
This is the accepted manuscript made available via CHORUS. The article has been
published as:

Coupled-cluster impurity solvers for dynamical mean-field
theory

Tianyu Zhu, Carlos A. Jiménez-Hoyos, James McClain, Timothy C. Berkelbach, and Garnet
Kin-Lic Chan

Phys. Rev. B 100, 115154 — Published 26 September 2019
DOI: 10.1103/PhysRevB.100.115154

http://dx.doi.org/10.1103/PhysRevB.100.115154


Coupled-cluster impurity solvers for dynamical mean-field theory

Tianyu Zhu,1 Carlos A. Jiménez-Hoyos,2 James McClain,1 Timothy C. Berkelbach,3, 4, ∗ and Garnet Kin-Lic Chan1, †
1Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena CA 91125

2Department of Chemistry, Wesleyan University, Middletown CT 06457
3Department of Chemistry, Columbia University, New York NY 10027

4Center for Computational Quantum Physics, Flatiron Institute, New York NY 10010

We describe the use of coupled-cluster theory as an impurity solver in dynamical mean-field theory (DMFT)
and its cluster extensions. We present numerical results at the level of coupled-cluster theory with single and
double excitations (CCSD) for the density of states and self-energies of cluster impurity problems in the one- and
two-dimensional Hubbard models. Comparison to exact diagonalization shows that CCSD produces accurate
density of states and self-energies at a variety of values of U∕t and filling fractions. However, the low cost
allows for the use of many bath sites, which we define by a discretization of the hybridization directly on the real
frequency axis. We observe convergence of dynamical quantities using approximately 30 bath sites per impurity
site, with our largest 4-site cluster DMFT calculation using 120 bath sites. We suggest coupled cluster impurity
solvers will be attractive in ab initio formulations of dynamical mean-field theory.

I. INTRODUCTION

Dynamical mean-field theory (DMFT)1,2 and its clus-
ter extensions (such as cluster dynamical mean-field the-
ory (CDMFT)3,4 and the dynamical cluster approximation
(DCA)5,6) approximate the single-particle Green’s function
of an interacting quantum lattice Hamiltonian using the self-
energy of a self-consistent impurity model. Computing the
impurity self-energy and Green’s function is thus the main
numerical task, and falls to the so-called quantum impurity
solver, the focus of this work.

In DMFT impurity models, the impurity sites retain the full
interaction, while the rest of the lattice is replaced by a self-
consistent hybridization�(!). Impurity solvers can be divided
into two classes based on how they treat this hybridization. In
the first class (diagrammatic), which includes methods such
as diagrammatic Monte Carlo (diagMC)7 and some forms of
continuous-time quantum Monte Carlo (CT-QMC),8–10 �(!)
is directly included in the evaluation of the diagrams. In the
second class (bath-based), which includes methods such as ex-
act diagonalization (ED),11,12 configuration interaction (CI),13
numerical and density matrix renormalization group methods
(NRG, DMRG),14–16 and the variational Gutzwiller ansatz,17
the hybridization is first unfolded into a discrete bath. The im-
purity and bath sites then together define an impurity Hamilto-
nian, from which the Green’s function and self-energy can be
computed from a finite system simulation. At zero tempera-
ture, this usually involves computing the impurity ground-state
wavefunction, and the impurity Green’s function as a correla-
tion function. In this work, we will explore an impurity solver
based on coupled-cluster (CC) theory,18 which falls into this
second class of solvers.

The bottleneck in all bath-based methods is the number of
sites in the impurity Hamiltonian. Even for a small number
of impurity sites, one requires several bath sites per impurity
site to adequately discretize the hybridization. The exponen-
tial complexity of exact diagonalization limits calculations to
about 16 sites in total, and thus to only small impurity clus-
ters, typically with no more than 4 impurity sites and 2 bath
sites per impurity site. There are two common strategies to

ameliorate this bottleneck. The first is to restrict the Hilbert
space in which the diagonalization is performed. This was ex-
plored by Zgid and Chan with truncated CI,13 which defines a
systematic selection of a reduced set of Slater determinants in
which to solve the quantum impurity problem. Bravyi19 pro-
vided a formal justification for this truncation, showing that
for fixed impurity size, the Green’s function can be converged
by a linear combination of Gaussian states with a cost that is
polynomial in the accuracy. CI solvers significantly extend the
size of systems that can be treated by diagonalization meth-
ods particularly with respect to the number of bath sites.20–23
A second strategy is to parametrize the impurity wavefunction
through a non-linear ansatz. NRG, DMRG, and the variational
Gutzwiller approximation adopt this latter approach.
The CC solvers we explore here also correspond to a non-

