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The degeneracy of Landau levels flanking charge neutrality in twisted bilayer graphene is known
to change from eight-fold to four-fold when the twist angle is reduced to values near the magic angle
of ≈ 1.05◦. This degeneracy lifting has been reproduced in experiments by multiple groups, and is
known to occur even in devices which do not harbor the correlated insulators and superconductors.
We propose C3 symmetry breaking as an explanation of such robust degeneracy lifting, and support
our proposal by numerical results on the Landau level spectrum in near-magic-angle twisted bilayer
graphene. Motivated by recent experiments, we further consider the effect of C2 symmetry breaking
on the Landau levels.

I. INTRODUCTION

The discovery1,2 of correlated insulators and supercon-
ductivity in magic-angle twisted bilayer graphene (TBG)
has sparked tremendous experimental and theoretical ac-
tivity. The original results of Refs. 1 and 2 have been
confirmed and extended in Refs. 3 and 4. Ferromag-
netism, accompanied by an anomalous (possibly quan-
tized) Hall effect, has also been observed at 3/4 filling of
the conduction band for some devices4,5. In addition,
gate tunable correlated insulators6 as well as signs of
superconductivity7 have been demonstrated in the moire
bands of ABC trilayer graphene aligned with a hexagonal
boron nitride (h-BN) substrate. Very recently, twisted
double bilayers of graphene have also been studied and
are shown to host spin-polarized correlated insulators8–10
and superconductivity8,9.

In spite of the experimental progress, theoretically
there is very little understanding of the many-body
physics of these systems. In this paper, we address one
aspect of the phenomenology of the normal metallic state
of near-magic-angle twisted bilayer graphene. Specifi-
cally, we will focus on understanding the Landau level
degeneracy near charge neutrality. As we discuss below,
the same pattern of Landau fan is consistently observed
across samples with varying twist angles and in a rea-
sonably wide range of densities and temperatures. This
robust experimental observation, however, has resisted a
clear theoretical explanation so far.

More specifically, it is well known that the band struc-
ture of twisted bilayer graphene features two Dirac points
at charge neutrality within each microscopic valley. This
band touching is protected by a C2T symmetry11. We
will refer to these as mini-Dirac points. With two mini-
Dirac points per valley and per spin, we have a total of
eight Dirac points, which is double of that in monolayer
graphene. Upon doping away from neutrality, Landau
levels will form out of the mini-Dirac cones. The cor-
responding Landau fan sequence will then be expected
to be double of that of monolayer graphene, namely,
±4,±12,±20, . . . . Indeed, precisely this degeneracy pat-
tern is seen in experiments on devices with relatively
large twist angle of 1.8◦12, which is far away from the

magic angle ≈ 1.1◦.
In the vicinity of the magic angle, however, there is

a surprise. The Landau fan emerging from neutrality
has the Hall conductance sequence ±4,±8,±12, . . . . In
other words, the eight-fold Landau-level degeneracy is re-
duced to four-fold. Experimentally, this degeneracy lift-
ing is always seen in samples showcasing the correlated
insulators and superconductivity. However, the converse
is not true, i.e., the same sequence is observed even in
some devices which do not show the other correlated
phenomena13. Furthermore, the Landau fans are found
to terminate once the half-filling correlated insulators set
in, and the degeneracy is further reduced to two-fold on
the other side of the insulator. As superconductivity is
seen on both sides of the insulators, understanding the
Landau fan, which conveys information on the nature of
the charge carriers and the possible patterns of symmetry
breaking, may shed light on the nature of the correlated
phenomena closer to the magic angle.

Here, we show that the experimentally observed Lan-
dau fan can be reproduced within a free-fermion model
of twisted bilayer graphene, for various angles close to
the magic angle. Our main result is that the sequence
is stabilized by a weak breaking of C3 symmetry. As is
well-known, C3 symmetry breaking splits the Van Hove
singularity (VHs) in the density of states14,15. For con-
creteness, let us focus on the conduction band. In the
energy range between the two split Van Hove singulari-
ties, the equal-energy contours in the momentum space
(within each valley) take a qualitatively different shape
compared to those allowed in the symmetric case: there
is a single electron-like orbit which encloses both of the
Dirac points. In contrast, without C3 symmetry break-
ing, the equal energy contours either consist of two dis-
joint pockets each enclosing a Dirac point, or a single
hole-like pocket enclosing the band maximum at Γ. In
the presence of a magnetic field, these new equal-energy
contours give rise to four-fold degenerate Landau levels
stemming out from charge neutrality. We find that even
for a relatively small degree of the C3 breaking, the de-
generacy in the vicinity of the magic angle is four-fold
at the magnetic field strengths at which the experiments
are done (' 1 T) .
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We trace the origin of this effect to the large suscep-
tibility of near-magic-angle TBG to such a C3 breaking
perturbation, which leads to a significant modification to
the electronic spectrum even when the “bare” C3 break-
ing is weak. Such symmetry breaking may arise due to
strain effects (known to be generally present in TBG), or
due to spontaneous symmetry breaking driven by inter-
actions. While we leave open the physical origin of the
C3 breaking, we remark that the smallness of symmetry
breaking required suggests that the presence of strain in
the sample is a plausible explanation.

