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In spite of decades of work it has remained unclear whether or not superradiant quantum phases,
referred to here as photon condensates, can occur in equilibrium. In this Letter, we first show that
when a non-relativistic quantum many-body system is coupled to a cavity field, gauge invariance
forbids photon condensation. We then present a microscopic theory of the cavity quantum elec-
trodynamics of an extended Falicov-Kimball model, showing that, in agreement with the general
theorem, its insulating ferroelectric and exciton condensate phases are not altered by the cavity and
do not support photon condensation.

Introduction.—Superradiance1–5 refers to the coherent
spontaneous radiation process that occurs in a dense gas
when a radiation field mode mediates long-range inter-
molecule interactions. Superradiance was observed first
more than 40 years ago in optically pumped gases2,3 and
has recently been identified in optically pumped electron
systems in a semiconductor quantum well placed in a
perpendicular magnetic field6. In 1973 Hepp and Lieb7

and subsequently Wang and Hioe8 pointed out that for
sufficiently strong light-matter coupling the Dicke model,
often used to describe superradiance in optical cavities,
has a finite temperature second-order equilibrium phase
transition between normal and superradiant states. To
the best of our knowledge, this phase transition has never
been observed9. In the superradiant phase the ground
state contains a macroscopically large number of coherent
photons, i.e. 〈â〉 6= 0, where â (â†) destroys (creates) a
cavity photon. To avoid confusion with the phenomenon
discussed in the original work by Dicke1, we refer to the
equilibrium superradiant phase as a photon condensate.

Theoretical work on photon condensation has an in-
teresting and tortured history. Early on it was shown
that photon condensation is robust against the addition
of counter-rotating terms10,11 neglected in Refs.7,8. Soon
after, however, Rzażewski et al.12 pointed out that addi-
tion of a neglected term related to the Thomas-Reiche-
Kuhn (TRK) sum rule13,14 and proportional to (â+ â†)2

destroys the photon condensate. These quadratic terms
are naturally generated by applying minimal coupling
p̂ → p̂ − qA/c to the electron kinetic energy p̂2/(2m).
More recent research has focused on ground state prop-
erties. The quantum chaotic and entanglement proper-
ties of the Dicke model photon condensate were stud-
ied in Refs.15,16. The authors of Ref.17 criticized these
studies however, pointing again to the importance of the
quadratic term. The no-go theorem for photon conden-
sation was revisited in Ref.18, where it was claimed that
it can be bypassed in a circuit quantum electrodynamics
(QED) system with Cooper pair boxes capacitively cou-

pled to a resonator. Soon after, however, Ref.19 showed
that the no-go theorem for cavity QED applies to cir-
cuit QED as well. The claims of Ref.19 were then criti-
cized in Ref.20. (See also subsequent discussions21,22 on
light-matter interactions in circuit QED.) Later it was
argued23 that the linear band dispersion of graphene pro-
vides a route to bypass the no-go theorem, and that pho-
ton condensation could occur in graphene in the integer
quantum Hall regime. This claim was later countered in
Refs.24,25, where it was shown that a dynamically gener-
ated quadratic term again forbids photon condensation.

Recent experimental progress has created opportuni-
ties to study light matter interactions in new regimes in
which direct electron-electron interactions play a promi-
nent role. For example26 two-dimensional (2D) electron
systems can be embedded in cavities or exposed to the
radiation field of metamaterials, making it possible to
study strong light-matter interactions in the quantum
Hall regime27–32. Other emerging possibilities include
cavity QED with quasi-2D electron systems that exhibit
exciton condensation, superconductivity, magnetism, or
Mott insulating states. This Letter is motivated by in-
terest in strong light-matter interactions in these new
regimes and by fundamental confusion on when, if ever,
photon condensation is allowed.

