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We propose and evaluate the heterostructure based on the graphene-layer (GL) with the lateral
electron injection from the side contacts and the hole vertical injection via the black phosphorus
layer (PL) (p™P-PL-GL heterostructure). Due to a relatively small energy of the holes injected from
the PL into the GL (about 100 meV, smaller than the energy of optical phonons in the GL which
is about 200 meV), the hole injection can effectively cool down the two-dimensional electron-hole
plasma in the GL. This simplifies the realization of the interband population inversion and the
achievement of the negative dynamic conductivity in the terahertz (THz) frequency range enabling
the amplification of the surface plasmon modes. The later can lead to the plasmon lasing. The
conversion of the plasmons into the output radiation can be used for a new types of the THz

sources.

PACS numbers: 73.40.-c, 73.50.Mx, 73.63.-b, 81.05.ue, 81.05.Hd

I. INTRODUCTION

The gapless energy spectrum of graphene layers
(GLs) [1, 2] enables their use in the interband photodetec-
tors and electromagnetic radiation sources [3-28] operat-
ing in the terahertz (THz) and far-infrared (FIR) spectral
ranges. The injection pumping of the GLs [13, 16, 22, 24—
27] can lead to the interband population inversion and
negative dynamic conductivity, and the GL-based het-
erostructure with lateral carrier injection and the grat-
ing providing the distributed feedback exhibited a single-
mode lasing at 5.2 THz and a broadband (1- 8 THz)
amplied spontaneous emission, both at 100 K [24-26].

In this paper, we propose a new GL-black phosphorus
device structure that will allow achieving the THz gain
and lasing at the greatly elevated injection efficiency and
at a higher operating temperature. This is achieved using
the combination of the vertical hole injection from the p*
black phosphorus layer that is cooling the electron-hole
plasma in GL and lateral electron injection into the GL
layer from the side contacts. This new device layer struc-
ture and device geometry also allows for periodic lateral
GL configuration for achieving higher THz emission pow-
ers.

The advantage of the carrier lateral double injection
pumping from the side n- and p-contact regions in the
GL-structures [13, 16], in comparison with the optical
pumping is associated with relatively low energies of the
injected carriers. While the energy of the injected carriers
is about &; ~ Tp [30, 31], the initial energy of the pho-
togenerated carries is equal to eop, = RQ/2 [12, 28, 32].
Here Tj is the lattice temperature, A€} is the energy of
photons in the incident (pumping) radiation. In practical
devices with the optical pumping using A3Bs5 semicon-
ductor interband lasers integrated with the GL-structure,
A ~ 1 eV. In the case of optical pumping by mid-IR
quantum-cascade lasers, h{) can be markedly smaller, but
the integration of the pumping source with the GL can
be challenging due to the radiation polarization prob-
lems. The relatively high values of ,,; determine rather
high effective temperature T' of the photogenerated two-
dimensional electron-hole plasma (2DEHP) in the GL
complicating the achievement of the strong interband
population inversion and lasing [32].

The efficiency of the lateral injection can be im-
paired by a decrease in the carrier density in the GL-
heterostructure center caused by recombination (the sag
of the carrier spatial lateral distribution [30], which weak-
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FIG. 1: Schematic view of (a) the pTP-PL-GL heterostructure and (b) its band diagram at a voltage U. The presence of
electrons (opaque circles) and holes (open circles) above the Dirac point and below it in the GL having relatively large quasi-
Fermi energies pe and pn (shown in the panel (b)) indicates on the interband population inversion. The latter enables the
amplification of surface plasmons due to the stimulated radiative transitions from the conduction band in the GL to its valence

band.

ens the population inversion and decreases the net THz
gain . This limits the lateral size of the device (spac-
ing between the side n™- and pT-contacts to the GL by
the carrier lateral ambipolar diffusion length. Shorten-
ing of the active part of the GL increases the leakage
currents (electrons and holes reaching the p-contact and
n-contact, respectively).

A compromise can be reached using of the lateral injec-
tion of one type of carriers (the electron injection from
the side nT-contacts) and the vertical injection of the
other type (the hole injection via the bulk p-layer). A
proper band alignment of the GL and the bulk mate-
rial layer serving as the vertical injector could minimize
or even avoid the 2DEHP heating by the injection of hot
holes. This implies that the material for the hole injector
should have the energy spacing, Ay, between the Dirac
point in the GL and the valence band top of the injector
material as small as possible. One of such candidates for
the injector material is the black phosphorus [33-38].
This material is now considered to be very promising
for different electronic and optoelectronic devices appli-
cations (see, for example, [33-51]). The quantity Ay
in the black phosphorous layers (PLs) comprising several
atomic sheets is estimated as Ay ~ 100 meV with the en-
ergy band Ag = Ay +A¢ ~ 300 meV (Ag is the GL-PL
electron affinity). Since the energy of the holes injected
into the GL from the PL, ~ Ay, is smaller than the en-
ergy of optical phonons in the GL (about of 200 meV),
the hole injection can even cool in a substantial cooling
of the 2DEHP (in contrast to the 2DEHP heating in the
case of the injection from materials with Ay > hiw). The
latter is definitely beneficial for the 2DEHP degenera-
tion and, hence, for a stronger population inversion. A
high dc conductivity of the 2DEHP in the GL provides
a fairly weak sag in the carrier densities at the pumping
method in question, so that the spacing between the side
contacts can be fairly large resulting in a decrease of the
leakage currents. All this is useful for an enhancement of
the output THz power in the lasers based on the GL-PL

heterostructures with the combined pumping.

