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Electron transport in anatase TiO2, which has important applications in oxide electronics and
photocatalysis, is still poorly understood. We investigate the electron mobility in anatase TiO2 by
performing first-principles calculations of electron and phonon spectra as well as electron-phonon
coupling. The formation of large polarons (quasiparticles formed by electrons interacting with
phonons in a polar medium) leads to a renormalization of the electronic band structure, which we
address using many-body perturbation theory. We correlate the lowering of the mobility of these
quasiparticles to the renormalization of band velocities due to the electron-phonon interaction. These
results explain why the mobility decreases with increasing temperature, as observed in experiments.

The anatase phase of titanium dioxide (TiO2) has at-
tracted a lot of attention due to its rich physics and
important applications. As a transparent conductor it
can be used in solar energy harvesting and flat-panel
displays;1 n-type-doped TiO2 is highly transparent and
has shown electrical conductivity comparable to that of
Sn-doped In2O3 (ITO), which is the most widely used
transparent conductor.1,2 In addition, TiO2 is known to
have excellent photocatalytic capabilities.3 Recent stud-
ies show that the electrical transport is important for the
overall efficiency of catalysis: the better performance of
anatase compared to rutile (another polymorph of TiO2)
was attributed to the difference in mobility between the
two phases.4

Despite the evident importance of the electronic con-
ductivity, the dominant carrier transport mechanism in
anatase TiO2 is still controversial—in particular, whether
it is based on band electrons or on small polarons. The
conduction mechanism has previously been investigated
using density functional theory (DFT). It was found that
due to the strong electron-phonon interaction excess elec-
trons localize at Ti3+ sites, forming small polarons.5–7

Based on this result, hopping was suggested as the main
conduction mechanism. Small polarons, however, turned
out to be energetically unfavorable compared to delocal-
ized states in calculations where orbital-dependent ex-
ternal potentials were added to obey Koopmans’ theo-
rem.8 Furthermore, transport measurements show that
the mobility exceeds 10 cm2/Vs at room temperature; in
addition, the mobility decreases with increasing temper-
ature for T > 50 K.9 This experimental result contradicts
the small-polaron hopping mechanism, which gives rise to
much lower mobilities (≪ 1 cm2/Vs) and should show an
increase in mobility with increasing temperature (based
on the increased likelihood of overcoming the hopping
barriers at higher temperatures).

While small-polaron hopping cannot provide a satisfac-
tory explanation of the experimental results, the strong
electron-phonon interaction is clearly of importance for
the electrical properties, as was demonstrated by angle
resolved photoemission spectroscopy (ARPES) on single
crystals of TiO2.

10 A substantial renormalization of the

conduction-band structure was observed, resulting from
the coupling of an electron with a lattice distortion and
leading to an increase in the effective mass of the charge
carriers. This provides evidence that the charge carriers
are no longer bare electrons, but behave as an interact-
ing quasiparticle called a large polaron, which is an inter-
mediate state between localized small polarons and free
electrons.

Electron transport calculations using first-principles
methods are typically based on the DFT band structure
and assume that this non-interacting electronic structure
is not affected by the electron-phonon interaction. This
might be a good approximation for materials where the
electron-phonon interaction is weak, but the ARPES ex-
periments indicate that in the case of anatase TiO2 it is
necessary to include the impact of the electron-phonon
interaction on the band structure.

In the present work, we investigate the electron-phonon
interaction and transport in anatase TiO2 using first-
principles calculations combined with many-body pertur-
bation theory. This approach allows us to examine the
effect of band-structure renormalization on the electron
mobility and thus go beyond the typical assumption of
a rigid band structure. The renormalization of the band
structure leads to slower velocities of large polarons com-
pared to bare electrons. Subsequent mobility calculations
using Boltzmann transport theory show a striking impact
on transport: the renormalization of velocities leads to
a reduction in mobility by up to 44% compared to the
“bare” mobility. The resulting mobility also decreases
substantially with temperature.

We perform DFT calculations using the Quan-
tum ESPRESSO package11 with the LDA exchange-
correlation functional,12 and ultrasoft pseudopotentials13

in which the Ti semicore 3s and 3p states are treated as
valence electrons. The plane-wave basis has a cutoff of
50 Ry and we use a 6×6×6 special k-point grid. The
phonon spectrum is calculated using density functional
perturbation theory (DFPT)14 on a 4×4×4 q-point grid,
and interpolated along symmetry lines of the Brillouin
Zone (BZ).

