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Abstract 
We present electron-density-based response functionals yielding the non-negative kinetic energy density 

(KED) of nearly free electron systems. In a previous paper, for a canonical free-electron system perturbed 

by an external potential, we derived the first- and second-order corrections to the KED as functionals of 

the potential, providing the response functions in reciprocal space. Here, we formulate the KED response 

in terms of the electron density by converting the potential-based functionals into density functionals. We 

also determine the related response of the Pauli KED, which is the KED in excess of the von Weizsäcker 

KED. We anticipate that the structure of these density functionals will help guide the design of the more 

sophisticated kinetic energy functionals required for orbital-free density functional theory simulations. 

We conclude by examining the performance of the first- and second-order density functionals for the KED 

when applied to electron densities generated from local pseudopotential calculations for Li, Al, and Si 

crystals. 
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I. INTRODUCTION 

In this paper, the second in a two-part series, we examine electron-density-based response functionals 

for the kinetic energy density (KED) of nearly free electron systems. Specifically, we consider the non-

negative KED defined as 

 , (1) 

with  representing the reduced density matrix for non-interacting electrons with Hamiltonian 

, where  is a static external potential. (An alternate KED, , arises 

from another natural definition for the KED, but this quantity may become negative.) The response 

functionals we derive yield the KED that emerges after initially free electrons — having a uniform KED  

— are subjected to a static perturbing potential. In the first paper (Part I),1 we formulated the KED 

response using a standard potential functional approach. 

 Here, we convert those potential functionals into alternate density functionals, which depend 

exclusively on (1) the free-electron density of the unperturbed system and (2) the change in the electron 

density induced by the perturbation. We also obtain density functionals for the first- and second-order 

response of the Pauli KED,2,3 which is the quantity , where, denoting the electron 

density as ,  

   (2) 

is the non-negative von Weizsäcker KED.4 The von Weizsäcker KED equals the exact KED for any single-

orbital system and, defined in this manner, provides a local lower bound3,5 to the exact KED for all systems; 

the Pauli KED is the non-negative excess amount attributable to the fermionic character of the electrons. 

 Before proceeding, we remark on one particular motivation for this work, which relates to the 

study of materials with density functional theory (DFT) calculations.6,7 Orbital-free (OF) DFT8–11 is an 

alternative to the conventional approach to Kohn-Sham (KS) DFT7 in which the non-interacting kinetic 

energy of the electrons — that is, the integrated quantity, , where  — is approximated 

directly with an explicit density functional rather than determined indirectly (but exactly) following the 

introduction of auxiliary single-particle wave functions. The OF approach offers a significant reduction in 

computational requirements — largely because it eliminates the need for wave functions altogether and 

naturally attains linear or quasi-linear complexity scaling with increasing system size — enabling study of 
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many thousands of atoms (or more), as well as efficient molecular dynamics simulations that remain 

grounded in the underlying laws of quantum mechanics. 

 The search for universally applicable density functional approximations for  that are both 

accurate and suitable for rapid computation has a long history.6,8–17 A number of the most successful 

approximations leverage a known relationship between a second functional derivative of  and the 

Lindhard18 function , where the latter also appears in the potential functional for the first-order 

electron density [see Eqs. (79)-(80) in Part I]. The relationship is 

 , (3) 

where  denotes a Fourier transform,  is the uniform electron density of a free-electron reference 

system, and  is the Fermi wave vector for that system. Even from the earliest work on 

DFT,6,7 it was apparent that the Lindhard function can be a useful ingredient in approximate density 

functionals for DFT calculations. Pioneering embodiments of this philosophy,19–22 targeting  specifically, 

inspired a still-growing body of research that encompasses the incorporation of, to give a few examples, 

the generalization of Eq. (3) for the third functional derivative of ,20,23 the version of Eq. (3) that applies 

to the kinetic potential,24,25 and variations on Eq. (3) that are more appropriate for semiconducting 

systems.26,27 

However, functionals that approximate the integrated  using this strategy are not always able 

to respect known constraints on the local KED (or kinetic potential), such as the local lower bound 

provided by the von Weizsäcker KED that we highlighted above. Furthermore, a resurgence within a 

different category of functional approximations—see work by Constantin et al.28 and Luo et al.29 for two 

recent examples, and references therein—is partly attributable to rigorous satisfaction of local 

constraints, underscoring the utility of targeting the local . 