Apart from the unique electron and hole properties
of the PLs in the in-plane directions, the PLs exhibit
a rather good carrier transport in the direction perpen-
dicular to the phosphorous atomic sheets. This makes
the PLs very suitable for the hole injectors in the PL-
GL lasers. As demonstrated recently, the quantity Ay
in the devices in question can be even smaller if the PL
is replaced by black arsenic-phosporous compounds [52].

In this paper, we propose and analyze the GL-based
heterostructure with the lateral injection of electrons
from the side n™ contacts and the vertical injection of
holes from the bulk pT™PL-PL-GL -structure. We cal-
culate the dependences of the carrier effective tempera-
ture, their quasi-Fermi energies, the 2DEHP frequency-
dependent dynamic THz conductivity, and the coefficient
of the surface plasmonic modes amplification as functions
of the injected current for different structural parameters.
Using these data, we find the conditions at which this
conductivity is negative, and the coefficient of the surface
plasmons amplification is positive. The plasmonic modes
self-excitation in the latter case can lead to the plasmonic
lasing followed by the conversion of these modes into the
output THz radiation.

The cooling of the 2DEHP under the vertical injection
might lead a substantial softening of the population in-
version conditions and the conditions of the amplification
and self-excitation of the photonic and plasmonic modes.
Therefore, the proposed heterostructure can serve as an
active part of the THz and FIR lasers with the photonic
and plasmonic wave guides.

II. DEVICE STRUCTURE

Figure 1 shows the schematic view of this heterostruc-
ture with a relatively narrow-gap injector p-type black
PL, GL, on a wide-gap substrate and its energy diagram
at the operating bias voltage U (|[U| > Vi ~ Ay/e,



where V3; the built-in voltage). As for the substrate,
several relatively wide-gap materials can be used, in par-
ticular, hexagonal Boron Nitride (hBN) because the GLs
on the hBN substrate exhibit exceptionally high mobility
values. A wide gap in the hBN substrate provides high
energy barrier for the electrons and holes in the GL and
blocks their leakage to the substrate. At the applied bias
voltage, the electron can freely fill in the GL conduction
band, while the holes pass vertically from the heavily-
doped p™T region through the undoped or lightly doped
layer and are injected into the GL. Due to the energy
spacing, Ay, between the valence band of the hole in-
jector and the Dirac Point in the GL, the injected holes
injected bring a substantial energy into the electron-hole
system in the GL, but this energy is effectively removed
due to the emission of the high-energy (about 200 meV)
optical phonons in the GL This can result in the cooling
of the 2DEHP injected into the GL.

The device model used for the calculation accounts
for a strong deviation of the 2DEHP from equilibrium
caused the injection. The efficient carrier-carrier interac-
tion in a high density of the 2DEHP leads to the ”Fer-
mization” of the carrier energy distributions, so that elec-
trons and holes can be described by the Fermi functions
with the same effective temperature T =T, = T} and
the quasi-Fermi energies p. and up, which might differ
from their equilibrium values. At temperatures close to
the room temperature, the carrier interactions with the
optical phonons in the GL can are the main mechanism
of the energy relaxation and recombination [32, 53]. The
surface optical phonons at the GL-hBN interface can play
a significant role in the relaxation of nonequilibrium car-
riers in the GL [54]. The direct Auger processes in the
GLs are virtually prohibited [55] due to the linearity of
the carrier energy spectra [1]. More complex Auger pro-
cesses are also effectively suppressed [56]. The role of the
Auger interband processes will be briefly considered in
the Appendix.

IIT. ENERGY AND DENSITY BALANCES IN
THE 2DEHP

In each act of the interband and intraband emis-
sion/absorption of the GL optical phonons (with the en-
ergy hwo =~ 200 meV and the interface optical phonons
(with the energy hwg ~ 100 meV) the energy of the
2DEHP decreases/increases by the quantity hwg. The
resulting energy balance equation and the equation gov-
erning the balance of the electron and hole densities, de-
rived and used previously (for example, [16, 32]), can be
presented as
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Here j is the injection current density,jo = eXo/ ngfr,
Yo is the characteristic carrier density determined by
the energy dependence of the density of state in the
GL near the Dirac point, e is the electron charge, s =
Tom /TG characterizes the relative strength of the
interaction with the GL optical phonons and the inter-
face optical phonons, a = 752" /751 is the ratio of the
pertinent times characterizing the interband transitions,
as = THUT [T, ToueT and 747 are the characteris-
tic recombination and intraband relaxation times associ-
ated with the carrier interaction with the optical phonons
(T < T [32]), TE"" and 75" are the same
times but associated with the surface optical phonons,
the quantity Yo/ Tg;ftm is the order of the electron-hole
pair thermogeneration rare per unit area in equilibrium,
so that ng; @ ~ 79 exp(hwo/Ty), where 79 is the time of
the optical phonon spontaneous emission, T is the lat-
tice temperature, A; = Ay +3Tp /2 is the average energy
bringing by the hole injected from the BL to the GL (see
Appendix A), and Tp is the effective hole temperature in
the PL (near the PL-GL interface.