DFT-LDA provides good structural properties, includ-
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FIG. 1. Conduction-band structure of anatase TiO2 calcu-
lated using LDA (dashed red line) and LDA+U (solid blue
line), based on the optimized geometry obtained with LDA,
and plotted along high-symmetry lines of the BZ for the primi-
tive cell. The conduction-band minimum is used as the energy
reference in both cases. The inset shows the conventional cell
of anatase TiO2; large blue spheres are Ti atoms, small red
spheres O atoms.

ing phonon dispersion curves (as we will show below), but
for the electronic structure a better description of Ti-d-
derived conduction-band states is needed. We therefore
perform LDA+U calculations, with the on-site Coulomb
energy U=3.3 eV obtained selfconsistently using a linear-
response approach.15

Anatase TiO2 is a band insulator with a tetragonal
crystal structure and the I41/amd space group as shown
in the inset of Fig. 1. The calculated lattice parameter
of the primitive cell is 5.42 Å, in good agreement with
the experimental value of 5.45 Å.16 Each Ti atom is sur-
rounded by a slightly distorted oxygen octahedron. The
crystal field of these distorted octahedra lifts the degen-
eracy of the t2g states. As a consequence, the lowest
conduction band is derived mainly from dxy states, lead-
ing to a highly anisotropic band structure: dispersion is
much stronger along Γ-X than along Γ-Z (Fig. 1). The
next-higher conduction-band states have mainly dyz and
dzx character. Figure 1 also shows that the conduction
bands obtained with LDA+U show less dispersion than
those obtained with LDA. The quality of the LDA+U
band structure is confirmed by the agreement of the elec-
tron effective mass obtained with LDA+U (0.44me) with
a value calculated using a hybrid functional (0.42 me).

17

The LDA value is 0.37 me.
Anatase TiO2 has 6 atoms in the primitive cell, lead-

ing to 18 phonon modes (3 acoustic + 15 optical modes).
Among them, three pairs of polar optical modes consist-
ing of transverse (TO) and longitudinal (LO) modes can
be identified by group theory. Lattice vibrations cor-
responding to polar LO modes generate a macroscopic
electric field at long wavelengths. This causes the split-

TABLE I. Zone-center optical phonon frequencies (in cm−1)
for anatase TiO2 calculated using DFT-LDA and compared
with experiment.

Modes LDA Exp. (Ref. 18) Exp. (Ref. 19)
Eg 160 — 144
Eg 166 — 197

Eu(TO) 253 262 —
Eu(LO) 343 366 —
A2u(TO) 351 367 —

B1g 388 — 399
Eu(TO) 454 435 —
B1g 501 — 519
A1g 524 — 513
B2u 551 — —
Eg 647 — 639

A2u(LO) 728 755 —
Eu(LO) 874 876 —
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FIG. 2. (Color online). Calculated phonon band structure of
anatase TiO2 using the LDA functional.

ting of the polar LO and TO modes at the zone center as
shown in Fig. 2; in Eu modes ions oscillate in the (a-b)
plane, while in the A2u mode they oscillate along the c
axis. LO-TO splitting for Eu modes therefore occurs only
for phonon wave vectors q with nonzero x or y compo-
nents (e.g., along the Γ-X direction), and for A2u modes
the LO-TO splitting only occurs for q with nonzero z
component (e.g., along the Γ-Z line). The calculated fre-
quencies of the optical modes at Γ are in good agreement
with experiment, as shown in Table I.18,19

The coupling of an electron to lattice vibrations can
lead to different types of polaron states in solids. An
electron placed in a continuous polarizable medium can
form a large polaron via coupling to polar LO modes.
In contrast to a small polaron, in which an electron is
localized on a few atomic sites accompanied by a sig-
nificant lattice distortion, a large polaron is spread over
many lattice sites with a much smalller lattice distortion.
The atomic displacement due to polar LO modes follows
the polaronic motion, effectively dressing the electron.
Hence, large polarons move through the lattice similar
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to free electrons but with a heavier effective mass.