 One of the chief results given below—expressed in Eqs. (17)-(19)—may be understood as an 

analog of Eq. (3) for the local KED, providing the corresponding second functional derivative of  in an 

analytical form. Any approximation for  that is constructed to fulfill the requirement implied by Eqs. 

(17)-(19) will automatically respect the global constraint implied by Eq. (3) — and, in addition, could 

conceivably take full advantage of the accumulated wisdom relating to other local constraints. The best 
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avenue for accomplishing this task, while preserving computational efficiency, is not immediately obvious; 

investigations of this sort are ongoing. 

 Finally, we note two additional reasons to consider response functionals for the local KED. First, 

explicit density functionals for the KED can be useful for implementing some exchange-correlation (XC) 

functionals requiring the KED as an ingredient.30–32 Second, we expect response functionals for the KED to 

be useful for hybrid DFT approaches that use different approximation strategies in different regions of 

space.33,34 

 In Section II, we summarize briefly the requisite aspects of Part I. In Section III, we describe the 

procedure for converting potential functionals into density functionals, and then give the first- and 

second-order density functionals for the KED response. These expressions are one contribution of this 

paper, as are the analogous expressions for the Pauli KED given in the same section. Next, in Section IV, 

we inspect effective external pseudopotentials along with the corresponding electron densities and KEDs 

for a few Li, Al, and Si crystals—and then assess the approximate KEDs predicted by the density functionals 

from Section III. Concluding remarks are in Section V. An appendix demonstrates that the response 

functional formalism can be used to recover the conventional gradient expansion for slowly varying 

densities (see Ref. 13 for an overview of the latter, and references therein). 

II. BACKGROUND 

We consider spin-unpolarized, non-interacting electrons, specifying that eigenstates of the Hamiltonian 

 with energies below a chemical potential  are each populated with two electrons. Below, 

in a subsequent section, we will consider KS electrons, obtained by treating the KS effective potential as 

a fixed external potential. 

Free-electron systems and the Thomas-Fermi approximation 

Free electrons are subject to the simpler Hamiltonian , where  is a constant. The 

electron density and KED of free-electron systems are nonzero only for , in which case they are  

 , (4) 

where  is the Fermi wave vector (in terms of the potential). One may use Eq. (4) to re-

express  as a function(al) of  [see also the definition of  given after Eq. (3)], yielding 
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 with . When, as an approximation, this result is applied locally to a 

nonuniform electron density, 

 , (5) 

it is known as the Thomas-Fermi density functional for the KED,35,36 which becomes asymptotically exact 

in the limit of a slowly varying density. (In writing  and , we use a bracket notation to 

distinguish these terms as density functionals rather than potential functionals.) The Thomas-Fermi 

potential functionals obtained by substituting  in Eq. (4) are traditionally understood to yield 

zero (by definition) in classically forbidden regions where ; if not, they would yield imaginary 

values. In contrast, the KED in Eq. (5) can be extended naturally into classically forbidden regions. Finally, 

after partitioning the electron density into a free part and a perturbation, , we record 

the Taylor series expansion of Eq. (5) about  through second order: 

 . (6) 

The first- and second-order coefficients in Eq. (6) reappear below, matching the full response functions 

for the limiting case of a slowly varying perturbation in the density. 

Response functionals of the perturbing potential 

Nearly free electrons are characterized by the Hamiltonian , with  treated as 

a perturbation. In Part I, we described the usual potential-functional approach for determining the 

response of free electrons to a static perturbing potential. Recalling the definition of  given above, 

and introducing , the analogous deviation from the free-electron KED, this approach leads 

to the potential-functional series: 

 , (7) 
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where we have introduced the reciprocal-space response functions , , 

, and , but omit their detailed formulas which appear in Section IV of Part I. In Eq. (7),  

is the Fourier transform of  based on the convention 

 . (8) 

The response functions in Eq. (7) are nonzero only for . Those for the electron density have long 

been known in explicit form —  was first obtained by Lindhard18 and   was 

obtained by Lloyd and Sholl37 followed by others38–41 — and in Section IV of Part I we provide explicit forms 

for  and . We also discuss a real-space formulation12,42 of the response functional 

series in Section II of Part I, but, as will become clear, the conversion procedure is most natural in the 

reciprocal-space formulation. 