We present a no-go theorem for photon condensation
that is valid for generic non-relativistic interacting elec-
trons at T = 0. This result generalizes to interacting sys-
tems existing no-go theorems for photon condensation in
two-level12,18,33,34 and multi-level19 Dicke models,which
are based on the TRK sum rule. We then present a
theory of cavity QED of an extended Falikov-Kimball
model35, which, in the absence of the cavity, has insu-
lating ferroelectric and exciton condensate phases. We
show through explicit microscopic calculations how the
theorem is satisfied in this particular strongly correlated
electron model.
Gauge invariance excludes photon condensation.—We

consider a system of N electrons of mass mi described by
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a non-relativistic many-body Hamiltonian of the form

Ĥ =

N∑
i=1

[
p̂2
i

2mi
+ V (r̂i)

]
+

1

2

∑
i 6=j

v(r̂i − r̂j) . (1)

Here, V (r) is a generic function of position and v(r) is a
generic (non-retarded) two-body interaction, which need
not even be spherically symmetric. In a solid V (r) is
the one-body crystal potential. Below we first exclude
the possibility of a continuous transition to a condensed
state, and then use this insight to exclude first-order tran-
sitions. For future reference, we denote by |ψm〉 and Em
the exact eigenstates and eigenvalues of Ĥ36,37, with |ψ0〉
and E0 denoting the ground state and ground-state en-
ergy, respectively.

We treat the cavity e.m. field in a quantum fash-
ion, via a uniform quantum field Â corresponding
to only one mode5,7,8,11,12,14,15,18–25,33,53,54, i.e. Â =
A0u(â + â†), where u is the polarization vector, A0 =√

2π~c2/(V ωcεr), V is the volume of the cavity, εr is its
relative dielectric constant, and the photon Hamiltonian
Ĥph = ~ωcâ

†â, where ωc is the cavity frequency. The
full Hamiltonian, including light-matter interactions in
the Coulomb gauge33,34,38,39 is:

ĤA0
= Ĥ+ ~ωcâ

†â+

N∑
i=1

e

mic
p̂i ·A0(â+ â†)

+

N∑
i=1

e2A2
0

2mic2
(â+ â†)2 , (2)

where A0 ≡ A0u and −e < 0 is the electron charge.
The third and fourth terms in Eq. (2) are often re-
ferred to respectively as the paramagnetic and diamag-
netic contributions to the light-matter coupling Hamil-
tonian. Our aim is to make general statements about
the ground state |Ψ〉 of ĤA0

. For future reference
we define i) the paramagnetic (number) current opera-

tor36,37, ĵp ≡ (c/e)δĤA0/δA0|A0=0 =
∑N
i=1 p̂i/mi and

ii) ∆ ≡∑N
i=1 e

2A2
0/(2mic

2).

The term proportional to ∆ in Eq. (2) can be re-

moved by performing the transformation b̂ = cosh(x)â+

sinh(x)â†, where cosh(x) = (λ+ 1)/(2
√
λ) and sinh(x) =

(λ − 1)/(2
√
λ) with λ =

√
1 + 4∆/(~ωc). The Hamil-

tonian (2) becomes: ĤA0
= Ĥ + (e/c)ĵp · A0λ

−1/2(b̂ +

b̂†) + ~ωcλb̂
†b̂. It can be shown (see Sec. I of the Sup-

plemental Material (SM)40) that in the thermodynamic
limit (N →∞, V →∞ limit at fixed N/V ), the ground

state |Ψ〉 of ĤA0
does not contain light-matter entangle-

ment, i.e. we can take |Ψ〉 = |ψ〉 |Φ〉, where |ψ〉 and |Φ〉
are matter and light wave functions. Using this prop-
erty we see that in the thermodynamic limit the ground
state |Φ〉 of the effective photon Hamiltonian 〈ψ| ĤA0 |ψ〉
is a coherent state41,42 |β〉 satisfying b̂ |β〉 = β |β〉. The

ground-state energy is therefore given by

Eψ(β) = 〈ψ|Ĥ|ψ〉+
e

c
〈ψ|ĵp|ψ〉 ·A0

2Re[β]√
λ

+ ~ωcλ|β|2 .
(3)

We need to minimize Eψ(β) with respect to β and |ψ〉.
The minimization with respect to β can be done analyti-
cally. We find that the optimal value β̄ for this minimum
problem is a real number given by:

β̄ = − 1

~ωcλ3/2
e

c
〈ψ|ĵp|ψ〉 ·A0 . (4)

We are therefore left with a constrained minimum prob-
lem for the matter degrees of freedom. Its solution must
be sought among the normalized anti-symmetric states
|ψ〉 which yield (4). This is the typical scenario that can
be handled with the stiffness theorem37.

