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We apply linked cluster expansion techniques to study the polarized high-field phase of a spin-
half antiferromagnet on the Kagome lattice with Heisenberg and Dzyaloshinskii-Moriya interactions
(DMI). We find that the Dirac points of the single-magnon spectrum without DMI are robust against
arbitrary DMI when the magnetic field lies in the Kagome plane. Unlike the typical case where DMI
gaps the spectrum, here we find that varying the DMI merely shifts the location of the Dirac points.
In contrast, a magnetic field with a component out of the Kagome plane gaps the spectrum, leading
to topological magnon bands. We map out a topological phase diagram as the couplings are varied
by computing the band Chern numbers. A pair of phase transitions are observed and we find an
enhanced thermal Hall conductivity near the phase boundary.

I. INTRODUCTION

In recent decades, the search for novel phases of mat-
ter in frustrated systems has been a major focus of con-
densed matter physics [1–4]. Exotic phases of matter
formed due to the interplay of various physical interac-
tions can be delicate, forcing theorists to consider models
with a range of perturbations. One such perturbation is
Spin-orbit coupling (SOC), which enters the Hamiltonian
of insulating magnets via Dzyaloshinskii-Moriya interac-
tions (DMI) [5, 6].

SOC has recently garnered increased attention [7–10].
Experimental efforts to artificially control SOC are an
important aspect of spintronics [11, 12], and the compe-
tition between frustration, SOC, and various symmetry-
breaking perturbations has proven to contain rich physics
[13–16]. In such systems spin-wave theory has been
used to extract the spectrum of quasiparticles (partic-
ularly magnons), yielding a host of predictions for in-
sulating ferromagnets and antiferromagnets, with and
without DMI. Through these calculations, the theory of
magnon transport has been refined and various experi-
mental probes have been proposed.

Despite the successes of spin-wave theory, the approach
has some limitations. Linearization of the magnon
Hamiltonian forbids certain processes and leaves out
terms that may alter magnon spectra and wavefunctions,
especially for low spin. It is also important to move
beyond single-magnon bands and study the physics of
multi-magnon states. Directly addressing spin-half sys-
tems would open the possibility of studying multiparticle
inelastic scattering processes and bound states in realistic
systems.

This study considers a different approach to the physics
of strongly correlated magnetic systems, built from per-
turbation theory. While perturbation theory has obvi-
ous limitations, it removes the linearization inherent in
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spin-wave theory. The work presented here focuses on
single-magnon states, which allows us to make contact
with previous studies of similar models. Multi-magnon
states will be the subject of future investigations.

In this work, we consider a model of localized spin-
1/2 particles on the Kagome lattice in high magnetic
fields. The model, while simple, furnishes both a
magnonic Dirac semimetal and a topological magnon in-
sulator, which can each be achieved by tuning an exter-
nal magnetic field. Importantly, the Dirac points in the
semimetal phase are robust against arbitrary DMI and
can be manipulated in principle with modern spintron-
ics techniques. The interactions between the spins are
purely nearest-neighbor and include an antiferromagnetic
Heisenberg coupling and DMI. The Hamiltonian is

H = −
∑
i

B · Si +
∑
〈ij〉

[JSi · Sj + Dij · (Si × Sj)] (1)

Here B is the magnetic field, 〈ij〉 denotes nearest
neighbors, J > 0 is the antiferromagnetic Heisenberg
coupling, and Dij is the DM vector on the bond ij [17–
29]. We will treat the spin interactions as perturbations
to the magnetic field coupling; this is valid in the polar-
ized phase. Remaining in the polarized phase roughly
requires that |B| ' (J + |D|)/3, but more precisely cor-
responds to magnon bands without a zero-energy mode
[30]. Figure 1 shows our DMI conventions.