III. DENSITY FUNCTIONALS AND ASSOCIATED RESPONSE FUNCTIONS 

In this section, we derive the electron-density-based response functionals for the KED and the Pauli KED 

by applying a conversion procedure pioneered by Stoddart and March,12 to the potential functionals 

mentioned previously (and derived in Part I). 

Converting potential functionals to density functionals 

The conversion strategy12 begins with consideration of the Fourier transform of the perturbed electron 

density from Eq. (7): 

 , (9) 

where the dependence on  is left implicit in the third- and higher-order terms. Next, one rearranges 

this series to isolate the first appearance of , yielding 
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 . (10) 

Finally, by repeatedly inserting the left-hand side of Eq. (10) into its right-hand side, we may obtain  

as a functional of  to arbitrary order. While the explicit expressions become unwieldy rather quickly, 

we may nevertheless write the result in the truncated form,  

 . (11) 

We may now use Eq. (11) to convert the KED potential functionals in Eq. (7) into KED density functionals. 

Kinetic energy density as a density functional 

We make two notation-related comments before proceeding. In Part I, we used the symbol  to 

represent the first-order potential functional for the KED; here, as above, we use a bracket notation—

—to represent the analogous density functional, where it is understood that  is also 

determined from the electron density in some fashion (see below for two possibilities), and we follow this 

convention wherever necessary to remove ambiguity. Second, for compactness in some expressions that 

follow, we use a hat syntax to refer to dimensionless response functions; for example, we define 

 . (12) 

First-order term 

The first-order density functional for the KED is 

   (13) 

where 
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   (14) 

and 

 . (15) 

This functional emerges after the conversion strategy outlined above is applied to the potential 

functionals for the KED – see Eqs. (80) and (83) in Part I for definitions of the potential-functional 

components. We have not found the response function of Eqs. (14)-(15) in the literature; however, partly 

by coincidence, Eq. (15) happens to be very similar to (differing only by a constant shift) dimensionless 

integral kernels from a number of functionals that target the integrated kinetic energy or the kinetic 

potential—see, for example, Eq. (49) in Ref. 43, Eq. (12c) in Ref. 21, Eq. (13) in Ref. 44, and Eq. (8) in Ref. 

24—all of which originate from the second-order constraint summarized by Eq. (3) and therefore differ 

subtly, but essentially, from Eq. (15) in form and in meaning. We provide a plot of Eq. (15) in Fig. 1. As 

expected, the  limit of the full response function, Eq. (14), agrees with the first-order coefficient 

in Eq. (6). Finally, integrating Eq. (13) over all space yields the expected result for the first-order kinetic 

energy, 

 , (16) 

which vanishes if  integrates to zero. 

 

FIG. 1. Dimensionless response function governing the first-order change in the kinetic 
energy density (and Pauli kinetic energy density) when expressed as a density functional. 
The horizontal axis is normalized by a factor of , which is the Fermi wave vector 
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associated with the reference electron density . In the limit of a slowly varying 
perturbation ( ), the first-order correction to the Thomas-Fermi density functional 

[see Eq. (6)] is recovered. The response function has a nonanalytic feature (at ) and 
approaches  for the case of a rapidly varying perturbation ( ). 

Second-order term 

The second-order density functional for the KED is 

  (17) 

with 

   (18) 

and 

 . (19) 

This response function, where the explicit forms of the individual components are defined in Eqs. (80), 

(83), (91)-(93), and (96)-(99) of Part I, is the second-order term that emerges when the conversion strategy 

is applied to the KED series in Eq. (7). Plots of Eq. (19) are given in Fig. 2. This function has not been 

reported before and is one of the primary contributions of this work. Again, the low-wave-vector limit, 

Eq. (18), agrees with the relevant coefficient in Eq. (6). Integration of Eq. (17) over all space produces a 

delta function that annihilates one of the wave vector integrals, ultimately yielding the following second-

order correction to the integrated kinetic energy, 

 , (20) 

which is in accord with Eq. (3). Finally, close inspection of Eq. (19) — not given here in detail, but see Fig. 

