65 (2017).
19 T. Zhou and A. Nahum, arXiv preprint arXiv:1804.09737

(2018).
20 W. W. Ho and D. A. Abanin, Phys. Rev. B 95, 094302

(2017).
21 N. Lashkari, D. Stanford, M. Hastings, T. Osborne, and

P. Hayden, Journal of High Energy Physics 2013, 22
(2013).

22 P. Hosur, X.-L. Qi, D. A. Roberts, and B. Yoshida, Journal
of High Energy Physics 2016, 4 (2016).

23 C. W. von Keyserlingk, T. Rakovszky, F. Pollmann, and
S. L. Sondhi, Phys. Rev. X 8, 021013 (2018).

24 A. Nahum, S. Vijay, and J. Haah, Phys. Rev. X 8, 021014
(2018).

25 C. Jonay, D. A. Huse, and A. Nahum, (2018),
arXiv:1803.00089 [cond-mat.stat-mech].

26 H. Li and F. D. M. Haldane, Phys. Rev. Lett. 101, 010504
(2008).

27 D. Shaffer, C. Chamon, A. Hamma, and E. R. Mucciolo,
Journal of Statistical Mechanics: Theory and Experiment
2014, P12007 (2014).

28 C. Chamon, A. Hamma, and E. R. Mucciolo, Phys. Rev.
Lett. 112, 240501 (2014).

29 Z.-C. Yang, C. Chamon, A. Hamma, and E. R. Mucciolo,
Phys. Rev. Lett. 115, 267206 (2015).

30 Z.-C. Yang, K. Meichanetzidis, S. Kourtis, and C. Cha-
mon, (2018), arXiv:1804.01097 [cond-mat.str-el].

31 M. Serbyn, A. A. Michailidis, D. A. Abanin, and Z. Papić,
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Appendix A: Numerical results on Floquet model

To complement the data presented in the main text for random circuits and the tilted field Ising model, here we
present some further numerical results on the periodically driven version of the latter, the so-called kicked Ising chain.
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It is defined through the Floquet unitary that desribes time evolution during a single driving period, which reads

U = e−
T
2

∑
i h

z
i σ

z
i e−

T
2

∑
i Jiσ

x
i σ

x
i+1+hx

i σ
x
i . (A1)

The dynamics generated by repeated application of this unitary can be thought of as being half-way between the
aforementioned two models. On the one hand it is simply a (periodically) time-dependent version of the Ising chain
described in Eq. (2) of the main text, and has no randomness in the time direction. On the other hand it has no
conserved quantities and has a strict light cone velocity of 1 site per Floquet period, which makes it similar to the
random circuit model (in fact it can be represented exactly as a circuit with the same geometry). The data presented
here emphasizes the universality of our result, which apply to any spatially local time evolution in 1D.

We fix Ji = 1 and T = 1.6 and choose the on-site fields according to a box distribution of width W . We fix the
average longitudinal field to be hx = 0.809 and consider different values of the average transverse field hz. In the
clean case it is known that changing the transverse field can be used to tune the butterfly velocity23, between 0 at
hz = 0 and vB ≈ vLC = 1 when hz ≈ 0.9, and we expect similar dependence on the average transverse field in the
weakly disordered case as well. This allows us to explore how the time scales relevant for the block entanglement
spectrum change with the butterfly speed and confirm that increasing the latter reduces the time needed to reach
random matrix level statistics.

In Fig. 6 we show results both for the clean (W = 0) and weakly disordered (W = 0.05) chains, comparing level
statistics and mutual information as we did for the other models in the main text. By applying a weak cutoff (keeping
eigenvalues of ρA with magnitude Λ > 10−10) we observe a sharp transition in the level statistics at times t = l/2
when the sharp light cone reaches the middle of the block, similarly to the random circuit case. Before this time the
disordered model exhibits Poisson level statistics, also in agreement with our random circuit results. In the clean
case, on the other hand, the average r ratio remains close to zero as long as the two edges are uncoupled. This is
due to the fact that in this case the entanglement spectra at the two edges of the block are identical, leading to exact
degeneracies in the block spectrum, as explained in the main text. The same behavior occurs also in the Hamiltonian
case in the clean limit at short times.
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FIG. 6. Average r ratio for different block sizes l (solid lines) and mutual information between the two neighboring spins on
the left/right side of the block (dashed lines) for the kicked Ising chain defined in Eq. (A1) with no disorder (W = 0, left)
and weak disorder (W = 0.05, right). The average longitudinal field is hz = 0.7 in both cases. In calculationg the r ratio,
only eigenvalues of the rediced density matrix with magnitude larger then 10−10 are kept. At this cutoff we observe a sharp
transition to random matrix statistics when the strict light cone reaches the middle of the block, at t = l/2.

In Fig. 7 we show results with a stronger cutoff, keeping only RDM eigenvalues with Λ > 10−5, for different values
of the transverse field hz. We find that, while the transition in the average r ratio always starts at the same time,
set by the light cone velocity, it becomes less and less sharp at smaller transverse fields, and the time it takes for 〈r〉
to reach the random matrix value increases. This can be interpreted by noting that time needed for the spectrum to
become fully random matrix-like even at low energies should be controlled by the butterfly / Lieb-Robinson velocity,
as detailed in Sec. II B, which becomes smaller when hz is decreased as observed previously in Ref.23.
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FIG. 7. Average r ratio for the clean kicked Ising chain (W = 0), keeping RDM eigenvalues > 10−5, for different transverse
fields hz = 0.5, 0.6, 0.7 (left to right). While the average r ratio starts growing when the strict light cone crosses half the block,
the transition is much slower for smaller values of hz, which we attribute to the decrease in the butterfly velocity.
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