The terms in the left-hand sides of Egs. (1) and
(2) describe the processes of the interband and intra-
band energy relaxation and the recombination-generation
processes. The right-hand side terms correspond to
the energy and carrier fluxes into the GL associated
with the injection. Equations (1) and (2) are the ver-
sions of the equations derived from the pertinent gen-
eral recombination-generation equations governing the
processes involving the optical phonons [53] simplified
by singling out the exponential terms and (for exam-
ple, [16, 32]). Contrary to the previous studies, these
equations are generalized to take into account for two
types of optical phonons (the optical phonons in the GL
and the surface optical phonons at the GL-hBN inter-
face).

IV. EFFECTIVE TEMPERATURE AND
QUASI-FERMI ENERGIES AS FUNCTIONS OF
THE INJECTED CURRENT

In the limit of small s, which could correspond to the
device with the substrate (instead of the hBN substrate)
exhibiting very weak interaction of its phonon system
with the carriers in the GL from Egs. (1) and (2) we
obtain



In the equilibrium (at j = 0), Egs. (3) and (4) naturally
yield T = Ty and pe + pup, = 0. The latter means that
the electron and hole chemical potentials. p. and —pup
are equal. Their values in equilibrium are determined
by the band alignment of the bulk p-layer, the GL, the
material of the side contacts, the doping of all of them,
and the temperature Ty. In equilibrium this can result in
different values of p. but with pp = —p.. These values
are described by the standard formulas [1, 2, 50] which
can be modified in more complex cases (see, for example,
Ref. [57, 59]).

At the pumping, Eqgs. (3) and (4) generally lead to
T # Ty and pe + pup, # 0. The latter corresponds to
the case when the electron quasi-Fermi goes below the
Dirac point while the hole quasi-Fermi level goes above
this point if pe + pn, < 0 and to the opposite situation if
te + iy, < 0 (population inversion)

From Eq. (3) one can see that T' > Ty if A; > hwo ~
200 meV (heating of the 2DEHP by the injection cur-
rent) and T < T (cooling of this plasma) if A; < hwo.
Simultaneously, from Eq. (4) we find that pe—+pu, < 0 and
te+un > 0when A; /hwg > 14a and A; /fiwg < 1+a, re-
spectively. In the case 1 < A;/hw; < 1+4a, both (T'—Tp)
and (e + pp) are positive.

If A; > hwg, an increase in the injected current density
j results in a monotonic rise of the effective temperature.
In this case, Eq. (3) yields the T' — j dependence, which
diverges at a fairly large value j = j,, where
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Such a divergence means that at such a pumping the in-
teraction of the carriers with optical phonons in the GL
is not able to transfer the energy brought to the GL by
the injected carriers to the optical phonon system. In re-
ality, a sharp increase in the effective temperature might
be limited by additional energy relaxation mechanisms
engaging at very large temperatures.
When j tends to joo, from Eq. (4) we obtain
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The latter quantity can be both positive and negative
(degenerate and nondegenerate 2DEHP, respectively).

In the most interesting case A; < hwy, j tends to the
saturation current density

. . a
Jsat = ij= (7)

and the effective temperature T steeply drops tending to
zero. Apart from this, at j =~ jsu, the ratio (ue + pp)/T
tends to infinity, while (ue + pp) tends to hwp. In such a
case, the hole quasi-Fermi energy can become close to
Ay. The latter, accompanied with a strong decrease
in the effective temperature (and, hence, a strong car-
rier system degeneration), leads to a dramatic suppres-
sion of the hole capture into the GL because the GL va-
lence band becomes overfilled up to the top of the barrier
(n =~ hwo/2 ~ Ay). As a result, the injected current
density can not markedly exceed jsq: (the injected cur-
rent saturation).

At T = 300K, setting [53] Xo/750" ~ 10*! cm s~
we obtain jg = eXo/T5lf" = 1.6 x 10* A/em®. The
quantity jo can be of the same order of magnitude as jg.

Equation (2) yields the sum of the electron and hole
quasi-Fermi energies p. + pp, versus the injected (recom-
bination) current j. An additional relationship between
e and pp on the one hand and j on the other can be
obtained considering the difference in the electron and
hole densities, ¥, and ¥j, in the GL determined by the
electric field Epg at the PL and GL interface. Using
Eq. (A6), we obtain

KV K .
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where kK = (ep + eppN)/2 is the effective dielectric con-
stant determined by the dielectric constants of the lay-
ers (ep and e,pN are the dielectric constants of the BL
and hBN, respectively) sandwiching the GL, V is the
potential drop across the p-PL, and bp is the hole mo-
bility in the direction perpendicular to the heterostruc-
ture plane. Considering that the electron and hole den-
sities in the GL are related to the quasi-Fermi ener-
gies (of the degenerate electron and hole components,
fres i, > T) as X, o~ p2/wh*vd, and X, ~ p /rh*od,,
where vy =~ 10® cm/s is the characteristic carrier velocity
in the GLs, from Eq. (8) we arrive at (see also Appendix
B)
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For k ~ 6, bp = (250 — 500) cm?/V's ant N, = 5 x
10* em =3, Eq. (7) yields D ~ 0.019 — 0.038.
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FIG. 2: The dependences of (a) carrier effective temperature
T, (b) the net quasi-Fermi energy (e + prn), and (c) the ratio
(tte + pr) /T on the normalized injection current density j/ja
for different Ay: 1 - Ay = 100 meV, 2 - Ay = 150 meV, 3 -
Ay =175 meV, 4 - Ay =200 meV.

Figure 2 shows the dependences of the carrier effective
temperature T in the GL, their net quasi-Fermi energy
(tte + pr), and the ratio (pe + pp)/T on the normalized
injection current density j/ja calculated using Eqgs. (3)
and (4), i.e., neglecting the contribution of the surface
optical phonons (s = 0), for different values Ay. We set
hwo = 200 meV, Ty = 25 meV, and a = 0.25.