In some devices of twisted bilayer graphene, for exam-
ple in Ref. 5, it is known that there is very likely also
a breaking of C2 symmetry. For the device in Ref. 5,
this is due to the near alignment with a h-BN substrate.
Such C2 breaking gaps out the Dirac points and results
in an insulator at charge neutrality. In the device studied
in Ref. 4, it is observed that the system is insulating at
neutrality. A possible explanation is that C2 is broken in
this system as well, although it is unclear if the symmetry
breaking is again due to alignment with h-BN, or is in-
teraction driven In light of these experimental results, we
also study the expected Landau levle degeneracy in de-
vices with C2 symmetry breaking, both with and without
an additional C3 breaking.

We remark that multiple theoretical attempts have al-
ready been made to address the neutrality Landau fan in
small-angle TBG16–20. While all of the emergent symme-
tries of TBG are preserved in these earlier works, some of
them did identify specific choice of parameters for which
the experimental sequence of ±4,±8,±12, . . . can be ob-
served. For instance, Ref. 20 found numerically that the
experimental sequence can be reproduced in a narrow
range of parameters near the magic angle. However, the
sequence is also found to depend very sensitively on the
choice of model parameters20, and might not explain the
experimental robustness (across groups and samples) of
the Landau level sequence.

Alternatively, Ref. 17 proposed a VHs-induced Landau
level splitting mechanism that is essentially the same as
the one we discuss below. As emphasized above, we find
that this picture is valid only if C3 symmetry breaking
is invoked. This is consistent with the more microscopic
calculation presented in Ref. 18, which did not observe
the experimental sequence for the parameter range sug-
gested in Ref. 17 when all the emergent symmetries are
kept. Finally, we also note that Ref. 15 suggested that
layer-dependent strain could lead to the observed Lan-
dau level sequence near neutrality, although they did not
perform an explicit calculation on this point. The mech-
anism they considered, however, is different from the one
discussed in the present work. In particular, in our model
the C3 symmetry does not differentiate the two layers.
Very recently Ref. 21 studied the effects of such strain on
the pairing structure of the superconductor in TBG but
that work did not address the Landau fans which are our
interest here.

II. HOFSTADTER BUTTERFLY
CALCULATIONS

Our starting point is the single-valley continuum model
for twisted bilayer graphene22,23. Let q ≡ 4π

3a θ with
a = 2.46 Å being the lattice constant of monolayer
graphene, and define the wave vectors q1 = −qŷ, q2 =
q(sin 2π

3 x̂ − cos 2π
3 ŷ), and q3 = q(− sin 2π

3 x̂ − cos 2π
3 ŷ).

The Hamiltonian is given by

H =

(
~v(−i∇ + q3) · σ−θ/2 T (r)

T †(r) ~v(−i∇− q2) · σθ/2

)
(1)

where σφ ≡ eiφσ3/2σe−iφσ3/2, T (r) =
∑3
j=1 T

je−ibj ·r

with

T j = tM

(
α e−i

2π
3 (j−1)

ei
2π
3 (j−1) α

)
, (2)

and bj = qj − q1 are reciprocal lattice vectors for the
moiré potential. We use v = 106 m/s, tM = 110
meV23, and α = 0.8 to incorporate the effect of lattice
relaxation24.

A perpendicular magnetic field can be incorporated by
substituting −i∇ 7→ −i∇ − eA/~, with the vector po-
tential A = −By x̂ in the Landau gauge. As in Ref. 16,
the spectrum for non-zero B can be solved by first go-
ing into a Landau level basis for two decoupled layers,
and then re-expressing the inter-layer potential T (r) in
this basis (more details can be found in Appendix A).
In practice, in the numerical calculations we keep only
finite Landau levels (typically several hundreds) close to
the charge neutrality. Note that in the limit B → 0 an
infinite number of Landau levels should to be kept, and
so we only consider fields B > 1.2 T.

Eq. (1) has all the effective symmetries of twisted bi-
layer graphene. In the following, we will also consider the
effect of symmetry breaking (at the single-particle level).
In particular, we will set (1 − β)T 1 = T 2 = T 3, such
that β 6= 0 controls the degree of C3 symmetry breaking.
We will also introduce C2 symmetry breaking through
HM = Mtσ3 ⊕Mbσ3, which corresponds to a staggered
chemical potential that would be present if the coupling
to the hBN substrate is significant.

