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Phonon scattering by electrons, or “phonon-electron scattering”, has been recognized as a signif-
icant scattering channel for phonons in materials with high electron concentration, such as thermo-
electrics and nanoelectronics, even at room temperature. Despite the abundant previous studies of
phonon-electron scattering in different types of three-dimensional (3D) bulk materials, its impact
on the phonon transport, and thus the heat transfer properties, of two-dimensional (2D) materials
has not been understood. In this work, we apply ab initio methods to calculate the phonon-electron
scattering rates in two representative 2D materials, silicene and phosphorene, and examine the
potential of controlling the thermal conductivity of these materials via externally induced phonon-
electron scattering by electrostatic gating. We also develop an analytical model to explain the
impact of reduced dimensionality and distinct electron and phonon dispersions in 2D on phonon-
electron scattering processes. We find that over 40% reduction of the lattice thermal conductivity
can be achieved in silicene with an induced charge carrier concentration in the range of 1013 cm−2,
which is experimentally achievable. Our study not only generates new fundamental insights into
phonon transport in 2D materials but also provides practical guidelines to search for 2D materials
with strong phonon-electron scattering for potential thermal switching applications.

I. INTRODUCTION

Electron-phonon interactions play a major role in de-
termining the electronic properties of materials since they
are the major contributors to electrical resistance and
also mediate conventional superconductivity1,2. Due to
these reasons, the influence of electron-phonon interac-
tion on the transport of electrons has been intensively
studied and well understood. On the other hand, the
scattering of phonons due to electron-phonon interac-
tions (hereafter “phonon-electron scattering”) and its im-
pact on thermal transport of solids have received limited
research interest, due to the long belief that it is only
important at cryogenic temperatures3–5. The main rea-
son is that most of the previous studies and practical
interests were limited to devices with a low or moder-
ate electron concentration, typically below 1019 cm−3.
Recent technological developments have led to impor-
tant applications with electron concentration as high as
1020 to 1021 cm−3, such as in heavily-doped thermo-
electric materials6 and nanoelectronic devices7. In this
regime, however, the impact of phonon-electron scatter-
ing on thermal transport in largely unknown. Recently,
Liao et al. used ab initio calculations8 to show that
the lattice thermal conductivity of silicon with a high
electron concentration can be suppressed by as much as
50% even at room temperature due to phonon-electron
scattering9. Significant suppression of phonon propaga-
tion by phonon-electron scattering in silicon at room tem-
perature was subsequently verified experimentally using
ultrafast photoacoustic spectroscopy10. Moreover, ab ini-
tio calculations of phonon-electron scattering have also
been carried out in bulk metals11,12, providing new in-
sights into the details of coupled transport of phonons
and electrons.

With the rapid advancement of nanotechnology, 2D
materials have become star candidates for a wide range of

applications, e.g. transistors, optoelectronics and energy
harvesting devices. Currently, theoretical and experi-
mental understanding of electron-phonon interaction in
2D materials has been limited to its influence on electrons
and charge carrier mobility13–15. The effect of phonon-
electron scattering on the phonon frequency renormal-
ization of 2D materials has been reported16, but its ef-
fect on phonon lifetime and transport properties is still
lacking. Given the paramount importance of phonon
transport and thermal management for device perfor-
mance in these applications, it is desirable to gain an in-
depth understanding of phonon-electron scattering and
its impact on phonon transport in 2D materials. From
a fundamental point of view, phonon-electron scattering
in 2D materials is expected to be qualitatively different
from that in 3D bulk materials, due to factors includ-
ing reduced dimensionality and thus altered scattering
phase space, dominant normal phonon scattering and
hydrodynamic phonon transport17,18, new symmetries
and the associated scattering selection rules19, distinct
electron and phonon dispersion relations (e.g. massless
Dirac fermions and quadratic flexural phonons) and dif-
ferent dielectric screening behavior for polar materials20.
Therefore, it is of fundamental interest to explore the
behavior of phonon-electron scattering in 2D materials.
From a practical point of view, thanks to the possi-
bility of inducing a high concentration of electrons or
holes in 2D materials via electrostatic gating15,21, effi-
cient phonon-electron scattering in 2D materials can po-
tentially enable the development of fast thermal switches
whose thermal conductivity can be tuned by applying
an external electric field. This concept is illustrated in
Fig. 1a. Reversible and wide-range control of the ther-
mal conductivity of solids using external fields is highly
desirable in diverse fields22. Previously, a variety of ap-
proaches have been explored experimentally to reversibly
control the thermal conductivity of solids. For exam-
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ple, the metal-insulator phase transition23 and the as-
sociated crystal lattice change, e.g. of vanadium diox-
ide, has been proposed as a potential mechanism of ther-
mal switching, but only a small contrast was achieved
experimentally24. In another example, a thermal con-
ductivity tuning of 11% was demonstrated by modifying
the ferroelectric domain structure using an external elec-
tric field25. Reversible electrochemical intercalation of
ions has been demonstrated to change the thermal con-
ductivity of layered materials26, but requires operation
in a liquid electrolyte. Here we provide another possible
scheme. With the development of solid-state electrolytes
as the gate dielectric, inducing a charge concentration as
high as 1014 cm−2 in 2D materials15,21 has recently been
demonstrated. In principle, this high density of charge
carriers can efficiently scatter phonons and largely reduce
the lattice thermal conductivity while an optimum charge
carrier density can be selected to balance the increase of
the electronic thermal conductivity.