The plots in Figure 2 confirm the above qualitative
analysis of the effective temperature and the quasi-Fermi
energies behavior as functions of the injected current den-
sity. In particular, Fig. 2 demonstrates the possibility of
a fairly strong cooling and degeneration of the 2DEHP
in the GL with increasing injection current density pro-
viding that A; < fwy (curves ”1” and ”2”). But at
A; < hwo Fig. 2 (curves ”3” and ”4” ) demonstrates
a moderate 2DEHP heating, which, nevertheless, is ac-
companied with the 2DEHP degeneration, although the
latter is also moderate.

The inclusion an extra intraband and interband re-
laxation mechanism, like that associated with the car-
rier interaction with surface optical phonons (s # 0)
with hws < A; < hwg, removes the tendency to the

i’ig

FIG. 3: The same as in Fig. 2 but for values of the parameter s
characterizing the relative strength of the carrier interaction
with the surface phonons: Ay = 100 meV, 1 - s = 0; 2 -
s =0.001; 3- s=0.01; 4-s=0.1,and 5 - s = 1.0.

2DEHP overcooling, so that the effective temperature
decreases smoothly. This because when the effective
temperature T becames sufficiently low due to the cool-
ing effect of the high energy optical phonons, further
decrease in this temperature is blocked by the energy
absorption from the low energy optical phonons (i.e.,
the surface optical phonons). Although their number
Ny = [exp(hws/To) — 1]7! ~ exp(—hws/Tp) is small,
it, nevertheless, exceeds the number of the GL optical
phonons Ny = [exp(hwo/To) — 1]~ ~ exp(—hwo/Tp).
Figure 3 shows the same dependences as in Fig. 2 but
calculated numerically for more general situations when
both the GL optical phonons (hwg = 200 meV) and the
surface optical phonons (fiwgs = 100 meV) contribute to
the relaxation processes. As seen from Fig. 3, at the
moderate injection current densities (j S jg) assumed in
the calculations for Fig. 2, the carrier interaction with the
surface optical phonons weakly affects the T versus j/ja
and (e + pp) versus j/jc relations at least at s < 0.1.
However, as demonstrated in Fig. 3, when A; < hwg
but A; > hwg, at larger j/jq, the surface plasmons ef-
fectively weaken the 2DEHP cooling even at relatively



small strength of the carrier interaction with these plas-
mons (at small values of parameter s). When s = 1, the
effective temperature 7T is close to Ty even at rather high
injection current densities. This is attributed to approx-
imately equal contributions of the GL optical phonons
to the cooling and the surface plasmons to the heat-
ing (hw — A; ~ A; — hwg). It is worth noting that at
A; < hwg but A; > hwg, the carrier interaction with the
surface optical phonons does not prevent the 2DEHP de-
generation and, hence, does not prevent the population
inversion.

V. DC CURRENT-VOLTAGE
CHARACTERISTICS.

Disregarding the nonuniformity of the potential along
the GL in the z-direction, (i. e., disregarding the current-
crowding considered below in Sec. VIII) , the device
current-voltage characteristic can be found deriving V
as a function of the applied voltage U (see Fig. 1(b)).
Due to a smallness of the factor D, one can find from
Eq. (6) that in reality (pe — pun) < (fte + pn). Hence
tte =~ (fe + pn)/2. Considering, in particular, the case
s < 1 in which Egs. (3) and (4) are valid, we find
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Considering Eq. (11), one can present the current-
voltage characteristic U versus j/jg in the following (in-
Ay J

explicit) form:
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Here Vo = d>g /Naprggt”. For the parameters used in
above estimate, V >~ 40 mV.

When A; = Ay + 3T5/2 < hwo, Eq. (12) describes a
monotonically rising current-voltage characteristics tend-
ing to the saturation (j ~ j) at very high voltages.

If A; < hwy, Eq. (12) yields the following expression
for the voltage corresponding to the current saturation:
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FIG. 4: Real part of the GL dynamic conductivity (Reci**"
+ Reo™") as a function of the radiation energy fiw for dif-
ferent values of normalized injection current density j/ja (1
-jljic =0.26; 2-j/jc =0.52; j/jo = 0.78) and different
carrier momentum relaxation times in the GL: (a) 7o = 0.5 ps
(b) 70 = 1 ps, and (¢) 70 = 1.5 ps (Ay = 100 meV) in the
absence of surface optical phonon scattering, i.e.,s = 0 (solid
lines - 7, 7'01071 and dashed lines - 7, = 70).

Ay + hwg Voa

Usat = % [(Ay +3Ty/2)/hwo — 1)]

(13)

When the effect of the surface optical phonons is tan-
gible, the current-voltage characteristics becomes a sub-
linear.

VI. DYNAMIC CONDUCTIVITY

The contributions of the direct interband optical tran-
sitions and the intraband radiative transitions assisted
with the carrier scattering (leading to the Drude ab-
sorption) to the pertinent components of the GL con-
ductivity o"¢" = Rec™¢" + Imoi™e" and gittre =
Reo™ra 4 Ima ™" constitute the GL net dynamic con-
ductivity. In particular, Rec?"**" can be found as in Refs.
[12, 59, 60]:
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Up to fairly large values of j/j, the argument of the first
cosh-function in the denominator of the expression in the
right-hand side of Eq. (14) is much larger than that in the
second cosh-function. Taking this into account, Eq. (14)
can be reduced to the standard form [12]:

) 2 hw — 1. —
Reo ~ & th(%) (15)

The quantity Imo™**" can be presented as [59)
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where G(g) = tanh[2e — (ue + pn)/4T).