2 — reveals that  behaves asymptotically as  when  and  are large, a 

point to which we return shortly. 
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FIG. 2. Plots of the dimensionless response function [Eq. (19)] governing the second-order 
change in the kinetic energy density when expressed as a functional of the electron 
density.  represents , and likewise for . Plotted for the cases when the angle 

between  and  is  (top) and when this angle is  (bottom). The second-order 
correction to the Thomas-Fermi functional [see Eq. (6)] is  recovered in the  
limit and the response function tends to diverge as  in the  limit. 

 

Pauli kinetic energy density as a density functional 

As noted above, the von Weizsäcker KED is known explicitly as a density functional, and so one may choose 

to develop approximations for the Pauli KED rather than the full KED. Here, we adapt functionals given 
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previously into approximations for the Pauli KED ( ,  , and ). If, beginning with 

 as given by Eq. (2), one conducts a functional Taylor expansion (see the appendices in Ref. 45 or 

Ref. 46) about a uniform reference density through second order, then the zeroth and first-order terms 

vanish and the result is 

 . (21) 

For this reason, free-electron-based response functionals for the Pauli KED only begin to differ from those 

for the full KED at second order—for example, . Furthermore, the second-order term shown 

in Eq. (21), when converted to Fourier space, is precisely the divergent  term that we 

highlighted in the sentence following Eq. (19). When this term is subtracted from Eq. (19) to yield the 

second-order correction in the Pauli KED, the new function remains finite when  and  are large (see 

Fig. 3). 

First-order term 

The first-order density functional for the Pauli KED is 

 , (22) 

where  and  is the first-order correction to the full KED given in Eq. (15). 

Second-order term 

The second-order density functional for the Pauli KED is 

  (23) 

with  and 

 . (24) 

As noted above, Eq. (24) remains finite as  and  become large. Eq. (24) is plotted in Fig. 3. 
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FIG. 3 Plots of the dimensionless response function [Eq. (24)] governing the second-order 
change in the Pauli kinetic energy density when expressed as a functional of the electron 
density.  represents , and likewise for . Plotted for the cases when the angle 

between  and  is  (top) and when this angle is  (bottom). The second-order 
correction to the Thomas-Fermi functional [see Eq. (6)] is recovered in the  limit 
and the response function remains finite in the  limit. 

IV. TESTING THE ELECTRON-DENSITY-BASED RESPONSE FUNCTIONALS FOR THE 

KINETIC ENERGY DENSITY 

In this section, we apply the electron-density-based response functionals for the KED and Pauli KED to 

electron densities associated with a few crystalline solids. The test systems are local electron-ion 
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pseudopotential models of body-centered cubic Li, face-centered cubic Al, and cubic diamond Si. We 

obtained the test system benchmark data from KSDFT calculations conducted with the Abinit code47 using 

a generalized gradient approximation (GGA)48 for the XC functional. To ensure high resolution in the local 

properties, we used very high computational settings (3200 eV for the plane wave kinetic energy cutoff, 

32 32 32 k-point meshes for unit cells of two (Li), four (Al), and two (Si) atoms, and Fermi-Dirac 

smearing of 0.01 eV). The local pseudopotentials for Li and Si were the same as those used in Ref. 49	and 

the local pseudopotential for Al was the same as that used in Ref. 50 — see Ref. 51. 

 We summarize the test system data in Figs. 4-6, giving the converged KS effective potential, KS 

electron density, and KS KED, all along the [111] direction of the cubic unit cell. We keep these properties 

fixed for the remainder of the analysis (without adjusting them self-consistently), and so the KS effective 

potential may be viewed simply as an applied external potential. (After accounting for ion-ion interactions, 

the crystals are charge-neutral; therefore, the spatial average of these potentials has no Coulombic 

contribution and derives entirely from non-Coulombic parts of the respective local pseudopotentials as 

well as XC effects.) In Figs. 4-6, we also show the Fermi energy of the highest occupied orbital, the free-

electron KED obtained by inserting the average electron density for the respective system into the 

Thomas-Fermi functional given by Eq. (5), and the von Weizsäcker KED given by Eq. (2). 