In this work, we use ab initio electron-phonon inter-
action calculations8 to examine the practicality of this
mechanism as a means to realize efficient thermal switch-
ing of 2D materials. We choose silicene and phosphorene
as model systems due to their wrinkled crystal struc-
tures that break the out-of-plane mirror symmetry, as
shown in Fig. 1b. It has been theoretically shown that
the out-of-plane mirror symmetry, e.g. of graphene, pro-
hibits the first-order interaction of electrons with the
out-of-plane flexural phonons27,28, which are the major
heat carriers in 2D materials19. Therefore, 2D materi-
als without the out-of-plane mirror symmetry should be
better candidates to possess strong phonon-electron scat-
tering. Another reason to choose silicene and phospho-
rene is their distinct electronic structures: silicene is a
Dirac semimetal with massless electrons and holes near
the intrinsic Fermi level29 and phosphorene is a semicon-
ductor with a sizable band gap and highly anisotropic
carrier effective masses14,30. Therefore, a comparative
study will help elucidate the impact of electronic struc-
ture on phonon-electron scattering and provide guidelines
in future search for 2D materials with desirable phonon-
electron scattering properties.

II. METHODS

The scattering rate of a phonon mode with wave vector
q and branch label ν due to phonon-electron scattering
is given by the Fermi’s golden rule in the form2,9:

1

τ epqν
= −2π

~
∑
mn,k

|gνmn(k,q)|2(fnk − fm(k+q+G))

×δ(εnk − εm(k+q+G) − ωqν)

(1)

where τ epqν is the corresponding phonon relaxation time,
gνmn(k,q) is the scattering matrix element connecting the
initial electronic state with band index n and wave vector

FIG. 1. (a) The concept of controlling phonon transport in
2D materials via externally induced phonon-electron scatter-
ing. (b) The crystal structures of phosphorene and silicene.
(c) The calculated reduction of the lattice thermal conduc-
tivity of silicene and phosphorene (along zigzag and armchair
directions) at 300 K as a function of induced charge carrier
concentration.

k with the final electronic state with band index m and
wave vector k + q + G (G is a reciprocal lattice vector)
due to the conservation of crystal momentum, fnk is the
Fermi-Dirac distribution, εnk is the electron energy, and
ωqν is the phonon frequency. The δ function imposes
energy conservation during the scattering process. From
Eq. 1, there are two major factors that contribute to
the phonon-electron scattering rate: the scattering ma-
trix elements that reflect the strength of the coupling be-
tween the electronic and lattice degrees of freedom and
the energy-momentum conservation conditions that de-
termine the number of potential scattering channels. To
carry out the calculation in Eq. 1, the electronic band
structure, the phonon dispersion and electron-phonon
scattering matrix element are required. We use the den-
sity functional theory (DFT) based method to calculate
these ingredients. The electronic band structure is cal-
culated using the Quantum ESPRESSO package31. A
mesh grid of 30 × 30 × 1 in the first Brillouin zone is
adopted for both materials with norm-conserving pseudo-
potentials. The kinetic energy cutoff for wavefunctions is
set to 40 Ry. The kinetic energy cutoff for charge density
and potential is set to 160 Ry. The total electron energy
convergence threshold for self-consistency is 1×10−10 Ry.
The crystal lattice is fully relaxed with a force threshold
of 1× 10−4 eV/Å. Applying density functional perturba-
tion theory (DFPT) implemented in the same package,
the phonon dispersion and the electron-phonon matrix