The intraband contributions Re ¢ 4 Im ¢/ de-
pend on the carrier momentum relaxation mechanisms in
the GL, particularly, on the range of the effective carrier-
carrier interactions and on disorder [61] (see also [50]).
At fairly high carrier densities, expected under the in-
jection conditions under consideration, the electron-hole
interactions are the main mechanism of the momentum
relaxation [61, 63, 64]. Due to special features of the mu-
tual scattering of the carriers with the linear dispersion
law [61-64], such scattering is a short range scattering.
The mutual carrier scattering is similar to the scattering
on uncharged and screened charged impurities, as well as
the acoustic phonons and defects. In this case, the mo-
mentum relaxation time as a function of the electron or
hole momenta can be presented as 7, = 79(po/p) [50, 51],
where pg = Tp/vw and 79 is the characteristic carrier
momentum relaxation time. If the dominant scatter-
ing mechanism is associated with the carrier interac-
tions with weakly screened charged impurities or their
clusters, i.e., with the long-range scatterers, one can set
Tp = T0(p/po). When the interaction with both the short-
and long-range scatterers is important, the approxima-
tion 7, = 179 = const could be used [12, 17, 59, 65].
Considering this, one can arrive at the following formula
(which constitutes the Drude formula adapted for the
carrier transport in GLs):

: ; 2 8<€ >T0
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where (g,) = To, (1,) = (270T0)/(tte + pn) at 7, o< p=*

(long-range carrier scattering) and () = (fe + 1n)/2,
(Tp) = To at T, = T9 = const (short-range carrier scatter-
ing). The latter is valid when pe + pp > T .

At Tiw < e+ pn, Egs. (14) and (15) yields Re ointer <
0. The real part of the GL net dynamic conductivity
is negative when the interband contribution (given by
Egs. (14) and (15)0 surpasses the intraband Drude con-
tribution (described by Eq. (17))

In the equilibrium, i.e., without pumping, p. + pun = 0.
In particular, in the intrinsic GLs. pe = 0 and up = 0.
Hence, as follows from Egs. (14), (15), and (17) Re o, =
(ginter 4 gintra) > (. In the limit w — 0, the net conduc-
tivity o, = (0" +07 tends to the well known values
of the GL dc conductivity. In particular, in the case of the
short-range carrier scattering o, — (e2To7o/ 7rh2) = 0yp.
If the long-range carrier scattering is dominant, one ob-
tains o,, — m200/3 [66].

If the dominant scattering mechanism of the electrons
and holes in the GL is their mutual interaction, the quan-
tity 7o calculated for Ty = 25 meV and x = 6 (for a
GL sandwiched between the PL and hBN) is about of
To = 3.6 ps [64]. Accounting for other scattering mecha-
nisms (impurities, acoustic phonons, and so on), one can
set 79 = 1 ps. Assuming 1.0 — 3.6 ps, the net real part
of the dynamic conductivity is negative in the frequency
range w/2m > (3.44 — 6.50) THz.

Figure 4 shows the spectral dependences of the real
part of the net dynamic conductivity in the GL (Re
olnter 4+ Re o) calculated for the cases 7, o< Top~!
(solid lines) and 7, = 79 = const (dashed lines) us-
ing Eqs. (15) and (17) with Eqgs. (3) and (4) for T and
(e + pn)/T for different characteristic momentum re-
laxation 79 and different values of the normalized injec-
tion current density j/jg. Other parameters used are
To = 300 K, hwy = 200 meV, Ay = 100 meV, (for
k~6),a=0.25 and s < 1.

As seen from Fig. 4, the real part of the dynamic con-
ductivity of the 2DEHP can be negative at sufficiently
strong injection pumping in a certain range of fiw (com-
pare the curves for j/jo = 0.52 and j/jo = 0.78. An
increase in the injection current density leads to the re-
inforcement of the negative dynamic conductivity and
widening of the range where this conductivity is negative.
This is mainly due to the rise of Rec/"*" when the net
quasi-Fermi energy (e +un) increases [see Eq. (15)]. The
comparison of the solid and dashed lines (corresponding
to different momentum dependences of the momentum
relaxation time) shows that they are rather close, al-
though the character of the carrier scattering plays some
role. The fact that the hBN substrate is virtually free
of charged impurities (providing the long-range carrier
scattering), is in favor of the dependence 7, o Top~1.
Therefore, calculating plots in the consequent figures, we
set T oc Top L.

Figure 5 shows the spectral dependences of the real
part of the 2DEHP dynamic conductivity similar to those
in Fig. 4, but obtained for a higher value of the sur-
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FIG. 5: The same as in Fig. 4 but for surface optical phonons
parameter s = 0.1.

face optical phonon parameter s, namely for s = 0.1.
Comparing the plots of Figs. 4 and 5, one can see that
an increase in the parameter s results in a weakening of
the negative dynamic conductivity effect. Enhancing the
carrier mobility in the GL, i.e., and increase in 79 can
markedly reinforce the negative dynamic conductivity,
due to weakening of the intraband absorption. As follows
from Fig. 3(c), the quantity (pe+pr)/T can markedly ex-
eed unity even s ~ 1, but at relatively high injection cur-
rent densities (j/jg ~ 3—4). This implies that the effect
of the negative dynamic conductivity can pronounced in
the case of relatively strong carrier interaction with the
surface optical phonons as well.