´ ´
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FIG. 4. For body-centered cubic Li modeled with a local pseudopotential and GGA XC, plots 
of (a) the effective external potential , (b) the electron density , and (c) the 
kinetic energy density (KED)  along the [111] diagonal of the cubic unit cell, derived 
from KSDFT calculations. In each plot, the horizontal axis is scaled by a factor of the lattice 
constant  and the vertical axis is expressed in Hartree atomic units. In (a), Li atom 
locations are marked with “Li” and the Fermi energy  is shown as a dotted line. 
Electrons must tunnel to traverse the classically forbidden regions where . In (c), 
the free-electron KED , obtained by inserting the average electron density into the 
Thomas-Fermi functional, is shown as a dotted line, and the von Weizsäcker KED  
is shown as a dashed curve. 
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FIG. 5. For face-centered cubic Al modeled with a local pseudopotential and GGA XC, plots 
of (a) the effective external potential , (b) the electron density , and (c) the 
kinetic energy density (KED)  along the [111] diagonal of the cubic unit cell, derived 
from KSDFT calculations. In each plot, the horizontal axis is scaled by a factor of the lattice 
constant  and the vertical axis is expressed in Hartree atomic units. In (a), Al atom 
locations are marked with “Al” and the Fermi energy  is shown as a dotted line. 
Electrons must tunnel to traverse the classically forbidden regions where . In (c), 
the free-electron KED , obtained by inserting the average electron density into the 
Thomas-Fermi functional, is shown as a dotted line, and the von Weizsäcker KED  
is shown as a dashed curve. 
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FIG. 6. For cubic diamond Si modeled with a local pseudopotential and GGA XC, plots of 
(a) the effective external potential , (b) the electron density , and (c) the kinetic 
energy density (KED)  along the [111] diagonal of the cubic unit cell, derived from 
KSDFT calculations. In each plot, the horizontal axis is scaled by a factor of the lattice 
constant  and the vertical axis is expressed in Hartree atomic units. In (a), Si atom 
locations are marked with “Si” and the Fermi energy  is shown as a dotted line. 
Electrons must tunnel to traverse the classically forbidden regions where . In (c), 
the free-electron KED , obtained by inserting the average electron density into the 
Thomas-Fermi functional, is shown as a dotted line, and the von Weizsäcker KED  
is shown as a dashed curve. 
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 In Figs. 7-9, we summarize the response functional estimates to the KED and Pauli KED for the 

three test systems based on the KS electron densities shown in Figs. 4-6, which are held fixed. For 

comparison, the exact KEDs from Figs. 4-6 are reproduced in Figs. 7-9, with the latter plots just showing 

more detail over a smaller region. Fig. 7(a), Fig. 8(a), and Fig. 9(a) are based on the following 

approximation to  involving the response functionals for the full KED: 

 , (25) 

where  refers to the average electron density for the respective system, and  and 

 are computed from Eqs. (13)-(15) and Eqs. (17)-(19), respectively. Fig. 7(b), Fig. 8(b), and 

Fig. 9(b) are based on a different approximation for  involving the von Weizsäcker KED and response 

functionals for the Pauli KED:  

 , (26) 

where  is computed from Eq. (2),  is again the average electron density, and  

and  are determined from Eq. (22) and Eqs. (23)-(24), respectively. In essentially every 

case, the approximation of Eq. (26) is markedly better than the approximation of Eq. (25), seemingly 

because Eq. (26) includes the full von Weizsäcker term while Eq. (25) only includes a second-order 

approximation to the von Weizsäcker term. Put differently, Eq. (26) constitutes a partial resummation of 

the perturbation series in which the portion of the series leading to the von Weizsäcker term is summed 

to infinite order and the remaining part (the Pauli KED) is approximated through second-order. Moreover, 

in all cases, inclusion of the second-order term yields demonstrable improvement over the first-order-

accurate approximations. In particular, both first-order approximations generate a negative KED in the 

low-density regions of the Si test system (Fig. 9), in clear violation of the local  constraint, 