3

elements are calculated on a coarse mesh of 6×6×1 and
4×4×1 for silicence and phosphorene, respectively. The
calculated electronic density of states and phonon disper-
sion relation of both materials are presented in the Sup-
plementary Information (SI)32. In particular, we quan-
tify the parabolicity of the dispersion of the out-of-plane
flexural acoustic (ZA) phonon modes by computing the
residual of quadratic fits, as shown in Fig. S2 in the
SI32. The small fitting residue indicates that the crystal
lattices are fully relaxed with negligible stress. The elec-
tronic band structure, phonon dispersion relation and the
electron-phonon scattering matrix elements are are sub-
sequently interpolated onto a fine mesh of 60×60×1 for
silicene and 64×64×1 for phosphorene using a maximally
localized Wannier function based scheme as implemented
in the EPW package33. We checked the convergence of
the phonon scattering rates as a function of the fine sam-
pling mesh density, as presented in Fig. S3 in the SI32.

To compare the contribution of phonon-electron scat-
tering to the lattice thermal conductivity with that
of intrinsic phonon-phonon scattering, we calculate the
phonon-phonon scattering rates in silicene and phospho-
rene based on the third-order anharmonic interatomic
force constants (IFCs). The phonon-phonon scattering
rates 1

τpp
qν

can be calculated from the anharmonic IFCs

using the Fermi’s golden rule. The detailed equations
of the anharmonic IFCs and the phonon-phonon scatter-
ing rate can be found elsewhere34.The anharmonic IFCs
are calculated using a frozen-phonon approach combining
DFT force calculation using Quantum ESPRESSO and
the ShengBTE package,35,36 with supercell sizes 5×5×1
and 4× 4× 1 for silicene and phosphorene, respectively.
The q-mesh grid 60 × 60 × 1 is adopted for both sil-
icene and phosphorene. To evaluate the intrinsic lattice
thermal conductivity of silicene and phosphorene without
induced phonon-electron scattering, the phonon Boltz-
mann transport equation (BTE) is solved iteratively37

using ShengBTE, and the convergence of the lattice ther-
mal conductivity as a function of the q-mesh sampling
density is confirmed and presented in Fig. S4 in the SI.
To evaluate the impact of the induced phonon-electron
scattering on the lattice thermal conductivity, we calcu-
late the total scattering rate of each phonon mode by
combining phonon-electron and phonon-phonon scatter-
ing using the Matthiessen’s rule:

1

τ totalqν

=
1

τ epqν
+

1

τppqν
. (2)

The lattice thermal conductivity κi (i = x, y, z) affected
by the phonon-electron scattering is then evaluated using
the kinetic formula:

κi =
∑
qν

Cqνv
2
i,qντ

total
qν . (3)

A more satisfactory calculation would solve the coupled
electron-phonon Boltzmann transport equations34 with
phonon-electron and phonon-phonon scattering rates,

which is beyond the scope of the current work. We note
that the kinetic formula (Eq. 3) should be reasonably ac-
curate when the phonon-electron scattering is strong and
the phonon momentum is effectively dissipated locally.

III. RESULTS AND DISCUSSION

Figure 2 shows the scattering rates of different phonon
modes due to phonon-electron scattering in phospho-
rene. Both n-type and p-type phosphorene with differ-
ent charge carrier concentrations are investigated. Sev-
eral observations can be made compared to the results
in 3D materials, such as bulk silicon9. While the phonon
scattering rates scale linearly with the carrier concen-
tration in both silicon and phosphorene, a major differ-
ence is the phonon frequency dependence of the scat-
tering rates for the low-frequency acoustic phonons. In
3D semiconductors like silicon, the linear phonon dis-
persion and parabolic electronic bands give rise to the
linear dependence of the phonon scattering rates on
the phonon frequency for the low-frequency acoustic
phonons9, whereas in phosphorene, the frequency de-
pendence is more complicated: the scattering rates first
rise with phonon frequency below 0.3 THz and then
decrease. The decreasing trend of the phonon scatter-
ing rates in phosphorene indicates that the major heat-
carrying phonons, typically around 1 THz, are less effec-
tively scattered by electrons than phonons with longer
wavelengths. To qualitatively understand the distinct
phonon frequency dependence of the phonon-electron
scattering rates in phosphorene, we develop an analyt-
ical model for the phonon-electron scattering rates of
low-frequency acoustic phonons with the deformation po-
tential approximation, where the electron-phonon ma-