VII. SURFACE PLASMONS AMPLIFICATION
COEFFICIENT

The injection pumping of the electrons injected from
the lateral side contacts and the holes injected verti-
cally from the p™ contact leads to the accumulation of
the nonequilibrium electrons and holes in the GL [see
Fig. 1(b)]. As show above, the the sum of the quasi-
Fermi energies pe 4+ ppn becomes positive, that indicates
the occurrence of the interband population inversion that
is reflected in the negativity of the dynamic conductiv-
ity Re o™ in the range w < (ge + pp)/h. This im-

plies that the probability of the stimulated emission of
the plasmons (as well as photons) with the transition of
an electron from the GL conduction band to its valence
band (vertical or somewhat indirect depending on the
plasmon momentum) surpasses that of the plasmon ab-
sorption associated with the reverse transitions. Hence,
the situation in question corresponds to the plasmon am-
plification.

Using the equations for the GL dynamic conductiv-
ity under the injection pumping given in the Sec. VI,
invoking the Maxwell equations, considering the struc-
ture geometry, and following the method applied previ-
ously [17, 18, 22], one can derive the dispersion equa-
tion for the surface plasmons with the frequency w, in
which the ac electric and magnetic fields components are

. . W . . . .
proportional to exp (zp—y — 1w t) propagating in the di-
c

rection parallel to the side contacts (along the axis y).
Assuming (see Sec. VIII) that the plasmon absorption
in the PL is due to the interaction with the holes (Drude
absorption), one can arrive to the following dispersion
equation:

EnBNVEz — p? + €2/ enBN — p?

4
+%Uw\/5z—P2\/5hBN—P2:0 (18)

with

gzzap(1—¢). (19)

Here o, = /" 4 ¢4 ig the GL net dynamic conduc-
tivity, the low-frequency dielectric constants of the hBN
enpn is taken from [67, 68], wp = /47 e2N,/mep is the
plasma frequency of holes in the PL, vp = e/mbp is the
plasma oscillation damping constant associated with the
Drude absorption in the PL, and c is the speed of light in
vacuum. The quantities Re(p) and 2wIm(p)/c, obtained
from the solution of Eq. (18), are the plasmon propaga-
tion index and the plasmon absorption or amplification
coefficient (depending on the sign) , respectively. Deriv-
ing the dispersion equation for the surface plasmons, we
have accounted for the interaction of the electromagnetic
radiation with phonons in PLs resulting in the single-
phonon absorption if and only if the radiation is polarized
along the axis z. The pertinent absorption coefficient is
two order of magnitude smaller than that in the stan-
dard polar semiconductors, although there is a narrow
peak at 14 THz with the absorption coefficient about
500 cm~'. The two-phonon absorption is relatively week
(about 15 cm™! in the range 7.5 - 14 THz [69]). There-
fore, the Drude mechanism plays the main role in the
plasmon absorption in the PL as was assumed above.
Figure 6 shows the spectral dependences of the plas-
mon amplification coefficient o, = —2wImp/c. We as-
sumed that the acceptor density in the BL and the thick-
ness of this layer are equal to N, = 5 x 10'® cm™3 and



d = 10%cm, respectively. The injection current den-
sities and other ther parameters are the same as for
Fig. 5. As seen from Fig. 5, in the frequency range where
the 2DEHP dynamic conductivity is negative, the am-
plification coefficient can be fairly large, of the order of
a, >~ (1.5 —2.0) x 10* ecm™!. The large amplification
coeflicient of the plasmonic mode in comparison with the
photonic modes is attributed to a small plasmon propa-
gation velocity compared to the speed of light.

As seen from Fig. 3, the reinforcement of the surface
optical phonon scattering (increase in s) gives rise to pro-
nounced variations of T and (ue + ) and, hence, ay,.
Figure 7 shows the «, versus hw calculated for different
s. An increase in s corresponds to a drop of «ay. As
seen, at j/jo = 0.78 and s > 0.60, a,, becomes negative.
However, for a larger j/ja, o, can be positive at a larger
s.

The obtained values of the amplification coefficient are
close to those in the GL-based structures with the side
double injection. This is because the Drude absorption in
the BL is relatively weak, at least, at N, < 5x10'° cm™3.
At a higher doping of the PL, this absorption can de-
crease a,, even leading to the transition from the ampli-
fication to the damping of the plasmonic modes as shown
in Fig. 8. A weak Drude absorption is partially associ-
ated with strong localization of the y-and z-components
of the plasmon electric field around the GL. The latter
is demonstrated in Fig. 9. A strong localization of the
plasmon electric field far from the contact p™-PL (at the
distance about 1 um) prevents the plasmon damping due
to the absorption in this layer.

VIII. DISCUSSION

A. Role of the Auger processes

The interband Auger processes decrease the split of
the electron and hole quasi-Fermi energies (ue + pp). At
low injection current densities j < jg, the rate of the
Auger recombination can be taken to be proportional
to (e + pn)/Tota. The variation of this energy as-
sociated with the Auger processes can be estimated as
€ Auger ~ T, e, i, < hwo, hence the contribution of the
Auger processes to the 2DEHP energy balance can be
disregarded. Considering this and using the linearized
Egs. (1) and (2), we arrive at

He + [in 1 1 J A
He THL 1 4 o)l — — = ) = L 2
Tt ”0<To T) oty 20

The equation governing the electron and hole balance is
given by:

Lhe + fin fuwg (i_l) _J 1 (21)
T I+a)\To T) jo(l4aa)
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FIG. 6: Spectral characteristics of the plasmon amplification
coefficient o, = —2wlmp/c at j/je = 0.26, 052, and 078:
N, =5x 10" em™3, d = 107* cm, other parameters are the
same as for. Fig. 5.