and that this defect is remedied by inclusion of the second-order terms. 
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FIG. 7. Response functional approximations for the kinetic energy density (KED) of the 
body-centered cubic Li test system (Fig. 4). In (a), the exact KED (solid curve, reproduced 
from Fig. 4) is compared with the first- and second-order density functional estimates for 
the full KED (dotted and dashed curves, respectively) – see Eq. (25). In (b), the exact KED 
(solid curve) is compared with the sum of the von Weizsäcker KED and the first- and 
second-order density functional estimates for the remaining Pauli KED (dotted and 
dashed curves, respectively) – see Eq. (26). In both (a) and (b), the approximations are 
accurate in the free-electron-like region; however, only in (b) are the approximations also 
reasonably accurate in the classically forbidden region. 
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FIG. 8. Response functional approximations for the kinetic energy density (KED) of the 
face-centered cubic Al test system (Fig. 5). In (a), the exact KED (solid curve, reproduced 
from Fig. 5) is compared with the first- and second-order density functional estimates for 
the full KED (dotted and dashed curves, respectively) – see Eq. (25). In (b), the exact KED 
(solid curve) is compared with the sum of the von Weizsäcker KED and the first- and 
second-order density functional estimates for the remaining Pauli KED (dotted and 
dashed curves, respectively) – see Eq. (26). In both (a) and (b), the approximations are 
accurate in the free-electron-like region; however, only in (b) are the approximations also 
reasonably accurate in the classically forbidden region. 
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FIG. 9. Response functional approximations for the kinetic energy density (KED) of the 
cubic diamond Si test system (Fig. 6). In (a), the exact KED (solid curve, reproduced from 
Fig. 6) is compared with the first- and second-order density functional estimates for the 
full KED (dotted and dashed curves, respectively) – see Eq. (25). In (b), the exact KED (solid 
curve) is compared with the sum of the von Weizsäcker KED and the first- and second-
order density functional estimates for the remaining Pauli KED (dotted and dashed curves, 
respectively) – see Eq. (26). In both (a) and (b), the second-order approximations are 
relatively accurate in the free-electron-like regions, but the first-order approximations are 
insufficient, as judged by unphysically negative estimates for the KED at some locations. 
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Only in (b) are the approximations reasonably accurate in the classically forbidden 
regions. 

 

 Thus far, all approximations have relied on a fixed  for determining first- and second-order 

corrections, where  has been set as the average electron density of the system under consideration. A 

natural alternative is to use the local  as the reference density for the location . The zeroth-order 

Pauli KED, for example, is the local Thomas-Fermi KED in this case instead of the constant , and the 

full second-order-accurate approximation originally given by Eq. (26) becomes 

 . (27) 

This revised approximation, because of the additional density dependence in the response functions, is 

more challenging to evaluate than the original. The usual approach26,52,53 for keeping the computational 

expense manageable for such functionals (having single-density-dependent kernels) involves computing 

 for a discrete set of  values and then extending these results to arbitrary values of  

with interpolating splines. In Fig. 10, the results of applying of Eq. (27) to the three test systems are 

reported, based on uniform spacing of 0.0025 a.u. between successive  values and linear splines. 

 With this approximation, the results for the Li test system [Fig. 10(a)] are excellent for both the 

first- and second-order accurate versions. For the Al test system [Fig. 10(b)], the first-order-accurate result 

improves on the previous first-order (fixed-reference-density) approximation [Fig. 8(b)]; however, the 

second-order result in Fig. 10(b) displays some irregularities. This problem becomes more severe for the 

Si test system [Fig. 10(c)], for which the second-order-accurate approximation becomes significantly 

worse than the first-order approximation in some regions. Referring to Fig. 6, one sees that the unphysical 

behavior occurs where the local electron density is very low, suggesting an explanation: if the free-

electron reference density is very small compared with the fluctuations in the electron density, the 

convergence of the perturbation series is imperiled. 
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FIG. 10. Response functional approximations for the kinetic energy density (KED) utilizing 
a locally adjusted free-electron reference density. In (a), (b), and (c), respectively, the 
exact KEDs for the Li, Al, and Si systems (solid curves, reproduced from Figs. 4, 5, and 6) 
are compared with the sum of the von Weizsäcker KED and the first- and second-order-
accurate density functional estimates for the Pauli KED (dotted and dashed curves, 
respectively). In contrast with the fixed-reference-density approximations appearing in 
Figs. 7(b), 8(b), and 9(b), the latter functionals are evaluated using a locally adjusted 
reference density–see Eq. (27). 