Fröhlich examined the effective mass of a large po-
laron for an isotropic system with a parabolic band
structure and a single LO phonon mode.20 He derived
the dependence of the polaron mass on the electron-
phonon coupling strength using perturbation theory. In
TiO2, however, the physical properties are anisotropic
and there are multiple LO phonon modes and therefore
the Fröhlich approach is inadequate.21 Here we use the
following Fröhlich-like Hamiltonian as a starting point:

H =
∑

k

ǫkĉ
†
kĉk +

∑

q

∑

ν

~ωqν(â
†
qν âqν + 1/2)

+
1√
Vcell

∑

k

∑

q

∑

ν

gν(q)ĉ
†
kĉk(â

†
qν + âqν),

(1)

where ǫk is the energy of an electron in the conduction

band with momentum k, ĉ†
k
and ĉk are the electron cre-

ation and annihilation operators, ωqν is the LO phonon
frequency for the νth polar LO phonon mode with mo-
mentum q, â†qν and âqν are the phonon creation and an-
nihilation operators, and Vcell is the volume of the unit
cell. We do not assume a single parabolic conduction
band but explicitly consider the full band structure ob-
tained from first-principles calculations. The matrix el-
ement gν(q) measures the strength of electron-phonon
coupling and has units of energy. Note that this Hamil-
tonian only describes polar LO modes, but these modes
have the largest electron-phonon coupling compared to
the other modes in TiO2.

22,23

In the Vogl model21,24 the electron-phonon matrix el-
ement for coupling to long-wavelength LO phonons is

gν(q) = i
e2

Vcellε0

∑

j

√

~

2Mjωqν

q · Zj · ejν(q)
q · ε∞ · q , (2)

where e is the electron charge, ε0 the vacuum permittiv-

ity, and Mj the atomic mass of atom j. Zj is the Born
effective charge tensor and ejν the normalized atomic dis-
placement of the jth atom. The electric field created by
the polar LO phonons with momentum q is proportional

to q · Zj · ejν(q). The electron-phonon matrix element
in Eq. (2) has a 1/|q| dependence due to its long-range
nature. As a result, its magnitude around Γ is very large,
and therefore the scattering due to polar LO modes dom-
inates the electron transport properties of polar materials
compared to those of other types of electron-phonon in-
teractions.25 It is inversely proportional to ε∞, the high-
frequency dielectric tensor, which screens the Coulomb
interaction. Equation (2) assumes that the Bloch wave-
functions change smoothly as a function of the electronic
wave vector, so that there is no k dependence.

We include the renormalization of electronic band
structure due to the electron-phonon interaction via
many-body perturbation theory.26 The electron-phonon
self-energy Σk(ω, T ) is computed within the Fan approx-

imation:27

Σk(ω, T ) =
∑

ν

∫

dq

ΩBZ

|gν(q)|2

× [
nqν + 1− fk+q

~ω − ǫk+q − ~ωqν − iη
+

nqν + fk+q

~ω − ǫk+q + ~ωqν − iη
] ,

(3)

where T is the temperature, ΩBZ the volume of the BZ,
nqν the Bose-Einstein distribution, and fk the Fermi-
Dirac function. The complex shift in the denominator is
added to prevent Eq. (3) from diverging, with η taken
to be 0.2 eV. As noted above, the initial electronic band
structure is taken from an LDA+U calculation. The BZ
integration is performed on a very fine grid of 60×60×60
q-points. For purposes of comparing with experimental
transport measurements the electron and phonon occu-
pation factors are obtained for T = 300 K and an electron
concentration of 1018 cm−3.
Assuming the electronic wave functions are not signifi-

cantly changed due to the electron-phonon coupling, i.e.,
the off-diagonal elements of the self-energy are negligible,
the renormalized band structure can be calculated as

ǫpk = ǫk +ReΣk(ǫ
p
k) , (4)

where ǫpk is the energy of a polaron state and ReΣk the
real part of the self-energy. Equation (4) has to be solved
selfconsistently. Combining Eqs. (3) and (4) is equivalent
to second-order Brillouin-Wigner perturbation theory for
electron-phonon coupling.28 Here we introduce a simple
and effective approach to solve such an equation. If we
assume that the polaron energies are close to the bare
electronic energies, the self-energy can be expanded to
first order around the bare energy and the solution of
Eq. (4) can be approximated as