FIG. 7: Spectral dependence of the amplification coefficient
for different values of parameter s (1 - s =0.05, 2 - s = 0.10,
3-5=0.20,4-5=040, 5-s=0.6,6-s=0.80) and Ay =
100 meV, 79 = 1.5 ps, j/jc = 0.78, and N, = 5 x 10" cm™3.

where a4 = ngft” /Ta can be called as the Auger parame-

ter, which can be estimated using [56] (see also references
therein). Equations (20) and (21) result in

T-Ty [Ail+aa)/hwo—1]j
o a+aa+aaa Ja

; (22)
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FIG. 8: Spectral dependence of the amplification coefficient
for different acceptor densities N, (1 - N, = 5 X 10%® cmfs7
2-N,=5x10"% cm™ and 3- N, = 1 x 10"” cm™?) in the
PL injector: s = 0.1 and the same parameters as for Fig. 7.
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FIG. 9: Spatial distributions along the z-direction perpen-
dicular to the GL and BL plane of the plasmonic mode
electric field components for different plasmon energies (1 -
hw = 10 meV, 2 - hw = 20 meV, and 1 - hw = 30 meV):
s = 0.1 and the same other parameters as for Fig. 7.

Me‘f'MhN(l'i‘a—Ai/fLWQ)i (23)
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At relatively weak Auger processes (a4 < 1), Egs. (22)
and (23) lead to the same dependences (T — Tp) and
(e + pp) on the injection current density j as obtained
in Sec. IIT (for the relaxation on the GL optical phonons
at small j/jq).

Generally speaking, Eqgs. (22) and (23) show that the
Auger processes result in slowing down the cooling (which
can occur at A; < hwg) of the 2DEHP with increasing
injection current.

If the Auger parameter ay is sufficiently large (a4 =

10

hwo/A; — 1), the cooling gives way to the heating. At
both cooling and heating og the 2DEHP, the splitting
of the quasi-Fermi energies, i.e., the quantity (ue + pn),
increase when j increases providing that A; /fiwg < 1+a.

B. Heating of optical phonons

The recombination and the intraband energy relax-
ation lead to the generation of nonequilibrium (hot) op-
tical phonons The generated hot optical phonons cool
down through anharmonic decay to acoustic phonons
which are subsequently absorbed into the substrate [54,
69-71]. Direct cooling of the charge carriers also occurs
via emission of the surface phonons of the underlying po-
lar substrate.

As demonstrated experimentally , the optical phonon
decay time in the GL-hBN heterostructures is about [54]
oo ~ 0.200—0.375ps, i. e., is relatively short. At such
short decay times, the deviation of the optical phonon
system from equilibrium is insignificant, i.e., this system
temperature Top; ~ Tp. This justifies the omission of this
effect in the model used above. An example of the inclu-
sion of the optical phonon heating into a similar model
could be found in [16, 32]. Due to the large specific heat
capacity of hBN| the rise of the lattice temperature even
under relatively strong pumping is small (~ 1 K) [54].

C. Current crowding in the GL

The finiteness of the GL conductivity can lead to a
nonuniformity of the potential distribution ¢ = ¢(z)
along the conductivity plane and, consequently, to a
nonuniformity of the injection current j = j(x), where
axis z is in the direction connecting the n*-contacts (see
Fig. 1). This effect is akin to the current-crowding effect
in the bipolar transistors and light-emitting diodes, dom-
inating at high current densities [72, 73]. The current
crowding slows down the j versus U dependence. The
general consideration of the current crowding requires a
rather complex mathematical modelwith nonlinear dif-
ferential equations describing the potential and current
density distributions. This is beyond the scope of the
present paper. Here we limit ourselves to the case when
the current crowding is not too strong and find the per-
tinent conditions.

Since the resistance of the side contacts to the GL ap-
pears to be not a challenging issue [74-77], we disregard
the contribution of the contact resistance to the net po-
tential drop, U, between the p™-contact and the n+-side
contacts. The lateral variation of the injection current
density in the in-plane direction x (see Fig. 1) can be
approximately found from the continuity equation:

d?j .
a2 K% (24)



with the boundary conditions j = jo|z=4; given at the

side contact edges (x = £I). Here 2! is the spacing be-

tween the side-contacts to the GL, jo is given by Eq. (11),

and K ~ /(bp/bg)(Na/Scd), bg and ¢ are the mo-

bility and density of the carriers in the GL, respectively.
Solving Eq. (26), we find

. cosh(Kx)
J=Jo cosh(K1) " (25)
The value of the injection current density sag §j =
[1 — cosh ™ (K1)] ~ (K1/2)? is relatively small if 21 <
L = 4K~ ! = 4,/(bg/bp)(Sgd/N,). This inequality
implies that the lateral resistance of the GL is much
smaller that the vertical resistance of the PL. Assuming
N, =5x10"%em™3, £ =102 ecm™2, d=10"*cm,bg =
10,000 cm?/V-s, for bp = (250 — 500) cm?/V-, we ob-
tain that the current density nonuniformity can be dis-
regarded if 2] <« L = (25 — 36) x pm. Larger values of 2]
correspond to the smaller contact leakage currents [30].
The latter inequality corresponds to the real device sizes.
On the contrary, in the GL- heterostructures with the
lateral electron and hole double injection from the side
contacts [30], the lateral nonuniformity of the carrier den-
sities is determined by the diffusion length L. The latter
is about a few micrometers. Since L > Lp, the GL-PL
heterostructures with the combined injection can provide
the negative dynamic conductivity in much larger area
than the heterostructures with the lateral injection. This
implies that the THz sources based on the GL-PL het-
erostructures can demonstrate markedly higher output
power.