For photon condensation to occur we need Eψ(β̄) <
Eψ0

(0) or, equivalently,

~ωcλβ̄
2 > 〈ψ|Ĥ|ψ〉 − 〈ψ0|Ĥ|ψ0〉 , (5)

where, because of (4), |ψ〉 depends on β̄. The depen-

dence of 〈ψ|Ĥ|ψ〉 − 〈ψ0|Ĥ|ψ0〉 on β̄ can be calculated
exactly up to order β̄2 by using the stiffness theorem37.
We find 〈ψ|Ĥ|ψ〉 − 〈ψ0|Ĥ|ψ0〉 = αβ̄2/2 + O(β̄3), where
α = −1/χ(0) > 0 and

χ(0) ≡ − 2

~2ω2
cλ

3

e2

c2

∑
n 6=0

|〈ψn|ĵp ·A0|ψ0〉|2
En − E0

< 0 (6)

is proportional to the static paramagnetic current-
current response function in the Lehmann representa-

tion36,37. We have used that (e/c) 〈ψ0|ĵp|ψ0〉 · A0 = 0,
as proven in Sec. II of the SM40. It follows that photon
condensation occurs if and only if

4
e2

c2

∑
n6=0

|〈ψn|ĵp ·A0|ψ0〉|2
En − E0

> ~ωc + 4∆ . (7)

However, as shown in Sec. III of the SM40,

e2

c2

∑
n 6=0

|〈ψn|ĵp ·A0|ψ0〉|2
En − E0

= ∆ . (8)

Eq. (8) is the TRK sum rule13 which expresses the fact
that the paramagnetic and diamagnetic contributions
to the physical current-current response function cancel
in the uniform static limit36,37, as discussed more fully
in Sec. III of the SM40, i.e. it expresses gauge invari-
ance. Using Eq. (8) we can finally rewrite Eq. (7) as
c24∆ > c2(~ωc + 4∆) which cannot be satisfied. We con-
clude that photon condensation cannot occur and that,
upon minimization with respect to |ψ〉, the ground state
is |ψ0〉 and β̄ = 0. From this analysis it is clear that first-
order transitions to states with finite photon density are
also excluded, because interactions with a coherent equi-
librium photon field do not lower the matter energy43.
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Gauge invariance excludes photon condensation for any
Hamiltonian of the form (2). This is the first important
result of this Letter.

Cavity QED of an extended Falikov-Kimball model.—
We now illustrate how this general conclusion applies to a
specific properly gauge invariant model of strongly corre-
lated electrons in a cavity. We consider spinless electrons
in a one-dimensional (1D) inversion-symmetric crystal
with N sites, each with one atom with two atomic or-
bitals of opposite parity (s and p). When this lattice
model is augmented by the addition of on-site repulsive
electron-electron interactions, it is often referred to as
an extended Falikov-Kimball (EFK) model35. The EFK
model has been used to discuss exciton condensation44

and electronic ferroelectricity45,46. The coupling of cav-
ity photons to the matter degrees of freedom of a 1D
EFK model can be described47–50 by employing a Peierls
substitution in the site representation with a uniform
linearly-polarized vector potential of amplitude A0, as
detailed in Sec. IV of the SM40. We obtain

ĤA0
= Ĥ0 + Ĥee + ~ωcâ

†â+
g0√
N

~
a
ĵp(â+ â†)