ǫpk = ǫk + ZkReΣk(ǫk) , (5)

where Zk is the renormalization factor defined by

Zk =

[

1−
(

∂ReΣk(ω)

~∂ω

)

~ω=ǫk

]−1

. (6)

The procedure is illustrated in Fig. 3 for k=0.
As Fröhlich demonstrated, the strong electron-phonon

interaction in polar materials increases the mass of the
charge carriers, so that polarons will have lower veloci-
ties than bare electrons. To evaluate this effect, we cal-
culate the group velocity of polarons [vp

k = 1/~(∂ǫpk/∂k)]
and of bare electrons [vk = 1/~(∂ǫk/∂k)] and plot the
ratio |vp

k/vk| in Fig. 4 for states near the conduction-
band edge. The results clearly show that the velocities
of polaron states are decreased, with values ranging be-
tween 75 and 80% of the velocities of bare electrons. The
velocity renormalization depends on the energy of the
electronic states. However, there is also a strong depen-
dence on the direction of momentum in k space due to
the anisotropy of the anatase structure, which explains
the multiple data points shown for the same energy in
Fig. 4.
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FIG. 4. Energy-dependent velocity renormalization for states
near the conduction-band edge.

The reduction in carrier velocity impacts the mobil-
ity. The electrical conductivity tensor σαβ , where α and
β denote Cartesian indices, can be calculated using the
Boltzmann transport equation within the relaxation time
approximation as29

σαβ =
2e2

Vcell

∑

k

wkτk(−
∂fk
∂Ek

)Vk,αVk,β , (7)

where wk is the k-point weight, Ek the energy of the elec-
tron carriers, and Vk the band velocity. We use Ek and
Vk as placeholders for either the bare or renormalized
(polaron) energies or velocities. τk is the carrier life-
time arising due to electron-phonon interactions, which
in polar materials is dominated by the coupling with LO-

TABLE II. Calculated mobilities at room temperature for
n=1018 cm−3. The conduction band is described either at
the LDA or the LDA+U level, or taking renormalization
due to the electron-phonon interaction into account (with the
LDA+U results as the starting point).

LDA LDA+U renormalized
µ⊥ µ‖ µ⊥ µ‖ µ⊥ µ‖

75 7 56 6 26 2

phonon modes and can be calculated as follows:

τ−1
k =

2π

~

∑

ν

∑

q

wq|gν(k,q)|2

× {(nqν + fk+q)δ(Ek+q − Ek − ~ωqν)

+ (1 + nqν − fk+q)δ(Ek+q − Ek + ~ωqν)} .

(8)

This expression for the lifetime can be derived from the
imaginary part of the self-energy of the polarons.28 Equa-
tion (8) can also be derived from Fermi’s golden rule.
Note that we do not simply assume the carrier lifetime
to be constant, which is a frequently used approxima-
tion. Equation (8) explicitly includes the k-point depen-
dence of τk, which is important to accurately describe
mobilities .25,30 The mobility tensor µαβ is obtained from
µαβ=σαβ/ne, where n is the carrier density. We employ
a 60×60×60 k- and q-points grid to calculate Eq. (7) and
Eq. (8). Further increasing the grid size to 100×100×100
leads to changes in the mobility smaller than 5%. The
grid size used here to obtain converged results is smaller
than what was found necessary for GaAs and Si.31–34

This difference in grid size can be attributed to the dis-
persion of the band structure of the materials investi-
gated; more dispersive bands need finer meshes. For
SrTiO3, which has masses comparable to TiO2, Ref. 35
used a denser grid but did not report convergence tests,
while Ref. 36 used a grid comparable to our current grid.
The delta function in Eq. (8) is replaced by a Gaussian
with a width of 0.05 eV. In Eq. (8) we do not include the

factor (1-V̂k · V̂k+q) that is associated with the effect of
directionality in the scattering. Our tests showed that
its inclusion changes the mobility by only ∼1%. Such a
minor impact of the velocity factor on the mobility was
previously reported for SrTiO3.