linear ansatz for the impurity wavefunction. CC theory has
similar strengths to configuration interaction, for example it
can be used at zero-temperature as well as finite-temperature24
and with arbitrary interactions and couplings, but it addresses
several formal deficiencies of the truncated CI wavefunction.
Most importantly, the CC parametrization is size-extensive.25
This means that (much like tensor networks) one can repre-
sent product states of disjoint interacting clusters, with a num-
ber of parameters linear in the number of clusters, instead of
the exponential number of parameters in exact diagonaliza-
tion. When interactions are not too strong, this makes the
CC parametrization exponentially more compact than the CI
parametrization for a given accuracy. In ab initio quantum
chemistry calculations, CC theory is generally used in place
of CI,26 except when there are simultaneously strong interac-
tions and a large number of degenerate sites.
In this work, we study the performance of truncated CC the-

ory as an impurity solver in cluster dynamical mean-field the-
ory calculations. We will use the 1D and 2D Hubbard models,
canonical models of correlated materials, as our test systems.
We focus on the lowest order truncation in the CC theory of
the Green’s function, namely, equation-of-motion CC theory
with single and double excitations (EOM-CCSD), a level of
theory that is widely implemented and available in quantum
chemistry packages. To understand the quality of our low-
order CC truncation, we will compare to dynamical quanti-
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ties obtained from an exact diagonalization solver with small
bath discretizations. We will further exploit the low cost of
the CC solver to carry out calculations with a large number of
bath sites. Overall, we seek to shed light on the regimes in
which low-order CC methods are a promising class of impu-
rity solvers for dynamical mean-field theories. After this work
was submitted, Shee and Zgid have presented related work27
that also explores the use of CC impurity solvers in Green’s
function embedding methods.

II. THEORY RECAPITULATION

A. Cluster Dynamical Mean-Field Theory

Cluster dynamical mean-field theory (CDMFT) has been
extensively reviewed28–30 and we present only a minimal de-
scription sufficient for the numerical considerations in our
work. We first consider a general translationally invariant lat-
tice Hamiltonian with one- and two-particle interactions

Ĥ =
∑

pq
ℎpqa

†
paq +

1
2
∑

pqrs
Vpqrsa

†
pa
†
qaras (1)

where p, q, r, s label lattice sites (including spin) and a(†) are
fermion annihilation (creation) operators. We then consider a
computational unit cell  with N cluster sites, that tiles the
lattice through a set of translation vectors T . Taking k as a
corresponding reciprocal space vector taken from an evenly
spaced mesh of Nk points in the first Brillouin zone of , the
reciprocal space Hamiltonian becomes

Ĥ =
∑

pq∈

∑

k

ℎ̃pq(k)ã
†
pkãqk

+ 1
2

∑

pqrs∈

∑

kpkqkr

Ṽpqrs(kp,kq ,kr)ã
†
pkp
ã†qkq ãrkr ãskp+kq−kr

(2)

with ã(†)pk = 1
√

Nk

∑

T a
(†)
p eik⋅T where ℎ̃ and Ṽ are the ma-

trix elements of ℎ and V in the symmetry-adapted basis. The
non-interacting and interacting Green’s functions, g(k, !) and
G(k, !), are block diagonal in reciprocal space, and are related
by the block-diagonal lattice self-energy�(k, !) via the Dyson
equation

G(k, !) =
[

(! + �)1 − h̃(k) − �(k, !)
]−1 . (3)

The cellular Green’s function is related to the reciprocal space
Green’s function by

G(!) = N−1
k

∑

k

G(k, !). (4)

The key quantity to approximate is the lattice self-energy
that contains the effects of interactions. In CDMFT, the lat-
tice self-energy is taken to be equal to the self-energy of an
impurity withN sites, i.e.

�(k, !) = �imp(!) (5)

The impurity model is characterized by a cellular hybridiza-
tion �(!) that describes the delocalization effects between
the cell and the lattice. Defining the cellular non-interacting
Hamiltonian ℎ̂ as

ℎ̂ =
∑

pq∈
ℎpqa

†
paq , (6)

the hybridization follows as

�(!) = (! + �)1 − h − �imp(!) −G−1 (!) (7)

The impurity Green’s function Gimp(!) is formally defined
from the zero-temperature generating functionalW [J]

W = ∫ ∫ cc̄ eiS(J) (8)

S = ∫ ∫ dtdt′
[

c̄T (t)[(i)t − h)�(t − t′) − �(t, t′)

+J(t, t′)]c(t′)
]