trix elements |gνmn(k,q)|2 are replaced by ~D2q2

2m0ωqν
with D

being the constant deformation potential38 and m0 the
atomic mass. The deformation potential is the change of
the electron energy near the band edges in response to
a static strain of the lattice, corresponding to the cou-
pling strength of electrons with long-wavelength acoustic
phonons. Using the phonon dispersion relations in 2D,
including the quadratic dispersion for out-of-plane flex-
ural phonons, and the 2D electronic band structure, we
derive the following analytical equations for the phonon-
scattering rates of ZA phonons in 2D semiconductors in
the nondegenrate regime:

1

τ epqν
=
D2(2πm∗)

1
2

ρα
1
2 (kBT )

3
2

e
−

~2( 1
2
+αm

∗
~ )2ωqν

2m∗αkBT n(EF)ω
1
2
qν , (4)

where m∗ is the electron or hole density of states (DOS)
effective mass, ρ is the areal mass density, α is the co-
efficient for the quadratic ZA phonon dispersion (ω =
αq2), kB is the Boltzmann constant and n(EF) is the
carrier concentration corresponding to a certain Fermi
level EF. Phosphorene has strongly anisotropic effec-
tive masses ma = 0.17(0.16) along the armchair direction
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FIG. 2. Phonon-electron scattering rates of (a) ZA, (b) TA, and (c) LA modes as a function of phonon frequency at different
carrier concentrations in n-type phosphorene. The solid lines are fits based on Eqns. 4 and 5. (d) Mode-resolved phonon-electron
scattering rates in n-type phosphorene at a carrier concentration of 5.2 × 1012cm−2. (e-f) are corresponding plots for p-type
phosphorene.

and mz = 1.23(7.0) along the zigzag direction for elec-
trons (holes), and in this case m∗ =

√
mamz. The effec-

tive mass values are extracted from a quadratic fitting of
the calculated electronic band structure and are in good
agreement with the literature.39 The derivation of Eq.
4 is given in the Supplementary Information. Similarly,
we also derive an analytical expression for the phonon
scattering rates of TA and LA phonon modes with linear
dispersion relations given by:

1

τ epqν
=
D2(2πm∗)

1
2

ρvs(kBT )
3
2

e
−

~2ω2
qν

8m∗v2s kBT
− ~ωqν

2kBT
−m

∗v2s
2kBT n(EF)ωqν ,

(5)
where vs is the speed of sound for the TA and LA
phonon modes. These analytical formulas are used to fit
the calculated phonon-electron scattering rates for long-
wavelength phonons with the deformation potential D
as the only fitting parameter. The results are plotted
in Fig. 2 as solid lines and agree well with the ab ini-
tio calculations, and confirm that the different phonon
frequency dependency originates from the difference in
dimensionality and the electron and phonon dispersion
relations. The extracted values of the deformation po-
tential (averaged over the armchair and zigzag directions
and different acoustic branches) are roughly 5 eV for
electrons and 3 eV for holes, in agreement with pre-

vious calculations.40 These analytical formulas can be
used to estimate the level of phonon-electron scattering
rates for long-wavelength acoustic phonons in 2D semi-
conductors. In Fig. 2(d) and (h), we also report the
phonon-mode-resolved phonon-electron scattering rates
in n-type and p-type phosphorene, where each data point
in the plots represents a phonon mode with given fre-
quency and wavevector magnitude and the color of the
data point encodes the phonon-electron scattering rate
of this mode. In both n-type and p-type phosphorene,
phonons near the zone center are much more strongly
scattered by electrons. This behavior is also observed
in bulk silicon9 and is expected due to the small energy
scale of phonons compared to that of electrons, so that
the small-wavevector phonons have a larger chance of
meeting the energy-momentum conservation conditions
during the scattering process. Furthermore, some of the
zone boundary phonons, particularly in p-type phospho-
rene, are also significantly scattered by electrons. This is
related to the strong anisotropy and large carrier effec-
tive mass along the zigzag direction in phosphorene14,30,
which leads to large radius of the electron and hole pock-
ets near the band edges such that the electrons can be
scattered across the carrier pockets by the zone bound-
ary phonons with a large momentum change but a small
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energy change.