− g20
2N
T̂ (â+ â†)2 , (9)

where Ĥ0 =
∑
k,α,β ĉ

†
k,αHαβ(k)ĉk,β is the band Hamilto-

nian,

Hαβ(k) =

(
Es − 2ts cos(ka) 2it̃ sin(ka)
−2it̃ sin(ka) Ep + 2tp cos(ka)

)
, (10)

and the Hubbard interaction term

Ĥee = U

N∑
j=1

ĉ†j,sĉj,sĉ
†
j,pĉj,p . (11)

In Eq. (9), ĵp =
∑
k,α,β ĉ

†
k,αjαβ(k)ĉk,β with jαβ(k) ≡

~−1∂Hαβ(k)/∂k is the paramagnetic number current op-

erator, and T̂ =
∑
k,α,β ĉ

†
k,αTαβ(k)ĉk,β with Tαβ(k) ≡

−a−2∂2Hαβ(k)/∂k2 is the diamagnetic operator. In
Eq. (10), Es and Ep are on-site energies for the s and p
orbitals, ts ∈ R and tp ∈ R are hopping parameters, and
t̃ ∈ R is the inter-band hopping parameter. At the single-
particle level (i.e. for U = 0), t̃ is the only term responsi-
ble for inter-band transitions due to light. All sums over
the wave number k are carried out in the 1D Brillouin
zone and become integrals in the thermodynamic limit

with the usual rule N−1
∑
k → a

∫ +π/a

−π/a dk/(2π), where

a is the lattice constant. In these equations the Greek
labels take values α, β = s,p. The momentum-space
and site representations for field operators are linked by

the usual relationship ĉ†j,α = N−1/2
∑
k ĉ
†
k,αe

−ikja. The

dimensionless light-matter coupling constant in Eq. (9)

is defined by g ≡ eaA0/(~c) = g0/
√
N , where g0 ≡√

2πe2/(~v0ωcεr) and v0 = V/N is the cavity volume
per site.

We emphasize that the operators ĵp and T̂ describ-
ing light-matter interactions are completely determined
by the matrix elements Hαβ(k) of the band Hamilto-
nian. This property is crucial to have a properly gauge-
invariant model51 and must be a general feature of any
strongly correlated lattice model coupled to cavity pho-
tons.

In the limit g0 → 0, the model reduces to a 1D EFK
model35,45,46. In the limit ka→ 0 and U = 0, Eq. (9) re-
duces to the Dicke model, augmented by the addition of

a term proportional to
∑
k,α,β ĉ

†
k,ασ

(z)
αβ ĉk,β(â+ â†)252–54,

where σ
(z)
αβ are the matrix elements of the corresponding

2× 2 Pauli matrix. For non-interacting systems, the dia-
magnetic term prevents photon condensation from occur-
ring in the thermodynamic limit12,18. We now show that
interactions do not help. ĤA0

does not support photon
condensation.

To make progress in analyzing the interacting problem
we treat the Hubbard term using an unrestricted Hartree-
Fock (HF) approximation37,55. As detailed in Sec. V of
the SM40 we arrive at

Ĥ(HF)
ee = −UM

2

∑
k

(ĉ†k,pĉk,p − ĉ
†
k,sĉk,s)

− U
∑
k

(I ĉ†k,sĉk,p + I∗ĉ†k,pĉk,s) + U
n0
2

∑
k,α

n̂k,α

+ UN

(M2 − n20
4

+ |I|2
)
. (12)

In Eq. (12) we have introduced the following self-
consistent fields: i) the electronic polarization

M≡ 1

N

∑
k

(〈ĉ†k,pĉk,p〉 − 〈ĉ
†
k,sĉk,s〉) , (13)

ii) the complex excitonic order parameter

I ≡ 1

N

∑
k

〈ĉ†k,pĉk,s〉 , (14)

and iii) the number of electrons per site n0 ≡
N−1

∑
k,α〈n̂k,α〉, where n̂k,α ≡ ĉ†k,αĉk,α. The term pro-

portional to n0/2 in Eq. (12) acts as a renormalization
of the chemical potential in the grand-canonical Hamil-
tonian and can be discarded in this study since we study
the phase diagram only at half filling and n0 = 1 in all
phases.