Conclusion

We proposed the pTPL-PL-GL heterostructures with
the lateral electron and vertical hole injection as the the
active elements of the plasmonic lasers. Using the devel-
oped device model, we calculated the effective tempera-
ture of the carriers, their quasi-Fermi energies, and the
dynamic THz conductivity of the 2DEHP in the GL. Un-
der sufficiently strong injection current densities, the dy-
namic conductivity can be negative in a certain range of
the plasmon energies providing positive and a fairly large
amplification coeflicient of the plasmonic mode. Due to a
relatively small energy of the holes injected from the PL
injecting contact in comparison with the optical phonon
energy in the GL, the carrier effective temperature can
be lower than the ambient temperature. This, together
with the possibility of the negative dynamic conductivity
realization in fairly large GL areas, promotes a more efli-
cient THz lasing. Similar GL-based heterostructures can
include the black arsenic injecting layers and other inject-
ing layer materials with a proper band alignment to the
GLs [78, 79]. Using the substrates providing weaker en-
ergy and momentum carrier relaxation in the GL (instead
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of hBN considered above, one can achieve a stronger neg-
ative dynamic conductivity and higher amplification am-
plification of the plasmonic modes at a weaker injection.
The plasmonic lasing can be enabled by the plasmon re-
flection from the end faces and by the realization of the
distributed feedback using the highly conducting saw-
tooth (serrated) side contacts [26].
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Appendix A. Injection current into the GL

The injected current coincides with the current across
the p-PL in the hole injector. At low bias voltages, the in-
jected current is associated with the hole diffusion across
the BL. When V = Vj; ~ Ay, i.e., when U = 0, its den-
sity can be estimated as jo ~ eDpN,/d = ebpToN,/d.
Here Dp and bp are the hole diffusion coefficient and mo-
bility in the PL perpendicular to its plane (perpendicular
to the atomic sheets forming the PL layers structure) and
N, the acceptor density in this layer.

At larger values of |U|, when the voltage drop across
the PL V. > |U| — Vb — pe/e > 0 [see Fig. 1(b)],
i.e., in the operation regime, the injected current is de-
termined by the PL resistance. Taking into account
that the holes in the p-PL should not be heated too
strongly, we assume that the average electric field in this
layer E = V/d is moderate, where d is the thickness
of the PL. The acceptor density in the PL can be set
N, ~ (2 —=5) x 1015 ecm™3 [34, 35].In such a situation,
the hole density in the PL at moderate voltages p ~ N,,
and the current density across the PL J (which coincides
with the density of the recombination current in the GL)
is given by

4 B 1
~dpp’ = eNybp

J (A1)
Here p is the PL resistivity.

Setting the acceptor density in the PL N, ~ (2 —
5) x 105 cm™3 [34, 35], bp = (250 — 500) cm?/V's,
d = 107* c¢m, we obtain jo ~ 8 — 20 A/cm?. If
V = (0.1-1.0) V, we obtain j = 2x10%2—4x 103) A /cm?.
Since at the normal device operation jy < j, we can ne-
glect jo

The hole effective temperature in the PL Tp can be
estimated using the following equation:

; (A2)



so that

£

-
Tp =T, Lid
P 0+epr3

m Tp .
—j°. (A3)
e2N2 75

=T+

Here 75 and 75 are the hole energy and momentum re-

laxation times in the PL. Considering Eq. (A3), one can
find that

. 2
AZ—_AV+%{1+@<.L) ]
2 ja

where

2

0=—_ —7153< >0 >

- 2 p inter :
N2T, 5\ 72

pt

Deriving the hole momentum relaxation time 75 from
the value of the hole mobility bP (75 ~ (0.4 — 0.8) x
10713 s) with m = 2.5 x 10728, setting 75 ~ 1075 and
So/mome" =10*" em™?s™ 1, for N, =5 x 10" cm™?, one
obtains © ~ 2.4 x 1073, The latter estimate implies that
in the range of realistic current densities one can put
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Appendix B. Nondegenerate electron-hole system

When |pe|, |un| < T, the electron-hole system in the
GL is non-degenerate, so that

) 2T2 (.ue) » 2T2 (/Lh)
e~ —s—exp | — |, ~ — —exp|=].
71'7121)‘2,[, P T 4 71'7121)‘2,[, P T

(D1)
As a result, taking into account Eq.(8), instead of Eq. (9)
we obtain

D j
o —pn = To=L D2
H Mh O2j ( )
A, 17 j
ue+uh:To{1—< —1)—]# (D3)
hwo a]ja

AtV =01V,N,=5x10%cm ™3, d=1.0 um, k=6
one obtains j ~ 1.6 x (103> — 10%) A/cm?. This yields,
(e + pp)/T ~ 2.3 — 4.6 and (pe — pp)/T < 1.
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