Studies of similar models have been conducted in the
past, outside of the high-field regime. Mook et. al. [31]
considered a ferromagnetic version of (1) with next near-
est neighbor (NNN) exchange. Laurell and Fiete [32]
carried out a spin-wave analysis of the antiferromagnetic
version of the same model. The NNN exchange used
in these works provides a mechanism for the experimen-
tally observed (weak) dispersion in the bottom band of
a Kagome system, which would otherwise be flat [33–
35]. Although we do not explicitly include NNN inter-
actions, our approach ultimately produces dispersion in
every band. This is because the effective single-particle
problem generated by our analysis gives rise to long-
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FIG. 1. A section of the Kagome lattice. The spins are
colored according to their sublattice, and an example of a
connected graph with three bonds is highlighted (red). This
graph has six (proper, connected) subgraphs. We fix the lat-
tice spacing so that the Bravais lattice vectors are given by
a1 = (2, 0, 0),a2 = (1,

√
3, 0) (orange). Our convention for

the DMI is shown in purple: cross products are positive along
indicated link directions, Dz alternates between plaquettes,
and Dp (not shown) points away from plaquette centers on
bonds.

ranged hopping (see section II). Degeneracies in our band
structures should therefore be taken seriously, despite the
simplicity of (1).

The rest of the paper is organized as follows. In sec-
tion II, we will review the graphical linked cluster tech-
nique and explain how the bands of the model (1) are
calculated. Section III presents our results in the case
of a magnetic field in the Kagome plane. The resulting
phase is a magnonic Dirac semi-metal with Dirac points
that can be manipulated by tuning the magnetic field
or DMI. Section IV introduces an out-of-plane magnetic
field, which breaks the symmetry protecting the Dirac
points and gaps the spectrum. There we calculate the
magnon thermal Hall conductivity, the Chern numbers
of each band, and investigate a pair of topological phase
transitions.

II. LINKED CLUSTER EXPANSION

In this paper we employ the linked cluster expan-
sion technique to derive the properties of single-magnon
states. Here we will sketch the technique and establish
notation; we refer the reader elsewhere for more details
and proofs of our statements [36–39]. We begin by con-
sidering a model of spins on a lattice L with Hamiltonian

H = H0 + λH1 (2)

whereH0 is a solvable Hamiltonian, λ is a small param-
eter, and H1 is a non-trivial perturbation. In our case,
1/|B| plays the role of λ, and the unperturbed Hamilto-
nian is that of non-interacting spins in a magnetic field.
The key to our analysis is to identify physical observables

whose properties in the thermodynamic limit can be sys-
tematically understood by studying finite subsystems of
L. Define a connected cluster c ⊂ L to be an embedding
of a connected graph into L (see figure 1). The cluster
c inherits a cluster Hamiltonian Hc by setting the cou-
plings between all spins in c and the remainder of the
lattice to zero.

Let P (L) be some physical property for the full lattice
model, such as the ground state energy. Such a property
can be computed on a cluster c, P (c), using standard per-
turbation theory. For a generic physical property, com-
puting P (c) reveals little about P (L). However, we will
only consider properties which satisfy the following rela-
tion:

P (A+B) = P (A)⊕ P (B) (3)

This is the so-called cluster addition property, and it
guarantees that we need only consider connected clusters.
One proceeds by defining the weight of a cluster, W (c),

W (c) = P (c)−
∑
g⊂c

W (g) (4)

where g indexes all (proper, connected) subclusters of
c. In our case, the weight of a cluster with n bonds will
only contribute at order λn due to the subgraph subtrac-
tion. Therefore, given a list of all connected graphs which
have embeddings in L along with their multiplicities, we
can compute P (L) to arbitrarily high orders.

The discussion thus far works as described for simple
properties such as the ground state energy. In general
however we are interested in studying the excitations in-
duced by H1 about the ground state of H0. For this pur-
pose, the constraint (3) seems too strong: there is nothing
preventing a quasiparticle from hopping between discon-
nected clusters. Moreover the number of excitations is
not generally conserved unless it happens to be protected
by a symmetry of H. Both problems are present in the
model (1), where the ground state of H0 is spin-polarized
and the excitations are magnons. We can circumvent the
latter difficulty by generating effective Hamiltonians on
subgraphs of L which forbid mixing between sectors with
different quasiparticle numbers. This is done by finding
a unitary transformation U which block diagonalizes the
cluster Hamiltonian Hc:

Heff = U†HcU (5)

The transformation U is constructed perturbatively in
λ, so that Heff self-consistently forbids mixing up to a
given order in perturbation theory. This allows us to
study the single-particle band structure in spite of the
lack of quasiparticle conservation.