We focus on small twist angles θ > 1.1◦, slightly away
from the true magic angle of θ ≈ 1.05◦25, for the following
reasons: (1) In the experiment, the four-fold degeneracy
is observed in a large range of angles, including in devices
where the correlated insulators and superconductors are
not observed. For instance, the sequence±4,±8,±12, . . .
has been seen in the device at 1.27◦ in Ref. 3 under ambi-
ent pressure. This suggests that the key physics leading
to the four-fold degeneracy should be in effect over a rel-
ative broad range of angles. (2) Due to the very small
bandwidth exactly at the magic angle, the Landau lev-
els are not well-separated from each other because of the
small cyclotron frequency, which complicates the analy-
sis.
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III. LANDAU FAN FOR THE SYMMETRIC
CASE

First, we show the results for the fully symmetric
model, which retains the C3 and C2 symmetries. We
will show that the Landau fan close to charge neutrality
should have eight-fold degeneracy, in agreement with the
experiments at twist angle θ = 1.8◦ but in disagreement
with the results near the magic angle1,3. The spectrum
is shown in Fig. 1. From neutrality, only Landau levels
n = 0,±1,±2 are well-developed, and the higher levels
are superseded by the Landau levels coming from the top
and bottom of the active bands. In a semi-classical pic-
ture, such blending of Landau levels occurs near the zero-
field Van Hove singularity separating the equal-energy
contours enclosing the two mini Dirac points from those
enclosing the band extrema located at Γ.

Importantly, each Landau level emanating from charge
neutrality is eight-fold degenerate. This degeneracy can
be explained by noting the doubling due to spin, valley
and layer degrees of freedom. We remark that the layer
index is not generally a good quantum number; however,
as these low-lying Landau levels can be understood as
coming from the mini Dirac points, there is still a two-
fold degeneracy arising from the mini-valley degeneracy.
In contrast, in the experiments the Landau fan is only
four-fold degenerate at such small twist angles.

FIG. 1: Spectrum at twist angle θ = 1.15◦ with both C2

and C3 symmetry. From neutrality, only n = 0,±1,±2
Landau levels can be resolved. Each of them is eight

fold degenerate and the Landau fan sequence is
±4,±12,±20.

IV. LANDAU FAN WITH C3 BREAKING

In this section, we consider the effect of C3 symmetry
breaking by introducing an anisotropy β such that (1 −
β)T 1 = T 2 = T 3. We will not specify the physical origin

of this anisotropy in this work. Our main purpose is to
demonstrate that C3 breaking can qualitatively change
the Landau fan sequence, and so long as a mean-field
description remains valid, we expect our conclusions to
hold even if the C3 breaking is interaction-driven.

FIG. 2: Spectrum at twist angle θ = 1.15◦ with C3

breaking parameter β = 0.07. Compared to the C3

symmetric case, more Landau levels emerging from
neutrality can be clearly resolved. Meanwhile, in the
magnetic field B > 1.2 T, each Landau level is split

into, each being four-fold degenerate. This leads to the
Landan fan sequence ±4,±8,±12, .... Ec is the energy
of the first van-Hove singularity point discussed in

Section IV.

The Landau fan spectrum at β = 0.07 is shown in
Fig. 2. Compared to the C3 invariant case, there are
several clear differences. First, more Landau levels from
neutrality can be seen, suggesting that the Van-Hove sin-
gularity is pushed further away from charge neutrality.
Such shift of Van-Hove singularity has also been observed
in STM experiment at neutrality14. Second, the previ-
ously eight-fold degenerate Landau level is split into two
groups when magnetic field is larger than a critical field
Bc(n) for each Landau level n. Bc(n = 0) = 6 T and
Bc(n = ±1) = 1.2 T. For |n| ≥ 2, Bc is smaller than
the lowest field we can reach in the calculation. Later
we will argue that Bc(n) ∼ 1

|n| , which is confirmed for a
smaller C3 breaking parameter β = 0.01 in the Appendix.
From the splitting of the Landau levels, one expects the
Landau fan sequence ±4,±8,±12, ... as observed in the
experiments. This is confirmed in the Wannier plot in
Fig. 3.

Here we try to give a simple, qualitative explanation
of the splitting of the eight-fold degenerate Landau level
based on a semi-classical picture derived from the band
structure at zero magnetic field. With C2 symmetry pre-
served, the four-fold degeneracy from spin and valley is
robust. In our numerics, we have explicitly checked that
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(a) C3 Symmetric. (b) C3 breaking parameter β = 0.07

FIG. 3: Wannier plot for twist angle θ = 1.15◦. With C3 breaking, the experimentally observed sequence
±4,±8,±12, ..., is reproduced.
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FIG. 4: Zero-field Van Hove singularities. (a)
Representative equal energy contours (not equally

spaced) of the conduction band for β = 0. The critical
contour corresponding to the van Hove singularity is
colored in red. The K and K ′ points are indicated by
white asterisks. (b) Same as (a) but with β = 0.07.
Note there are two critical contours. (c) Density of
states in arbitrary units. The bright yellow regions
indicate the Van Hove singularities flanking charge
neutrality, which splits as β is tuned away from 0.