In order to reduce the number of free parameters
in the problem, from now on we enforce particle-hole
symmetry in the bare band Hamiltonian Ĥ0 by set-
ting Es ≡ −Ep = −Eg/2 and ts ≡ tp = t (with
|t| > Eg/4, see Fig. (S1) ). In order to find the ground
state of the Hamiltonian (9) with Hubbard interactions
treated as in Eq. (12), we follow the same steps out-
lined in the proof of the no-go theorem above. We seek
a ground state of the unentangled form |Ψ〉 = |ψ〉 |Φ〉.
After removing the term proportional to (â + â†)2, one
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finds that |Φ〉 must be a coherent state |β̄〉 with β̄ =

−g0J
√
N/(λ3/2~ωc). (We remind the reader that the

photon condensate order parameter is 〈β̄|â|β̄〉 /
√
N =

〈β̄| cosh(x)b̂ − sinh(x)b̂†|β̄〉/
√
N = β̄/

√
Nλ. See Sec. VI

of the SM40.) Here, J ≡ ~ 〈ψ| ĵp |ψ〉 /(aN), λ has the
same expression as in the proof of the no-go theorem with
∆ = −g20T /2, and T ≡ 〈ψ| T̂ |ψ〉. Note that both J and
T have units of energy and are finite in the N →∞ limit.

The resulting effective Hamiltonian for the matter de-
grees of freedom, i.e. 〈β̄| ĤA0

|β̄〉, can be diagonalized
exactly since, after the HF decoupling, it is quadratic

in the fermionic operators ĉk,α, ĉ†k,α. To this end, it is

sufficient to introduce the Bogoliubov operators γ̂†k,− =

uk ĉ
†
k,s+vk ĉ

†
k,p and γ̂†k,+ = v∗k ĉ

†
k,s−u∗k ĉ

†
k,p, where the quan-

tities uk and vk depend on the parameters of the bare
Hamiltonian Ĥ0, on the Hubbard parameter U , on the
light-matter coupling constant g0, and on the quantities

I, M, J , and T . The ground state |ψ〉 =
∏
k γ̂
†
k,− |vac〉

can be written in a BCS-like fashion,

|ψ〉 =
∏
k

[
uk + vk ĉ

†
k,pĉk,s

]
|∅〉 , (15)

where |∅〉 =
∏
k ĉ
†
k,s |vac〉 and |vac〉 is the state with

no electrons. The final ingredients which are needed
are the expressions for the quantities M, I, J , and T
in terms of uk, vk: M = N−1

∑
k(|vk|2 − |uk|2), I =

N−1
∑
k v
∗
kuk, J = 2N−1

∑
k[−t sin(ka)(|vk|2 − |uk|2)−

2t̃ cos(ka)Im(u∗kvk)], and T = 2N−1
∑
k[t cos(ka)

(
|vk|2−

|uk|2
)
−2t̃ sin(ka)Im(u∗kvk)]. The technical details of this

calculation are summarized in Sec. VI of the SM40.
The quantities I, M, J , and T can be determined by

solving this nonlinear system of equations. A typical so-
lution is shown in Fig. 1. We have found that all observ-
ables are independent of g0. In other words, in the ther-
modynamic limit the ground state is given by Eq. (15)
with uk and vk evaluated at g0 = 0, in agreement with
the general theorem proven above. The self-consistent
solutions always have J = 0 (i.e. β̄ = 0), as clearly seen
in Fig. 1(c), and therefore display no photon condensa-
tion but may have finite excitonic order parameter and
finite polarization, as shown in Fig. 1(a) and (b), respec-
tively. This is the second important result of this Letter.
We have checked that the self-consistent solutions always
have J = 0 on a wide range of parameters (not shown).
Also, it is easy to prove that the stability of the solutions
is guaranteed by the condition T ≤ 0. At t̃ = 0 the HF
ground state has a single transition at U = UXC. For
0 < U < UXC the ground state is an exciton condensate
with spontaneous coherence between s and p bands45,46

which are not hybridized when U = 0. The ordered state
appears on the small U side of the transition because in-
teractions favor orbital polarization over coherence. The
value of UXC can be determined analytically as detailed
in Sec. VIII of the SM40. We find, in agreement with
earlier work56,57, that UXC = 8t2/Eg − Eg/2.