The possibility of excitations hopping between discon-
nected clusters is still present. To avoid this we need to
find a property related to the spectrum which satisfies
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FIG. 2. The band structure of (1) for B = Bx̂, J = |B|/10 and various choices of DMI. (a): Without DMI, the band structure
has Dirac points at K,K′ and a dispersionless band. (b): Introducing out-of-plane DMI (|D| = J/10) does not affect the Dirac
points but the previously flat band becomes weakly dispersive (not visible). An in-plane component (Dp = Dz) of the DMI
shifts the Dirac nodes off of high-symmetry points but does not gap the spectrum. (c): The spread of Dirac points as D is
rotated into the plane. The nodes are displaced symmetrically about the magnetic field axis and orthogonal to it. These points
are generated with ten uniformly spaced angular orientations of D in [0, π/2]. We set |D| = 3J for visual effect.

(3). Define E1(i, j) = 〈i|Heff|j〉 to be the hopping matrix
element for a single particle state between sites i and
j. Then the following quantity has the cluster addition
property:

∆1(i, j) = E1(i, j)− E0δi,j (6)

where E0 is the ground state energy of the cluster. We
will only deal with systems invariant under translations
by Bravais lattice vectors, which encourages us to con-
sider momentum eigenstates (N is the number of lattice
sites),

|k〉 =
1√
N

∑
j

exp (ik · j) |j〉 (7)

In general, we must allow for the possibility that the
unit cells of L contain multiple sites. Let δab denote the
vector connecting two sites of the lattice in sublattices a
and b respectively (for the Kagome lattice, a, b = 1, 2, 3).
Then the energetics of the quasiparticles are captured in
the matrix

ωab1 (k) =
∑
δab

∆1(δab) [cos (k · δab) + i sin (k · δab)] (8)

Diagonalizing this matrix gives the band structure
at k. This procedure generates effective tight binding
Hamiltonians for one-particle excitations. In the case of
the model (1), we find that the matrix elements E1(i, j)
are generically nonzero at sufficiently high orders in per-
turbation theory. This is a reflection of the strongly cor-
related nature of the magnons in this problem, and allows
a model without NNN exchange to potentially capture
details of the band structure of realistic systems.

III. TUNABLE DIRAC POINTS

In this section we take the magnetic field to lie in the
Kagome plane, and unless otherwise mentioned we will
let B = x̂ (this choice is not essential to the qualitative
physics). In the absence of DMI and above the saturation
field, the spectrum is known to contain a flat band at
finite energy and two dispersive bands with Dirac points

at K =
(
π
3 ,

π√
3

)
,K′ =

(
−π3 ,

π√
3

)
[40–42] (figure 2). The

tight binding model for the single magnon sector in this
case involves only nearest-neighbor hopping.

Upon introducing DMI, the model develops dispersion
in each band. We find that the hopping amplitudes sat-
isfy

∆1(δab) = ∆∗1(−δab) = ∆1 (δba) (9)

This result is consistent with a ground state order-
ing which is spin-polarized along an axis in the Kagome
plane. Combined with (8), this implies that ωab1 (k) is
purely real. This result is manifest when the DMI points
out of the Kagome plane, since the Hamiltonian is real;
the extension to arbitrary DMI is less obvious. This im-
plies that any effective two-band Hamiltonian obtained
via projection has an expansion of the form

H2×2 (k) = E01 + hx (k)σx + hz (k)σz (10)

where hx(k), hz(k) are real-valued functions and E0 >
0 is a constant energy shift. Perturbations which preserve
(10) are not expected to gap the Dirac points, which is
consistent with our findings: tuning the relative mag-
nitude of the in-plane (Dp) and out-of-plane (Dz) DMI
shifts the Dirac points off of high-symmetry lines but
never gaps them. The direction of displacement for the
Dirac points also depends on the magnetic field orienta-
tion. This is to be contrasted with the typical result that
SOC gaps out Dirac points, demonstrated for example in
graphene.
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IV. TOPOLOGICAL MAGNON BANDS, CHERN
NUMBERS, AND THERMAL HALL EFFECT

With a magnetic field out of the Kagome plane, all
lattice directions in the bulk are equivalent, and

∆1(δab) = ∆1(−δab) = ∆∗1(δba) (11)

More generally, the hopping amplitudes are invariant
under rotations which map the Kagome into itself, pro-
vided the sublattice structure is properly accounted for.
ωab1 (k) is no longer manifestly real, which violates (10).
In two dimensions fine tuning is therefore required to find
gapless points and a gapped spectrum is anticipated.