+ V [c, c̄]
(9)

where c, c̄ are vectors of N Grassmann variables, V [c, c̄]
is the interaction contribution to the action S, Gimp(t, t′) =
�W ∕�J(t, t′), and Gimp(!) =

1
2� ∫ dt Gimp(0, t)e

i!t.
From the impurity Green’s function, �imp(!) follows as

�imp(!) =
[

(! + �)1 − h − �(!)
]

−G−1imp(!). (10)

Using �imp(!) as the lattice self-energy in (5) leads to a new
lattice Green’s function and hybridization, and thus a new im-
purity Green’s function. The self-consistency in CDMFT is
then achieved when the cellular Green’s function and impurity
Green’s function agree,

Gimp(!) = G(!) (11)

Note that after self-consistency, if the primitive cell of the lat-
tice is smaller than the computational cell, the cellular Green’s
function may break translational invariance. There are vari-
ety of related formulations,31,32 that restore the translational
invariance (including the dynamical cluster approximation5,6)
but we will not use them here.
In the bath-based CDMFT, the hybridization function is rep-

resented by a set of fictitious bath sites and couplings. For-
mally, we consider each element of �(!) as the Hilbert trans-
form33

�(!) = ∫ d"
J(")
! − "

(12)

with the spectral density

J(!) = − 1
�
Im�(! + i�). (13)

A bath parametrization can be considered a discrete repre-
sentation of the above integral, where " and J(") take on a
discrete set of values given by the bath energies and cou-
plings. One common choice is to approximate �(!) along
the imaginary axis where it is smooth and can be more eas-
ily fit to a bath representation by numerical optimization of
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a cost function.11 This is beneficial for exact diagonalization
(and related) solvers which can only handle a very small num-
ber of bath sites but can lead to a loss of accuracy when
analytically continuing to the real axis for spectral computa-
tion.13,34–36 Another choice is to approximate �(!) along the
real axis directly, which is commonly done with NRG and
DMRG solvers.16,37–39 Here we view the Hilbert transform as
a quadrature along the real axis

�(!) =
N!
∑

n=1
wn

J("n)
! − "n

(14)

where wn are quadrature weights for N! integration grid
points. Then, we can define an approximate hybridization of
the form

Δ̃pq(!) =
N!
∑

n=1

N
∑

k=1

V (n)p,k V
(n)
q,k

! − "n
(15)

whereV(n) = [wnJ("n)]1∕2. This leads to the discrete impurity
Hamiltonian,

Ĥimp = Ĥ

+
N!
∑

n=1

N
∑

k=1

[

"na
†
nkank +

∑

p

(

V (n)p,k a
†
pank + H.c.

)

]

(16)

where Ĥ is the cellular Hamiltonian with interactions and
the creation and annihilation operators indexed by nk in the
last two terms act on the fictitious bath space. From the impu-
rity Hamiltonian, the Green’s functions can then be defined as
correlation functions. For example, the addition and removal
parts of the impurity Green’s function Gimp(!) are given by

G+pq(!) = ⟨Ψ0|ap
[

! + � − (Ĥimp − E) + i�
]−1 a†q|Ψ0⟩

(17a)

G−pq(!) = ⟨Ψ0|a†q
[

! + � − (E − Ĥimp) + i�
]−1 ap|Ψ0⟩

(17b)

The goal of the impurity solver in the bath-based represen-
tation is thus to approximate the impurity model ground-state
wavefunction |Ψ0⟩ and the impurity Green’s functionGimp(!)
via the expressions in (17). We next describe how this is done
in CC theory.

B. Coupled-cluster theory of the ground-state and Green’s
function

We now describe the basics of CC theory. Detailed discus-
sions of ground-state CC and the CC Green’s function can
be found in Refs. 40–45. The CC ansatz is an exponential
parametrization of the wavefunction,

|Ψ0⟩ = eT̂ |Φ0⟩ (18)

where |Φ0⟩ is a reference determinant, and T̂ is the cluster
excitation operator

T̂ =
∑

ia
tai a

†
aai +

1
4
∑

ijab
tabij a

†
aa
†
baiaj +…

= T̂1 + T̂2 +… (19)

where indices i, j,… and a, b,…, label particle (p) and hole (h)
orbitals in the reference determinant, and tai , t

ab
ij ,… are 1p1h,

2p2h, etc. cluster amplitudes. Truncating the CC amplitudes
at 1p1h, 2p2h, etc. gives the coupled-cluster singles (CCS),
coupled-cluster singles and doubles (CCSD), etc. approxima-
tions. CCS constitutes a mean-field ansatz. Thus we use the
CCSD ansatz, the lowest truncation that includes correlations,
in this work.
Given a Hamiltonian Ĥ , the reference determinant |Φ0⟩ is

often chosen to be the mean-field (Hartree-Fock) ground-state
of Ĥ (although including eT̂1 in the cluster operator renders the
approximation somewhat insensitive to the choice of determi-
nant, as an arbitrary determinant satisfies |Φ′⟩ = eT̂1 |Φ0⟩).
The amplitudes are chosen to satisfy the projected CC equa-
tions; for CCSD, these are