the splitting happens within each fixed spin-valley sector,
and so for the discussion here we can focus on a fixed sec-
tor. In the fully symmetric case (i.e., for β = 0), there
are two Dirac cones at the K and K ′ points of the mini
Brillouin zone (MBZ). At doping slightly above charge
neutrality, the Fermi surface consists of independent elec-

tron pockets, each enclosing one of the Dirac points (Fig.
4a). As discussed in the previous section, the Landau lev-
els arising from such orbits exhibit a two-fold mini-valley
degeneracy, which, when combined with valley and spin
degeneracy, leads to eight-fold degenerate Landau levels.
When the doping is increased beyond the Van Hove sin-
gularity, the Fermi surface becomes a single hole pocket
enclosing the Γ point, which leads to four-fold degener-
ate Landau levels coming from the superlattice gap at
the top of the active bands.

Importantly, the breaking of the C3 symmetry unpins
the Dirac cones from the K and K ′ points and distorts
the dispersion. Similar to before, at doping slightly above
charge neutrality, the Fermi surface consists of two inde-
pendent electron pockets, and one expects mini-valley
degeneracy in the corresponding Landau levels. How-
ever, at higher doping the mentioned distortion opens up
the possibility of a new form of Fermi surface, which is
electron-like and encloses both of the Dirac points (Fig.
4b). The corresponding Landau level would appear to
emerge from charge neutrality, but would no longer show-
case mini-valley degeneracy. In other words, the eight-
fold degenerate Landau levels split. Equivalently, the
emergence of such new form of Fermi surfaces can be
seen from the splitting of the Van Hove singularity as
β increases (Fig. 4c). Such splitting from C3 symmetry
breaking is also discussed in Ref. 14. Note that the pre-
ceding discussion assumes β ≥ 0; while the Van Hove
singularity still splits for negative values of β, the new
equal energy contours are open orbits and do not lead to
four-fold degenerate Landau levels in the semi-classical
picture. Consistently, we find that the Landau levels do
not split for β < 0 (Appendix.B). We think the open en-
ergy contour is an artifact of the simple model we used
here. For a more realistic modeling of C3 breaking, Lan-
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dau level split may be quite stable.
As a complementary point of view, one can consider

the Landau levels associated with the mini Dirac cones,
which have energies En = veff

√
2e~nB for n ≥ 0. In this

picture, the lifting of the mini-valley degeneracy origi-
nates from the hybridization between the two set of mini-
Dirac Landau levels. Qualitatively, such hybridization is
expected to become significant when En ' Ec

17, where
Ec denotes the energy of the first split Van Hove singu-
larity arising from C3 breaking. As such, we expect the
Landau level splitting to be observable for B ≥ Bc(n)
where Bc(n) ∝ 1/n. This trend is in qualitative agree-
ment with the numerics shown in Fig. 2 and Appendix C.
However, we caution that such a simple picture does not
explain, for instance, the splitting of the zeroth Landau
level shown in Fig. 2.

V. LANDAU FAN WITH C2 BREAKING

Recent experiments have seen signatures of C2

breaking4,5. A typical C2 breaking term is the staggered
potential:

HM = Mtψ
†
tσzψt +Mbψ

†
bσzψb (3)

where Mt,Mb is the staggered potential strength for top
and bottom layer. σ denotes Pauli matrices in the A,B
sublattice subspace.

If the sample is well-aligned with only the top h-BN
substrate, one expects Mt 6= 0,Mb ≈ 026,27. In this case,
the zeroth Landau level is always split into four groups,
each of which has only two-fold spin degeneracy (see Ap-
pend. D). Therefore the first two Landau fan sequences
are always ±2,±4, which has indeed been observed in
both Refs. 5 and 4. In this case, the activation gap for
the ν = 2 quantum Hall sequence is proportional to the
magnitude of |Mt| − |Mb| and therefore is almost a con-
stant when changing magnetic field. This feature may
be a useful test for this scenario in the experiment. Note
that the valley splitting for zeroth Landau level is from
the valley-sublattice locking and should not be thought as
a simple valley Zeeman coupling in the semi-classical pic-
ture. To get a strong ν = 2 sequence in the single particle
level, we find it necessary to invoke a strong mirror reflec-
tion breaking through a finite |Mt|− |Mb|. Therefore the
sample in Ref. 4 should also have a strong mirror reflec-
tion symmetry breaking to explain the observed ν = ±2
sequence. The origin of the mirror reflection symmetry
breaking is not clear because no obvious signature of hBN
alignment is reported in Ref. 4.

Next, we turn to the higher Landau levels. For |n| ≥ 1
the valley splitting is quite small, as shown in Fig. 5.
Without C3 breaking, the |n| ≥ 1 Landau levels from
mini K and K ′ overlap with each other and therefore we
still expect eight-fold degeneracy if C3 is a good symme-
try. C3 breaking is necessary to get the observed four
fold degeneracy in higher Landau levels. One example is
illustrated in Fig. 5.