V. CONCLUDING REMARKS 

In this second paper of the two-part series, we considered electron-density-based response functionals 

for the non-negative KED of nearly free electrons. Using the potential functionals developed in Part I, we 

derived the first- and second-order corrections to the free-electron KED as functionals of the electron 

density. The reciprocal-space integral kernels we provided supply physical insight and are of practical 

value because they enable more efficient evaluation of the functionals via fast Fourier transform (FFT) 

techniques. The first-order response function for the full KED, Eq. (15), is fairly simple, but the second-

order function, Eqs. (18)-(19), is considerably more difficult to obtain, requiring the function 

 derived at length in Part I. Finally, we also provided density functionals for the first- and 

second-order response in the Pauli KED—Eq. (22) and Eqs. (23)-(24), respectively—which is the non-

negative amount in excess of the von Weizsäcker KED. The first-order functional for the Pauli KED is 

identical with that of the full KED, whereas the second-order functionals differ by a simple term. 

 In Section IV, we examined approximate KEDs generated by electron-density-based response 

functionals when applied to KS electron densities derived from local pseudopotential models of body-

centered cubic Li, face-centered cubic Al, and cubic diamond Si. In general, particularly when the second-

order term is included, they provide reasonable approximations to the exact  in free-electron-like 

regions where the electron density deviates only modestly from uniformity. However, the combination of 

the von Weizsäcker KED with response functional approximations for the remaining Pauli KED yields a 

marked improvement in regions where the electron density varies more rapidly. This observation 

regarding the local KED helps explain the success of approximations for the integrated kinetic energy that 

involve the full von Weizsäcker energy and obey the constraint specified by Eq. (3). We also investigated 

adjusting the free-electron reference density locally and observed apparent nonconvergence of the 

perturbation series in regions where the local density is much smaller than the overall magnitude of 

density fluctuations. 
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 We anticipate that knowledge of the structure of the KED response functionals will help guide the 

design of more sophisticated kinetic energy density functionals that enable more accurate OFDFT 

simulations of materials. For example, Eqs. (17)-(19) imply a constraint on density functional estimates for 

 that represents a local generalization of Eq. (3). One immediate possibility for follow-up involves 

finding techniques for evaluating Eq. (17) and/or Eq. (23) with a computational effort that scales linearly 

with system size because direct evaluation of these expressions incurs no-better-than quadratic scaling, 

even with assistance from FFT techniques. This problem has been solved (approximately) in a slightly 

different context20,23 and we are currently exploring this possibility. Another obvious avenue for follow-

up involves greater consideration of location-dependent reference electron densities—for example, with 

the response functions for the local KED (or Pauli KED) provided in this paper, one may easily consider the 

generalization . We explored the simplest choice briefly in Section IV, which is to define 

 in the spirit of the Thomas-Fermi approximation such that . However, it seems 

likely that choosing  in a more sophisticated manner would yield better results. Finally, while the 

frozen-density calculations we presented in Section IV are useful for conceptual and diagnostic purposes, 

additional insight would follow from self-consistent OFDFT calculations during which the electron density 

is varied until the total system energy is minimized. These computations require kinetic potentials 

obtained by straightforward functional differentiation of our results. Such self-consistent calculations 

represent a more rigorous test for OF functionals because the approximations must work reasonably well 

for all trial densities; if not, the OF-derived density may differ significantly from the KS density, increasing 

the overall error. 
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VII. APPENDIX 

Here, we demonstrate that the conventional gradient expansion for the KED (in density functional form) 

is encoded in the response functional formalism that is the subject of this work. Using the fact that 

  (28) 
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together with the asymptotic forms of the potential-based response functions given in Section V of Part I, 

one can show that 

  (29) 

and 

 . (30) 

Using these results, together with Eqs. (5), (13), and (17), one may further show that 

 . (31) 

The terms involving two derivatives in Eq. (31) comprise the full second-order gradient expansion 

[compare with Eq. 5.50 in Ref. 13], and the terms involving four derivatives in Eq. (31) are identical with 

terms appearing in the fourth-order gradient expansion [compare with Eq. 5.51 in Ref. 13]. To recover the 

entire fourth-order gradient expansion, one would need to carry out the response functional formalism 

through fourth order. 
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