E = ⟨Φ0|e−T̂ ĤeT̂ |Φ0⟩

0 = ⟨Φai |e
−T̂ ĤeT̂ |Φ0⟩

0 = ⟨Φabij |e
−T̂ ĤeT̂ |Φ0⟩ (20)

where ⟨Φai | = ⟨Φ0|aia
†
a… and E is the (non-variational) CC

approximation to the ground-state energy. The operator eT̂ de-
fines a similarity transformation. Thus H̄ = e−T̂ ĤeT̂ is an ef-
fective Hamiltonian whose mean-field energy is E, or equiv-
alently, the CC wavefunction is a product state of similarity
transformed quasi-particles, defined by the quasi-particle op-
erators ā†i = e

−T̂ a†i e
T̂ .

The advantages of truncated CC versus truncated CI derive
from the exponentiation of the cluster operator. A CI wave-
function can be written in similar notation as

|Ψ0⟩ = Ĉ|Φ0⟩

Ĉ = 1 +
∑

ia
cai a

†
aai +

1
4
∑

ijab
cabij a

†
aa
†
baiaj +…

= 1 + Ĉ1 + Ĉ2 +… (21)

The truncated Ĉ can be seen as a linearization of a truncated
eT̂ , or equivalently, the terms in T̂ are the cumulants of Ĉ ,
rewriting the latter as products of cluster excitations, e.g. Ĉ2 =
1
2 T̂

2
1 + T̂2. The extensivity of the truncated CC approximation

also derives from the exponential structure, since for a system
AB consisting of two separated clusters of sites A and B, we
can write eT̂AB |ΦAB⟩ = eT̂A |ΦA⟩eT̂B |ΦB⟩.
If the interactions between particle-hole excitations are not

too strong, we expect higher-order cluster operators to become
small. In this situation, the truncated CC approximation pro-
vides a significant improvement over the truncated CI ansatz.
Low-order CC truncations are accurate if the state of interest
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can be described in terms of low-order products of fluctua-
tions around the chosen reference mean-field state |Φ0⟩. In
this work, we will consider two possible CCSD formulations
based on different referencemean-field states corresponding to
restricted Hartree-Fock (RHF) and unrestricted Hartree-Fock
(UHF). In restricted CCSD (RCCSD), the reference mean-
field state is required to be a singlet (S = 0) eigenfunction of
Ŝ2, and the cluster operators T̂1, T̂2 each commute with Ŝ2. In
unrestricted CCSD (UCCSD), the reference mean-field state
is only required to be an eigenfunction of Ŝz, and the clus-
ter operators commute with Ŝz. Consequently, spin symmetry
can be broken in UCCSD, for example, to yield an antiferro-
magnetic state. RCCSD is expected to be most accurate when
the interacting state can be described by fluctuations around a
paramagnetic state, while UCCSD is more appropriate to de-
scribe fluctuations around an (anti)ferromagnetic state.

From the CC ground state, we then compute the Green’s
function as a correlation function. Using the cluster operator,
similarity transformed Hamiltonian, and quasiparticle opera-
tors, we can rewrite the exact expressions for the Green’s func-
tion in (17) in the equation-of-motion coupled-cluster (EOM-
CC) form46–48

G+pq(!) =
∑

mn
⟨Λ0|āp|Φm⟩⟨Φn|ā†q|Φ0⟩

× ⟨Φm|
[

! + � − (H̄imp − E) + i�
]−1

|Φn⟩
(22a)

G−pq(!) =
∑

mn
⟨Λ0|ā†q|Φm⟩⟨Φn|āp|Φ0⟩

× ⟨Φm|
[

! + � − (E − H̄imp) + i�
]−1

|Φn⟩
(22b)

where ⟨Λ0| is the left eigenstate of H̄ , and
∑

m |Φm⟩⟨Φm| =
1, where |Φm⟩ is a determinant. Defining response vectors
|R±p (!)⟩,

|R+q (!)⟩ = P̂
+ [! + � − (H̄imp − E) + i�

]−1 P̂+ā†q|Φ0⟩
(23a)

|R−p (!)⟩ = P̂
− [! + � − (E − H̄imp) + i�

]−1 P̂−āp|Φ0⟩,
(23b)

where P̂± is the projector onto 1p, 2p1h, ... states or 1h, 2h1p,
... states, allows the CCGreen’s functions to be efficiently com-
puted as