In the above, we just assume the order parameters
without asking about their origins. The simplest source
to getMt = M andMb = 0 is just alignment with the top
h-BN substrate. For spontaneous symmetry breaking,
the most natural ansatz of spontaneous symmetry break-
ing in Hartree Fock calculation is actually Mt = Mb

28

and cannot reproduce the ν = ±2 sequence. It remains a
question whether the C2, mirror reflection and C3 break-
ings needed to match the Landau fan in Ref. 4 are from
external sources or from correlation effects.

VI. DISCUSSION

Since the first experiment on near magic angle twisted
bilayer graphene, the Landau fan near neutrality have
been a mystery. The observed 4-fold Landau fan is in
striking contrast with the naive theoretical expectation
of an 8-fold degeneracy which is also what is seen at larger
twist angles. The 4-fold degeneracy is seen in devices that
approach but need not be too close to magic angle. In
this paper we have shown how to understand these obser-
vations through explicit calculations of the Landau fan
within the continuum model of the band structure. While
there exist previous such calculations with mixed success
in explaining the experiments, we find that a key ingre-
dient is to include C3 symmetry breaking into the con-
tinuum Hamiltonian. Upon approaching the magic angle
the decreasing bandwidth (and the concomitant increase
in density of states) leads to an amplified response of the
electronic structure to a weak C3 breaking anisotropy.
This makes it easier for the equal energy contours near
the mini-Dirac points to touch and reconstruct. Beyond
a low energy scale the equal energy contours then enclose
both mini-Dirac points thereby reducing the Landau fan
degeneracy from 8 to 4. We also consider the effect of C2

breaking.
With this understanding let us now revisit the ex-

perimental results on various devices. The samples in
Ref. 1–3 behave as a semimetal at neutrality, suggest-
ing a good C2T symmetry. To explain the four fold de-
generacy of Landau fan, we require the existence of C3

breaking, either from strain or from interaction driven
symmetry breaking. Such C3 breaking has been seen in
STM experiments14,29 on other near magic angle twisted
bilayer graphene samples.

The sample in Ref. 5 is aligned with the h-BN substrate
on one side. This leads to an explicit breaking of both
C2 and the effective mirror (a 1800 rotation in 3d about
an axis that is parallel to and bisects the 2 layers) sym-
metries. The C2 breaking leads to to a gap at neutrality,
consistent with the high resistivity observed at neutrality
compared to the devices in Ref. 1–3. Extensive Landau
fan data is not available in Ref. 5 though the reported
Landau levels ±2,±4 are reproduced by our analysis that
takes into account both C2 and mirror breaking.

In the recent study of Ref. 4, a number of additional
features are reported. In contrast to Ref. 1–3 but some-
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FIG. 5: Spectrum and Wannier plot for Mt = 5 meV, Mb = 0, and β = 0.07 at twist angle θ = 1.15◦. The two colors
indicate states in the two microscopic valleys. With C3 breaking, the experimentally observed sequence4

±2,±4,±8,±12, ..., is reproduced.

what similar to Ref. 5 charge neutrality is insulating with
a sizeable gap≈ 0.8 meV. Further, a Landau fan sequence
±2,±4,±8, ...... is reported near neutrality. The insulat-
ing behavior at neutrality could be due to C2T breaking
either from explicit alignment with at least one of the h-
BN substrates, or spontaneously due to interactions30. In
Ref. 4 the observed Landau fan sequence near neutral-
ity is ±2,±4,±8, . . . . In our calculations if we further
retain the effective mirror symmetry, then we are un-
able to reproduce the observation of the ±2 level. Thus
we conclude that the mirror symmetry must be strongly
broken. An additional C3 breaking is needed to further
reduce the degeneracy of higher Landau levels to be four
fold. Thus we think it likely that C2, C3 and effective
mirror are broken in the device in Ref. 4.

The C3 and C2 breaking that we have crucially invoked

in understanding the Landau fan clearly sets the stage
on which the other correlated phenomena happen. An
immediate open question is whether it is an explicit or
spontaneous symmetry breaking driven by interactions.
We hope to study this in the future.
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Appendix A: Calculation of Hofstadter butterfly

In this section we describe the procedure of our calculation of Hofstadter butterfly spectrum. The method we used
is essentially the same as in Ref. 16.

We first describe a general scheme for any graphene moiré superlattice systems. Then calculation for the twisted
bilayer graphene is straightforward.