In Fig. 3, we show the calculated scattering rates of
phonons due to phonon-electron scattering in silicene.
The main difference between silicene and phosphorene
is their electronic structures: phosphorene is a wide-gap
semiconductor and silicene is a Dirac semimetal with lin-
ear electron bands. The phonon frequency dependence
of the scattering rates of ZA mode shows similar behav-
ior as that in phosphorene, but the scattering rates are
higher in silicene at a given carrier concentration in gen-
eral. As the carrier concentration increases, the phonon
scattering rates also exhibit a trend of saturation as the
Fermi level moves deeper into the bands. Due to the lin-
ear electron bands and the degenerate nature requiring
the use of Fermi-Dirac distribution functions in Eq. 1,
there is no simple analytical expression for the phonon
scattering rates as those given for phosphorene (Eq. 4
and Eq. 5) even with the deformation potential approxi-
mation. Instead, we integrate Eq. 1 numerically with the
deformation potential approximation, and the results are
shown as solid lines in Fig. 3, where good agreement with
the ab initio results is observed and the saturation of the
scattering rates with increasing carrier concentration is
captured. The extracted value of the deformation poten-
tial associated with the ZA modes in silicene is 2.2 eV, in
the same range as previous first-principles calculations.41

Figure 3(d) and (h) display the mode-resolved phonon-
electron scattering rates in n-type and p-type silicene.
Similarly as in phosphorene, phonons near the zone cen-
ter are strongly scattered by electrons. Phonons in a
section of the Brillouin zone near the boundary are also
strongly scattered, which is caused by intervalley scatter-
ing of electrons and holes between the two Dirac cones
of silicene.

From Figs. 2 and 3, it is clear that the phonon scat-
tering rates due to phonon-electron scattering are signifi-
cantly higher in silicene than those in phosphorene given
similar carrier concentrations. To understand this differ-
ence, we analyze the strength of phonon-electron scatter-
ing by considering the two major factors that determine
the phonon-electron scattering rates as reflected in Eq. 1:
the number of potential phonon-electron scattering chan-
nels imposed by the energy-momentum conservation con-
ditions and the magnitude of the electron-phonon scat-
tering matrix elements. Given the small energy scale of
phonons compared to that of electrons, phonon-electron
scatterings are approximately “on-shell” processes, where
the initial and the final electron states have similar en-
ergy. This observation implies that the number of po-
tential phonon-electron scattering channels is directly re-
lated to the electron density of states within the Fermi
window, where scatterings can happen between partially
occupied energy levels. A quantitative measure is the
so-called “thermal density of states” (TDOS)2, which is
defined as a function of the Fermi level:

TDOS(EF) =

∫ +∞

−∞
DOS(E)f ′(E,EF)dE, (6)

where DOS(E) is the electron density of states, and
f ′(E,EF) is the energy derivative of the Fermi-Dirac dis-
tribution, which defines the Fermi window. In Fig. 4(a)
and (b), the TDOS for both n-type and p-type silicene
and phosphorene are shown, which clearly signal that
there is a larger available scattering phase space in sil-
icene than phosphorene at the same carrier concentra-
tion due to silicene’s semimetallic band structure. In
Fig. 4(c) and (d), we further calculate and compare the
scattering matrix elements for acoustic phonon modes
in silicene and phosphorene given the same initial elec-
tron states at k = 0 and at the band extrema. The
electron-phonon matrix elements can be calculated as
gνmn(k,q) =

〈
um(k+q)

∣∣∆qνv
SCF

∣∣unk〉, where um(k+q)

and unk are the periodic parts of the Bloch wavefunctions
of the corresponding electron states and ∆qνv

SCF is the
perturbation of the electron self-consistent-field potential
induced by a phonon mode with wavevector q and branch
index ν8. Physically, the matrix elements measure the
sensitivity of the electron potential energy in response to
lattice disturbance and can be affected by crystal struc-
ture, chemical bonding environment and electron screen-
ing effect2. Here we see that the electron-phonon scat-
tering matrix elements in silicene are significantly larger
in magnitude than those in phosphorene, signaling that
the electron states in silicene are much more sensitive to
lattice perturbation and the structure of silicene might
thus be less stable than that of phosphorene.