G+pq(!) = ⟨Φ0|āp|R+q (!)⟩ (24a)

G−pq(!) = ⟨Φ0|ā†q|R
−
p (!)⟩. (24b)

A truncated EOM-CC approximation to the Green’s func-
tion contains two truncations, one of the T̂ operator that de-
fines the ground-state, and another of the resolution of the
identity determinants in the Lehmann sum. In this work we
will use the EOM-CCSD approximation, where T̂ corresponds
to the ground-state CCSD truncation, and where |Φm⟩, |Φn⟩
are restricted to 1h, 2h1p (G−) and 1p, 2p1h (G+) excitations
out of the reference determinant. Note that

āp|Φ0⟩ = (ap + [ap, T̂ ])|Φ0⟩ (25a)

ā†p|Φ0⟩ = (a
†
p + [a

†
p, T̂ ])|Φ0⟩ (25b)

thus the truncation of T̂ at the CCSD level implies that āp|Φ0⟩
and ā†p|Φ0⟩ are expressible in terms of 1h, 2h1p and 1p, 2p1h
spaces, respectively.

From the Green’s function one can compute all one-particle
expectation values (such as the particle number and the single-
particle density matrix) as well as the total energy, from the
Migdal formula49 E = − 1

2� Im ∫ �−∞ d!Tr(!1+h)G(!). How-
ever, EOM-CCSD is not a conserving approximation,50 thus
the energy computed using the Migdal formula is different
from the ground-state CC energy E. Nonetheless, the single-
particle density matrix pq = (2�i)−1 ∫ �−∞(G

−
pq(!) + G

+
pq(!))

is correctly normalized and equal to its definition as an en-
ergy derivative of the CC energy functional. Furthermore, the
EOM-CCSD Green’s function is not strictly causal. One im-
plication of this is that the impurity self-energy calculated via
Eq. (10) may not have an imaginary part that is negative def-
inite, similar to the behavior observed in adaptively truncated
CI solvers.23 A futher discussion of this point and partial so-
lution is described in the Appendix.
The computational cost of ground-state CCSD for a general

(e.g. quantum chemistry) two-particle interaction is (N6)
where N is the number of sites (more specifically, the cost
is (o3v3 + o2v4) where o is the number of electrons and
v = N−o is the number of unoccupied states). There are some
special considerations, however, when using CC to determine
the ground-state of the CDMFT impurity Hamiltonian. The
impurity Hamiltonian only has two-particle interactions on the
impurity sites whenworking in the site basis. However, the CC
equations are usually implemented in the mean-field molecu-
lar orbital basis, for which the impurity model has two-particle
interactions over all orbitals. Although we do not take advan-
tage of it here, in principle, using the locality of the interaction
in the site basis can significantly lower the computational cost
of CCSD, particularly if we consider the scaling of the cost
when increasing the number of bath sites while the number
of impurity sites is kept fixed. Another consideration is that
the CC theory presented here is a zero-temperature pure state
theory, with a fixed particle number. This is in contrast to the
grand canonical formulation of (C)DMFT in Sec. II A. This
means that it is necessary to search over all particle numbers
(and spin sectors) in the ground-state calculations of the impu-
rity to find the quantum numbers of the (lowest energy) ground
state, as done with other zero-temperature impurity solvers.13

The cost of EOM-CCSD (without accounting for local-
ity in the interaction) is (N5) per response vector and thus
(N!NN5) for all elements of the frequency-dependent im-
purity Green’s function. Computing the response vector can
be done either by solving a system of linear equations or by
computing |R±p (t)⟩ in the time domain followed by Fourier
transformation (similarly as done in td-DMRG solvers51,52).
We have found that a generalizedminimum residual (GMRES)
solver53 or a simplified two-parameter generalized conjugate
residual method with inner orthogonalization and outer trun-
cation (GCROT(m, k))54 works well for the linear equations
and converges in (10) iterations when the response vector at
a nearby frequency is used to initialize the solution for the re-
sponse vector at a new frequency and the matrix diagonal is
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used as a preconditioner.
Once the impurity Green’s function is computed, it may

then be used in all the expressions in Sec. II B. We note that
the paramagnetic formulation of CDMFT is incompatible with
symmetry breaking that may occur in the UCCSD impurity
solver. To study a paramagnetic phase using the UCCSD
solver, we spin-average the impurity Green’s function,Gimp =
∑

�=↑,↓G
��
imp.