For moiré system with large lattice constant, the two valleys always form separated spectrum and here we only
treat valley + as an example. At zero magnetic field, a moiré system is described by a continuum model:

H = H0 +HM (A1)

H0 is just the effective model for the valley:

H0 =
∑
k

hαβ(k)f†α(k)fβ(k) (A2)

where α, β is the combination of layer and sublattice index.
The HM is the moiré hopping or superlattice potential term. It involves the scattering of momentum from k to

k + GM, where GM is the reciprocal vector of the small mini Brillouin zon (MBZ) folded by HM . A general HM

term looks like

HM =
∑
k

∑
Qj

Tαβ(Qj)f
†
α(k)fβ(k + Qj) (A3)

When the moireé superlattice is formed by twisting two layers, the momenta of the Dirac cones (or more general band
crossing points) from the two layers are different. Here we follow the notation of Ref. 23 and define the momentum
k in ψα(k) as the momentum relative to the Dirac point in the corresponding layer fixed by α. In this convention Qj

does not belong to the reciprocal vector of the MBZ.
The key idea to calculate the spectrum under magnetic field is the following. We first ignore HM and add magnetic

field to H0. We can easily get the new eigenstate in the Landau level basis. Then we express HM in the Landau level
basis, which generically mix different Landau levels. Numerically we can still solve the resulting Hamiltonian and get
the spectrum.

First let us solve H0 plus magnetic field. The Hamiltonian is labeled by dynamical momenta πx = px − eAx and
πy = py − eAy with the commutation relation:

[πx, πy] = i
1

l2B
(A4)

http://dx.doi.org/ 10.1103/PhysRevLett.117.116804
http://arxiv.org/abs/1902.10146
http://dx.doi.org/10.1103/PhysRevB.84.035440
http://dx.doi.org/10.1103/PhysRevB.84.035440
http://dx.doi.org/10.1103/PhysRevB.84.045436
http://dx.doi.org/10.1103/PhysRevB.85.195458
http://arxiv.org/abs/1903.11563
http://arxiv.org/abs/1904.07875
http://dx.doi.org/ 10.1103/PhysRevLett.99.256802
http://dx.doi.org/ 10.1103/PhysRevX.8.031089
http://dx.doi.org/ 10.1103/PhysRevX.8.031089
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where l2B = ~
eB .

We can define guiding center coordinates Rx = x+ l2Bπy and Ry = y − l2Bπx with commutation relation:

[Rx, Ry] = −il2B (A5)

We also have [πa, Rb] = 0. πa generates the Landau level index n and Ra generates the orbital within each Landau
level.

Define the ladder operator:

a =
lB√

2
(πx + iπy)

a† =
lB√

2
(πx − iπy) (A6)

One can easily check that [a, a†] = 1. Therefore a can be viewed as an annihilation operator. Landau level n
eigenstate satisfy:

a |n〉 =
√
n |n〉 (A7)

We use the Landau gauge: A = (−By, 0), then Rx = x+ pyl
2
B and Ry = −pxl2B . We can use Ry = −pxl2B to label

the basis of each Landau level. Each basis is then labeled by Landau level index n and kx.
We label the funciton ϕn,kx(y) as the wavefunction in the real space for the basis |n, kx〉. The corresponding

annihilation operator is labeled as ψα;n,kx , where α = A1, B1, A2, B2 is the sublattice index.
The continuum model can be written in terms of the operator fα;kx,ky, which is related to ψ through

fα;kx,ky =
∑
n

ϕ̃n,kx(ky)ψα;n,kx (A8)

where ϕ̃n,kx(ky) is the Fourier transformation of ϕn,kx(y) with respect to y.
We have the following translation property:

ϕn,kx(y) = ϕn,0(y + kxl
2
B)

ϕ̃n,kx(ky) = ϕ̃n,0(ky)eikxkyl
2
B (A9)

H0 can be expressed in the following form

H0 =
∑
kx

∑
nm;αβ

ψ†α;n,kx
hαβ;nmψβ;m,kx (A10)

Here kx is defined in the whole range of R = [−∞,∞]. In the graphene problem, hnm is usually very simple. For
example, in monolayer graphene, it is just an off diagonal term from B,n to A,n+ 1.
HM generically scatters momentum. In terms of ψα;n,kx , HM in Eq. A3 can be rewritten as

HM =
∑
kx

∑
Q

∑
nm

Tαβ(Q)Fnm;kx(Q)ψ†α;n;kx
ψβ;m;kx+Qx (A11)

where

Fnm;kx(Q) =
∑
ky

ϕ̃∗n,kx(ky)ϕ̃m,kx+Qx(ky +Qy)

= F 0
nm(Q)ei(kxQy+ 1

2QxQy)l2B (A12)

where we have used Eq. A9. We have

F 0
nm(Q) =

∑
ky

ϕ̃∗n,0(ky)ϕ̃m,0(ky +Qy)eikyQxl
2
Be

i
2QxQyl

2
B

=

√
m!

n!
(zx + izy)n−me−

|z|2
2 Ln−mm (|z|2) (A13)
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where (zx, zy) = 1√
2
(Qx, Qy). Lnm(z) is the associated laguerre polynomials.

If we view kx = k0
x + x∆ with x ∈ Z as site in a 1D chain, Eq. A11 is basically a hopping term in this 1D chain.