Previous work on similar systems has focused on the
thermal Hall conductivity and we will do the same. By
putting the system on a finite strip we find clear evidence
of chiral edge states in the bulk band gaps which are
associated with the conduction (figure 3 a). In the bulk,
we compute the band Chern numbers [43]. Fixing J +
|D| to be a constant fraction of |B|, we can map out
a phase diagram by looking for changes in the Chern
numbers (figure 3 b). The most common set of Chern
numbers is {1, 0,−1} (from the highest to lowest energy
band). However there is also a phase with Chern numbers
{−1, 0, 1} separated from the former phase by a narrow
region with Chern numbers {1,−2, 1}. From an empirical
perspective, these transitions are significant because they
imply small energy gaps in the neighborhood of the phase
boundaries. This typically enhances the thermal Hall
conductivity, which we also find (figure 3 c). We also see
that the thermal Hall conductivity changes sign across
the phase boundary.

We compute the thermal Hall conductivity as follows.
Letting Ωzn(k) denote the Berry curvature of band n, the
(magnon) thermal Hall conductivity at temperature T is
given by [44]

κxy = − k2
BT

(2π)
2 ~

∑
n

∫
BZ

[
c2 [g (εnk)]− π2

3

]
Ωzn (k) d2k

(12)
where g(εnk) is the usual Bose-Einstein distribution

factor. The function c2(x) is

c2(x) = (1+x)

[
ln

(
1 + x

x

)]2

−[ln(x)]
2−2Li2(−x) (13)

where Li2(x) is the dilogarithm. When stacks of
Kagome layers are used with an interlayer spacing `, κ/`
is naturally given in W/Km. All values reported here
assume ` = 5Å.

The values obtained for the thermal Hall conductiv-
ity are comparable to those found in other studies, al-
though we have chosen small values of J and |D| so that
only modest magnetic fields are necessary to polarize the
ground state. Specifically, figure 3 assumes a magnon

FIG. 3. (a): Band structure for a semi-infinite system. The
modes winding between the bulk bands are exponentially lo-
calized on the system’s edges. (b): Phase diagram obtained
by computing the band Chern numbers. We have chosen
J + |D| = |B|/5. Different parameter choices only adjust
the location of the phase boundary. The precise location of
the phase boundaries is less significant than the necessary ex-
istence of small energy gaps near the transitions. The Chern
numbers are indicated in each region from the highest to low-
est energy bands; the set {1,−2, 1} describes the narrow re-
gion in parameter space indicated by the arrow.(c): Ther-
mal Hall conductivity for J/|D| = 1/3 both above and below
the transition. We set the magnon energy scale to 5 meV
in the absence of interactions, and J + |D| = 1 meV. Hence
|D| = 0.75 meV and J = 0.25 meV here. The results are
observed to be reasonably insensitive to this choice. The Hall
conductivity changes sign across the transition by varying the
ratio Dp/Dz and the curve closer to the transition (yellow) is
significantly enhanced due to the smallness of the gap.
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energy of 5 meV in the absence of interactions, with
J + |D| = 1 meV. The effect of stronger interactions
on the thermal Hall conductivity can also be considered,
but a price is paid by requiring a larger saturation field.
In general, we see that there can be a significant benefit
to finding materials which naturally sit near the phase
boundaries discussed in figure 3. The empirical interest
in such a result should be clear to the spintronics com-
munity and others working with tunable DMI and other
interactions.

V. CONCLUSION AND FUTURE DIRECTIONS

In this paper, we have considered a “minimal model”
of antiferromagnetic spins with SOC. In the absence of
DMI, the physics of the magnons in the polarized phase
is already well understood. The physics becomes signif-
icantly richer with the inclusion of DMI because of the
coupling it induces between spin-space and real-space.
By changing the ground state ordering (in our case, with

a magnetic field), this coupling allows us to see qualita-
tively new physics, particularly more robust and control-
lable Dirac points.

We have also explored the phase diagram of a polar-
ized magnet, and the presence of topological phase tran-
sitions opens up the possibility of finding enhanced re-
sponse functions. A search for materials which can ex-
hibit these enhanced responses could prove interesting.

As previously mentioned, our technique has the advan-
tage of avoiding any linearization in the analysis. This
means that multi-magnon states can be considered in
detail with our technique, enabling the study of bound
states and the multi-magnon continuum. This will be the
subject of future work.
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