C. Algorithm

For completeness, we outline the full computational proce-
dure for our CDMFT algorithm at fixed chemical potential us-
ing a CC solver. The loop is initialized with the Hartree-Fock
hybridization.

1. Discretize hybridization via (29).

2. Solve impurity problem with Hartree-Fock at fixed �
(electron number can change).

3. Calculate impurity Green’s function with CC via (23)
and (24) using GMRES or GCROT(m, k).

4. Calculate hybridization �(!) via (7) and check for con-
vergence. If not converged, update hybridization (using
DIIS55) and return to 1 .

If results are desired at a fixed occupancy, then the occupancy
can be calculated via n = Trγimp∕N using the ground-state
CC solution. If the occupancy does not equal the target occu-
pancy, then the chemical potential is updated and the CDMFT
loop is repeated.

We have implemented the above algorithm using the HF,
CCSD, and EOM-CCSD routines from the PySCF quantum
chemistry package.56

III. APPLICATIONS TO THE 1D AND 2D HUBBARD
MODELS

The Hubbard model57 is defined by the lattice Hamiltonian

Ĥ = −t
∑

⟨pq⟩,�
a†p�aq� + U

∑

p
np↑np↓ (26)

where np� = a†p�ap� . It is the canonical model for DMFT
studies as there are no nonlocal interactions.

A. Implementation in the 1D and 2D Hubbard models

We will consider 1 and 2 site clusters for the 1D Hub-
bard model and 1 and 4 site (2×2) clusters for the 2D Hub-
bard model. The 2 site and 4 site clusters contain additional

point group symmetry which allows us to define a symmetry-
adapted impurity orbital basis, associated with operators

a†Γ+ =
1
√

2
(a†1 + a

†
2) (27a)

a†Γ− =
1
√

2
(a†1 − a

†
2) (27b)

for two sites, and

a†Γ1 =
1
2
(a†1 + a

†
2 + a

†
3 + a

†
4) (28a)

a†Γ2 =
1
2
(a†1 + a

†
2 − a

†
3 + a

†
4) (28b)

a†Γ3 =
1
2
(a†1 − a

†
2 − a

†
3 + a

†
4) (28c)

a†Γ4 =
1
2
(a†1 − a

†
2 + a

†
3 − a

†
4) (28d)

for four sites.58,59 The impurity Green’s function, self-energy,
and hybridization are diagonal in the symmetry-adapted or-
bital basis. The diagonal hybridization leads to a simpler form
of the bath discretization (15), which can now be written as

Δ̃Γ(!) =
N!
∑

n=1

N
∑

k=1

|VΓ,nk|2

! − "n
. (29)

The one-electron couplings in the site basis are Vp,nk =
∑

Γ Up,ΓVΓ,nk where U is the frequency-independent matrix of
symmetry-adapted eigenvectors associated with the change of
basis.
The bath energies and weights used to discretize the hy-

bridization are chosen according to Gauss-Legendre quadra-
ture on the interval [−7t + U∕2,+7t + U∕2] for the 1D Hub-
bard model and [−9t + U∕2,+9t + U∕2] for the 2D Hubbard
model. In almost all calculations, we achieve convergence us-
ing a small imaginary broadening �∕t = 0.1. In some strong-
coupling cases where convergence was especially challenging,
we use a slightly large value �∕t = 0.2. This latter value results
in a weaker hybridization and also facilitates the solution of
the CC linear response equations (23), similar to previous ob-
servations with DMRG solvers.37 At convergence, quantities
on the real frequency axis are plotted with a larger broadening
�∕t = 0.5, for visual clarity only.

B. 1D Hubbard model

We first consider the 1D Hubbard model. We present re-
sults at U∕t = 2 and U∕t = 6 (weak and strong coupling
relative to the single-particle bandwidth of 4t). We show
the impurity density of states (DOS) on the real frequency
axis �(!) = −(�N)−1TrImG(!) and the imaginary part
of the impurity self-energy on the imaginary frequency axis
ImΣ11(i!n). For visual clarity, the DOS is plotted with a
broadening of �∕t = 0.5.
We first assess the accuracy of CCSD compared to exact di-

agonalization. In Fig. 1, we show the DOS and self-energy
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FIG. 1. Single-site DMFT and two-site CDMFT results for the 1D
Hubbard model, comparing the use of the CC and exact diagonal-
ization (ED) impurity solvers. Numbers in parentheses indicate the
number of impurity sites and the total number of bath sites. Results
are shown at half-filling with weak interactions (U∕t = 2, left) and
strong interactions (U∕t = 6, right). The chemical potential is fixed
at � = U∕2 and the DOS is plotted with a broadening of � = 0.5t for
clarity.