The lattice constant is ∆ = Qx for the smallest non-zero Qx. Here α, n is just the orbital label of each site labeled
by kx. At each site kx, the hopping term t(kx) = Fnm;kx(Qx) is a function of the site kx. Generically we have a
quasi-periodic 1D model because t(x) ∼ eikxQyl2B ∼ eiQxQyl2Bx is oscillating according to Eq. A12.

With the commensurate condition ∆Qyl
2
B = 2π qp , we have a unit cell with p sites. Then we can solve the model

with good quantum number k1 = k0
x ∈ [0,∆] and k2 ∈ [−πp ,

π
p ] as the crystal momentum of this 1D chain. For TBG,

the corresponding flux per moiré unit cell is Φ = 2π
6
p
q
h
e2 .

Now we apply the above general scheme to the TBG. We keep M Landau levels. Typical M is several hundreds.
For the flux corresponding to Φ = 2π

6
p
q
h
e2 , we can construct a 4pM matrix for H0 +HM corresponding to each fixed

(k1, k2). We use fα,n,j(k1, k2) to label the state with momentum k2 in the 1D chain fixed by k1. j = 1, 2, ..., p is the
sublattice index for each unit cell.

The Hamiltonian corresponding to H0 is:

H0 = −
√

2υ

lB

∑
k

∑
n=0,1,...M

(
ei
θ
2

√
n+ 1f†A1;n+1;j(k)fB1;n;j(k) + h.c.

+ e−i
θ
2

√
n+ 1f†A2;n+1;j(k)fB2;n;j(k) + h.c.

)
+
∑
k

∑
n

Mt(f
†
A1;n,j(k)fA1;n,j(k)− f†B1;n,j(k)fB1;n,j(k))

+
∑
k

∑
n

Mb(f
†
A2;n,j(k)fA2;n,j(k)− f†B2;n,j(k)fB2;n,j(k)) (A14)

Note that here k = (k1, k2) is just a label of the eigenstate of the 1D chain. It is not the true 2D momentum.
For TBG, HM is

HM =
∑
k

∑
nm

(
F 0
nm(Q0)eik

0
xQ

j
yl

2
Bei∆Q

j
yl

2
Bj +

∑
j=1,2

eik2F 0
nm(Qj)ei(k

0
xQ

j
y+ 1

2Q
j
xQ

j
y)l2Bei∆Q

j
yl

2
Bj
)
f†α;n;j(k)T jαβfβ;m;j(k)

(A15)

where T jαβ is the inter-layer moiré hopping matrix. We have T jtb = T j†bt = T j . Here t, b means top and bottom layer.
The momentum transfer is Q1 = (0, 4π

3aM
), Q2 = (− 2π√

3aM
,− 2π

3aM
) and Q3 = ( 2π√

3aM
,− 2π

3aM
).

T j = tM

(
α e−iϕ(j−1)

eiϕ(j−1) α

)
(A16)

where ϕ = 2π
3 . α ≤ 1 is a parameter to incorporate lattice relaxation. We use α = 0.8 in our calculation.

Appendix B: Landau levels when β < 0

In the main text we show that a C3 breaking with β > 0 can reduce the degeneracy to four fold. Here we discuss the
case with β < 0. As is shown in Fig. 6, each Landau level from the charge neutrality is still eight fold degenerate for
β < 0. This implies that very specific form of C3 is required to explain the experimental result of four fold degenerate
Landau fan.

Appendix C: Landau fan at larger twist angle

For θ = 1.24◦, the spectrum and the Wannier plots are shown in Fig. 7 and Fig. 8. Clearly even at this larger angle
C3 breaking can lead to four fold degenerate Landau fan at finite magnetic field, even though the band width is as
large as 40 meV here.
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FIG. 6: The Landau fan with C3 breaking parameter β = −0.03 at twist angle θ = 1.15◦. C2 symmetry is preserved.
In contrast to positive β, there is no splitting of the Landau levels and the Landau fan is eight fold degenerate.

(a) C3 symmetric (b) C3 breaking parameter β = 0.03 (c) C3 breaking parameter β = 0.07

FIG. 7: Hofstadter butterfly spectrum at θ = 1.24◦ for various C3 breaking parameters. C2 symmetry is preserved.
For β = 0.07, one can see obvious splitting of |n| ≥ 1 Landau levels when energy is larger than 8 meV.

Correspondingly, the splitting happens above a critical magnetic field Bc(n = 1) ≈ 1.2 T and Bc(n = 2) ≈ 2.4 T.
They satisfy the scaling Bc(n) ∼ 1

|n| derived from semiclassical picture in the main text.

Appendix D: Landau Fan with C2 Breaking

Recent experiments have seen signatures of C2 breaking4,5. A typical C2 breaking term is just the staggered
potential:

HC2 = Mtψ
†
tσzψt +Mbψ

†
bσzψb (D1)

where Mt,Mb is the staggered potential strength for top and bottom layer. σ is a Pauli matrix in the A,B sublattice
subspace.

For C2 breaking coming from alignment with the top (bottom) h-BN layer, we have Mt = M,Mb = 0 (Mt =
0,Mb = M).