Finally, we compare the scattering rates due to
phonon-electron and phonon-phonon scatterings and
evaluate the effect of phonon-electron scattering on the
lattice thermal conductivity. The results are shown in
Fig. 5. When the carrier concentration is higher than
1× 1013 cm−2, the scattering rates of the low-frequency
acoustic phonons below a few THz are dominated by
phonon-electron scattering, which is expected to have a
major impact on the lattice thermal conductivity of these
materials. To quantify this effect, we further obtain the
lattice thermal conductivity as a function of the carrier
concentration as detailed in Methods, which is shown in
Fig. 5(e). Due to the ambiguity of defining an effec-
tive thickness for 2D materials to calculate their thermal
conductivity, here we report the relative reduction of the
lattice thermal conductivity due to phonon-electron scat-
tering normalized to the intrinsic values without net in-
duced charge. The intrinsic thermal conductance (prod-
uct of layer thickness and thermal conductivity) we ob-
tain is 5.3×10−9 W/K for silicene, 5.8×10−8 W/K along
the zigzag direction of phosphorene and 2.3× 10−8 W/K
along the armchair direction of phosphorene, which are
in good agreement with literature values42,43. We find
that the lattice thermal conductivity of silicene and phos-
phorene depends strongly on the induced charge car-
rier concentration. In particular, in p-type silicene, over
40% reduction of the lattice thermal conductivity can
be achieved by a charge carrier density of 1013 cm−3,
whereas in phosphorene, 10% change of the lattice ther-
mal conductivity can be expected at a similar charge
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FIG. 3. Phonon-electron scattering rates of (a) ZA, (b) TA, and (c) LA modes as a function of phonon frequency at different
carrier concentrations in n-type silicene. The solid lines are fits based on numerical integration of Eqn. 1 with the deformation
potential approximation. (d) Mode-resolved phonon-electron scattering rates in n-type silicene at a carrier concentration of
1.3 × 1013cm−2. (e-f) are corresponding plots for p-type silicene.

carrier density. Our results demonstrate that externally
induced phonon-electron scattering can significantly af-
fect thermal transport in silicene and phosphorene, in-
dicating the potential use of this mechanism to realize
thermal switching devices. One potential concern is the
increased electronic thermal conductivity as the induced
carrier concentration increases. Due to the lack of avail-
able experimental data of electronic thermal conductiv-
ity in these materials, we estimate the electronic thermal
conductivity using experimentally reported mobility39,44

and the Wiedemann-Franz law to be ∼ 10% and ∼ 5% of
the intrinsic lattice thermal conductivity in silicene and
phosphorene at a carrier concentration of 1013 cm−2, re-
spectively. It is worth noting that, in addition to induc-
ing charge carriers, the external electric field applied to
2D materials can also cause changes to charge density
distribution inside the material that can further reduce
the thermal conductivity, as has been studied from first-
principles in silicene45. We envision that a combination
of these effects will render silicene a promising candidate
for thermal switching applications driven by an external
electric field.

In summary, we analyze the impact of phonon-electron
scattering on phonon transport in two representative 2D
materials, silicene and phosphorene, using ab initio calcu-
lations. We examine the mode-resolved phonon-electron
scattering rates in silicene and phosphorene in detail and
compare their behavior to 3D bulk materials. We ex-

plain the observed phonon-frequency dependence by de-
veloping a semi-analytical model using the deformation
potential approximation, based on which we attribute
the qualitatively different behavior to distinct phonon
and electron dispersion relations in 2D materials as well
as the reduced dimensionality. We provide further un-
derstanding about significantly different phonon-electron
scattering rates in silicene and phosphorene by analyzing
the magnitude of the scattering matrix elements and the
available scattering phase space quantified by the thermal
density of states. We find that the lattice thermal con-
ductivity of silicene can be reduced by over 40% via exter-
nally induced phonon-electron scattering, indicating the
potential application in thermal switching devices. Our
fundamental study also provides guidelines to search for
2D materials with even stronger phonon-electron scatter-
ings for thermal switching applications.
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