from single-site DMFT with 9 bath sites and from two-site
CDMFT with 4 bath sites per impurity site (8 in total). Both
correspond to an impurity problemwith 10 sites which is read-
ily accessible with exact diagonalization. At both values of
U∕t, the RCCSD and ED plots are indistinguishable. Note that
at smallU∕t, UHF does not break spin symmetry and UCCSD
and RCCSD give identical results. At largeU∕t, UHF strongly
breaks spin symmetry, however the mean-field AFM order is
reduced by UCCSD such that the final results are almost indis-
tinguishable from those of RCCSD. Therefore, all results for
the 1D Hubbard model are presented for RCCSD only.

We next assess convergence of the DOS with respect to the
number of bath sites, which requires impurity problem sizes
beyond the reach of ED. In Fig. 2, we show the single-site
DMFT DOS and self-energy computed using 9, 19, and 29
bath sites and the RCCSD solver. The largest impurity prob-
lem involves 30 particles in 30 orbitals. The plots are qualita-
tively converged with 19 bath sites and converged to the eye
with 29 bath sites. Consistent with previous studies,20,60,61 we
find that the single-site DMFT produces a Kondo-like reso-
nance in the DOS at large U , as compared with exact Mott
insulating behavior at all U . We note that this Kondo-like be-
havior is a result of using a single impurity site in DMFT and
is not due to the CCSD approximation.

Based on the converged results for single-site DMFT, we
next use two-site CDMFT with at least 30 bath sites per impu-
rity, i.e. 60 bath sites in total. In Fig. 3, we present the DOS
as a function of occupancy. At half-filling (n = 1, � = U∕2),
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FIG. 2. Single-site DMFT results for the 1D Hubbard at half-filling
with weak interactions (U∕t = 2, left) and strong interactions (U∕t =
6, right), showing convergence with respect to the number of bath
sitesN!. The chemical potential is fixed at � = U∕2 and the DOS is
plotted with a broadening of �∕t = 0.5 for clarity.

we see a clear Mott gap proportional to U∕t. We access other
filling fractions by changing the chemical potential. At small
U∕t, only minor changes are seen in the DOS for moderate
changes in the occupancy. At larger U∕t, there is significant
redistribution of the spectral weight towards lower energy, cre-
ating a metallic DOS around the chemical potential, which is
indicated by a vertical line in the DOS plots. In the bottom
panel of Fig. 3, we show the occupancy as a function of the
chemical potential for the two values of U studied. The dis-
crete nature of the bath allows access to only a discrete set of
occupations, and so this latter data was obtained using larger
bath sizes. The appearance of a Mott plateau and suppressed
compressibility is clearly seen for U∕t = 6. Due to the dis-
cretized bath, there are artificial plateaus in the regions where
the Bethe ansatz (BA) varies monotonically, even with 40 bath
sites per impurity site. By increasing the bath size to 80 and
60 bath sites per impurity site for U∕t = 2 and 6, we show
that such artificial behavior can be removed, and the occu-
pancy converges to the BA solution. This result may suggest
that when discretizing the hybridization along real axis, static
quantities (e.g. occupancy) converge more slowly with respect
to the number of bath orbitals as compared to dynamic quan-
tities (such as the spectral function) although a more careful
comparison with imaginary axis techniques is required.

C. 2D Hubbard model

We next study the 2D Hubbard model at half-filling. We
perform calculations at U∕t = 2 and U∕t = 8. This is above
and below the 2 × 2 CDMFT paramagnetic Mott transition
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FIG. 3. Two-site CDMFT results as a function of doping. The DOS
obtained usingN! = 30 (60 bath sites in total) is shown in the top two
panels, where the chemical potential is indicated by a vertical line.
The site occupancy as a function of the chemical potential usingN! =
40 (open symbols) and N! = 60, 80 (filled symbols) is shown in
the bottom panel, along with the numerically exact result from Bethe
ansatz62 and the mean-field result.

around U∕t ≈ 6.63,64 In Fig. 4, we show results for single-
site DMFT and 2 × 2 CDMFT. As before, we fix the number
of bath sites to be about 30 per impurity site, such that our
largest calculations have 120 particles in 120 orbitals.