For C2 breaking from spontaneous symmetry breaking, a natural choice is Mt = Mb = M28. Alignment with both
top and bottom h-BN layers also gives this term.

In the following we discuss the Landau fan close to neutrality from the above two different C2 breaking ansatz.

1. Zeroth Landau levels

We start from the n = 0 Landau level with an emphasis on the observed ν = ±2 sequence4,5. When C2 is preserved,
there are two Dirac cones at K and K ′ of the MBZ for each spin-valley sector.
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(a) C3 symmetric (b) C3 breaking parameter β = 0.03 (c) C3 breaking parameter β = 0.07

FIG. 8: Wannier plot at θ = 1.24◦ for various C3 breaking strength. C2 symmetry is preserved. With β = 0.07, we
can still see the sequence n = ±8Φ at magnetic field B > 2.5 T.

Let us suppress the spin index. For the Dirac cone at K (or K ′) of valley a = ±, we can write a 2 × 2 effective
model:

Heff =
∑
k

ψ†(k)

(
MK,K′ υeff (kx ∓ iky)

υeff (kx ± iky) −MK,K′

)
ψ(k) (D2)

where ψ(k) is a two component spinor. Note that the pseudospin basis of ψ(k) is a mixture of the sublattice and
layer.

When Mt = Mb, mirror reflection guarantees MK = MK′ . When |Mt| >> |Mb|, we also expect |MK | >> |MK′ |.
Let us make Mt = Mb = 0 first. Now we add magnetic field and get four zeroth Landau levels formed by (±,K/K ′)
for each spin sector. In total the zeroth Landau level has eight fold degeneracy. Next we treat Mt and Mb as small
perturbation and add them on this eight fold degenerate n = 0 Landau level subspace. For the zeroth Landau level, it
is well known that the pseudospin is polarized and locked to the valley. The +,K and +,K ′ eighenstate only contains
ψ1 component while the −K and −K ′ eigenstate only contains the component ψ2. Because of this special property,
MK and MK′ (resulting from Mt and Mb) just shift the energy of the zeroth Landau level from (±,K) ((±,K ′)) by
a constant energy ±MK (±MK′). The final result is that we have four groups of n = 0 Landau levels: two groups
from valley − at energy −MK and −MK′ , two groups from valley + at energy MK′ and MK . This is clearly shown
in Fig. 9. For Mt = 5 meV, Mb = 0, each of the four groups only has two fold spin degeneracy. There should be a
ν = ±2 Quantum Hall sequence with the activation gap almost constant with the magnetic field. For |Mt| ≈ |Mb|, we
have |MK | ≈ |MK′ |. Therefore there are only two groups of n = 0 Landau levels. In this case the ν = ±2 quantum
Hall sequence should be quite weak or even absent without invoking interaction effects.
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(a) Mt = 5 meV, Mb = 0 (b) Mt = 5 meV, Mb = 4 meV

FIG. 9: Spectra at twist angle 1.15◦ for two different C2 breaking ansatz. C3 symmetry is preserved. The two colors
indicate states in the two microscopic valleys. The zeroth Landau levels are split to four or two groups and do not
disperse with magnetic field up to 8 Tesla. For the second plot with a small |Mt| − |Mb|, the splitting between K and
K ′ state within each valley is very small. In this case, the ν = ±2 quantum Hall sequence should be absent without
invoking interaction effects.

2. Higher Landau Levels

For higher Landau levels, Ref. 4 observe four fold degeneracy. Here we try to give an explanation with C2 breaking
ansatz. With C2 breaking, the only exact degeneracy at finite magnetic field is the two fold spin degeneracy (we
ignore the small spin Zeeman coupling). However, for n ≥ 1, the valley splitting is quite weak, as shown in Fig. 9.
For Mt = 5 meV and Mb = 0, the mirror reflection is strongly broken. However, the n ≥ 1 Landau levels from K and
K ′ for each valley still overlap with each other. Therefore the n ≥ 1 Landau levels have eight fold degeneracy as long
as C3 is not broken. With C3 breaking, the Landau levels from K and K ′ will couple with each other and reduce the
degeneracy to four fold, as discussed for C2 symmetric case. We show the Wannier plots for several cases in Fig. 10.
One can see that the ansatz with Mt = Mb can not give the ν = ±2 quantum Hall sequence regardless of whether C3

is broken. The only ansatz which can reproduce the sequence ±2,±4,±8,±12, ... in Ref. 4 is the one shown in Fig. 5
in the main text.

(a) Mt = 5 meV, Mb = 0; C3 symmetric (b) Mt =Mb = 5 meV; C3 symmetric
(c) Mt = Mb = 5 meV; C3 breaking pa-
rameter β = 0.03.

FIG. 10: Wannier plots for several C2 and C3 breaking ansatz at twist angle θ = 1.15◦. None of these fully reproduce
the Landau fan sequence ±2,±4,±8,±12, ... in Ref. 4.
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