In the limit t̃ = 0, ĤA0
separately conserves the

0 0.5 1 1.5 2
U [Eg]

0

0.1

0.2

0.3

|I
|

(a)

0 0.5 1 1.5 2
U [Eg]

−1

−1/2

0

M

(b)

0 0.5 1 1.5 2
U [Eg]

−0.1

0

0.1

J
[E

g
]

(c)

0 0.5 1 1.5 2
U [Eg]

−1

−0.5

0

T
[E

g
]

(d)

FIG. 1. (Color online) Panel (a) The excitonic order pa-
rameter |I| is plotted as a function of U (in units of Eg).
Numerical results have been obtained by setting t = 0.5 Eg

and ~ωc = Eg. Different curves correspond to different val-
ues of t̃. Red solid line: t̃ = 10−4 Eg. Black dotted line:
t̃ = 0.05 Eg. Blue dashed line: t̃ = 0.1 Eg. Green dash-
dotted line: t̃ = 0.15 Eg. Note that for t̃ 6= 0, |I| 6= 0 for
Uc1 < U < Uc2. Panel (b) Same as in panel (a) but for the
electronic polarization M. Panel (c) Same as in other panels
but for J . Note that J = 0 for all values of t̃ and U/Eg. This
implies β̄ = 0 and therefore no photon condensation. Panel
(d) Same as in other panels but for T (in units of Eg) .

number of electrons with band indices α = s,p, and
has a global U(1) symmetry associated with the arbi-
trariness of the relative phase between s and p elec-
trons35. The HF ground state breaks this symmetry. For
t̃ 6= 0 the U(1) symmetry is reduced to a discrete Z2

symmetry reflecting the invariance of the Hamiltonian
under spatial inversion. This symmetry is broken for
Uc1(t̃) < U < Uc2(t̃). Note that limt̃→0 Uc2(t̃) = UXC.
Corrections to Uc2(0) can be found perturbatively for
t̃/t � 1 and are of O(t̃2) (see Sec. VIII of the SM40).
For 0 < U < Uc1(t̃) inversion symmetry is unbroken and
I = 0. For U > Uc1(t̃) the ground state is an insulating
ferroelectric that breaks the Z2 symmetry (see Sec. IX of
the SM40). The dependence of Uc1 on t̃ is non-analytical
and can be extracted asymptotically for t̃/t� 1. We find
that Uc1(t̃) → π(4t2 − E2

g/4)1/2/| ln(t̃/t)| (see Sec. VIII

of the SM40).

In summary, we have presented a no-go theorem for
photon condensation that applies to all quantum many-
body Hamiltonians of the form (1), greatly extend-
ing previous no-go theorems for Dicke-type Hamiltoni-
ans18,19. Since the proof is non-perturbative in the
strength of electron-electron interactions, our arguments
against photon condensation apply to all lattice models of
strongly correlated electron systems that can be derived
from Eq. (1). We have then explained how the theorem
manifests in practice, presenting a theory of cavity QED
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of a 1D model that supports insulating ferroeletric and
exciton condensate phases. We have shown that these
electronic orders are never entwined with photon con-
densation58. In the future, it will be interesting to study
the role of spatially-varying multimode cavity fields and
their interplay with retarded interactions59,60, or strong
magnetic fields61. Our work emphasizes that theoretical

models of interacting light-matter systems must retain
precise gauge invariance, which is often lost when the
matter system is projected onto a low-energy model.
Acknowledgements.—A.H.M. was supported by Army

Research Office (ARO) Grant # W911NF-17-1-0312
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163601 (2005).
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