36

Our calculated values for mobilities at room tempera-
ture are listed in Table II. From the analysis of mode-
resolved scattering rate, the highest optical mode turns
out to dominate the scattering rate. We find that the
mobility is ∼10 times larger in the direction perpendicu-
lar to the c axis (µ⊥) than in the parallel direction (µ‖).
This strong anisotropy arises from the large differences
in dispersion of the conduction band in different direc-
tions (see Fig. 1). Table II also shows that the calculated
mobility depends strongly on the approach used for com-
puting Ek. We list values obtained with LDA, LDA+U ,
and including renormalization due to electron-phonon in-
teractions.
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Our results show that the accuracy of conduction-band
states affects the mobilities. A proper description of d
states, as accomplished in LDA+U , reduces the mobil-
ity by as much as 25% compared to the LDA values. If
in addition band-structure renormalization is taken into
account, the mobility is further reduced by 54%. This
reduction is mainly due to the velocity renormalization;
indeed, the scattering rates for band-edge states are in-
creased by only ∼20 % as a consequence of the band
renormalization. We note that the conductivity in Eq. (7)
depends on the square of the group velocity. Thus, the
velocity renormalization modifies the mobility more sig-
nificantly than the scattering rate.
The mobility, including the band renormalization ef-

fect, decreases with increasing temperature; from 70
cm2/Vs at 200 K to 26 cm2/Vs at 300 K for the in-
plane direction, consistent with experimental observa-
tions.1,9 We can attribute the decrease to the enhanced
LO-phonon scattering at higher temperatures.
Experimentally measured room-temperature values of

µ⊥ range from 17 to 30 cm2/Vs for n =1018-1020 cm−3.1,9

These values could in principle contain contributions
from scattering mechanisms other than LO-phonon scat-
tering. Since the transport measurements were per-
formed on single crystals9 or epitaxial films,1 we expect
the impact of extended defects such as dislocations or
grain boudaries to be small. Regarding ionized impu-
rity scattering, we can estimate its contribution based
on the experimental data. In Ref. 1 the mobility of an
epitaxial sample with n ∼ 1020 cm−3 was measured to
be about 100 cm2/Vs at T <100 K. In a doped semi-
conductor the mobility at low temperatures is typically
dominated by ionized impurity scattering.37 Thus it is
reasonable to assume that the low-temperature mobility
of 100 cm2/Vs mainly arises from ionized impurity scat-
tering. In addition, it is known that the impact of this
scattering mechanism decreases as the temperature in-
creases.37 Accordingly, the mobility limited by only the
ionized impurity scattering at room temperature is likely
to be higher than 100 cm2/Vs. We can therefore con-
clude that, even at these high dopant concentrations,
ionized impurity scattering does not contribute signifi-
cantly to the mobility at room temperature, and that
LO-phonon scattering will be the main mechanism limit-
ing the mobility. Our results in Table II indicate that it
is essential to take renormalization of the band structure

into account to accurately describe LO-phonon scatter-
ing at room temperature, and this indeed produces values
within the experimentally observed range.

Other titanates, such as SrTiO3 and rutile TiO2, also
exhibit mobilities that decrease with increasing temper-
ature.38,39 Given that these materials also have strong
electron-LO-phonon interactions,we expect that large po-
larons and the resulting band-structure renormalization
also play an important role in the transport properties
of these materials. The effect may be even larger than
in anatase, given that the experimental mobility at room
temperature is less than 10 cm2/Vs. A recent study in-
vestigated the transport properties of SrTiO3 using the
Kubo formula in which the spectral functions of electrons
interacting with phonons are considered.40 The results
also show that the change in the band structure due to
the strong electron-phonon coupling reduces the mobil-
ity (by a factor of eight) compared to that of the bare
electron.

In conclusion, we have investigated the mobility of
large polarons in anatase TiO2 using first-principles cal-
culations and the Boltzmann transport equation. We
explicitly included the band renormalization due to the
electron-phonon coupling within many-body perturba-
tion theory. While the scattering time is modified by
10%, the main effect on mobility stems from velocity
renormalization. The large polaron has a 44% lower mo-
bility than the mobility of bare electrons. Our results
show that the formation of large polarons plays a crucial
role in the electron mobility of anatase TiO2.
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