At U∕t = 2 DMFT and CDMFT give very similar DOS
and self-energies; i.e. the effect of the impurity size is small.
Even if we allow for symmetry breaking in the 2 × 2 cluster,
we find it to be very weak, thus (paramagnetic) RCCSD and
(weakly antiferromagnetic) UCCSD give very similar results.
In both cases, the gap is smaller than the bath discretization
and thus indistinguishable from a metal. At U∕t = 8, para-
magnetic single-site DMFT with RCCSD or UCCSD gives
identical results, showing a Kondo-like feature centered be-
tween the lower and upper Hubbard bands. Paramagnetic 2×2
CDMFT with RCCSD fails to converge in the DMFT loop.
The first few iterations of the DMFT cycle are physically rea-
sonable and show the opening of a paramagnetic Mott gap.
However, eventually an impurity problem is constructed for
which the iterative solution of the ground-state RCCSD equa-
tions fails to converge, because the associated CC amplitudes
become large. If we instead carry out an antiferromagnetic
CDMFT calculation allowing for symmetry breaking in the
UCCSD solver, the DMFT cycle converges smoothly. As ex-
pected, the antiferromagnetic DOS exhibits a gap, with a qual-
itatively reasonable size of about 6t.
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FIG. 4. Single-site DMFT and four-site (2 × 2) CDMFT results for
the 2D Hubbard at half-filling with weak interactions (U∕t = 2, left)
and strong interactions (U∕t = 8, right). We used 30 bath sites for
single-site DMFT and 120 bath sites for the four-site CDMFT. The
chemical potential is fixed at � = U∕2 and the DOS is plotted with a
broadening of �∕t = 0.5 for clarity.

IV. CONCLUSIONS

We have demonstrated the promise of coupled-cluster (CC)
theory as an impurity solver in single-site dynamical mean-
field theory and multi-site cluster dynamical mean-field the-
ory. In particular, the polynomial cost of truncated CC allows
the use of many bath sites per impurity site, which enables a
faithful discretization of the hybridization directly on the real
frequency axis. In our studies of the Hubbard model, we find
that the Green’s functions and self-energies are well converged
using approximately 30 bath sites per impurity site.

Despite the strongly correlated nature of the lattice problem,
the low-order CCSD truncation provides very accurate results
for spectral functions, self-energies, and occupation numbers
as an impurity solver in DMFT, when there is a modest num-
ber of impurities. This is consistent with the impurity problem
being less strongly correlated than the lattice problem, even for
a dense discretization of the hybridization. Consequently, we
expect that CC impurity solvers will find most use with clus-
ters of a moderate size in real-space. The low cost of the CC
impurity solvers also makes them very promising for applica-
tions to real materials with many electrons and many orbitals
per impurity site in ab initio quantum chemical formulations
of DMFT.13 In particular, the embedding approach to CC re-
sponse functions in solids is a promising alternative to full pe-
riodic CC calculations,65,66 and work along these lines is cur-
rently in progress.
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Appendix: Causality in coupled-cluster theory

As discussed in Sec. II B, EOM-CCSD is not a conserving
approximation and thus the resulting Green’s functions and
self-energies need not be causal. The lack of strict causality is
not seen in any of the results we showed above. However, it is
possible to observe small violations of causality if we carry out
calculations with a very small broadening (e.g. � = 0.001t).
An example of non-causal behaviour that can occur in this set-
ting is shown in Fig. A.1. As defined in Eq. (10), �imp(!)
should always have a negative imaginary part if it is computed
from a causal impurity Green’s function.31 However, we see
that the CCSD impurity self-energy develops a positive imag-
inary part exactly around the bath frequencies. One way to
understand this is that truncated CC theory does not include
all possible diagrams involving interactions and hopping to the
bath (i.e. the hybridization). Thus the hybridization contribu-
tion to G−1imp in Eq. (10) and �(!) do not precisely cancel to
give a causal self-energy.
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FIG. A.1. Impurity self-energy on the real frequency axis from a
two-site CDMFT calculation for the 1D Hubbard at half-filling with
U∕t = 2. RCCSD is used as the impurity solver and two bath sites
are coupled to each impurity site. A small broadening of � = 0.001t
is used to show the non-causal behavior.

This non-causality only appears when the broadening is
very small and does not affect the results we presented. Nev-
ertheless, we observe that there is a simple procedure that re-
moves this issue in practice. Instead of computing �imp(!) in
Eq. (10), one can first compute the self-energy for the whole
impurity plus bath system

�imp+bath(!) = G−10,imp+bath(!) −G
−1
imp+bath(!). (A.1)

where G−10,imp+bath(!) is the non-interacting Green’s function
of the impurity plus bath system. The impurity self-energy
is then defined as the impurity block of �imp+bath(!). (In an
exact solver, this is the only non-zero part of �imp+bath(!)).
As shown in Fig. A.1, the non-causal behavior disappears if
the impurity self-energy is defined in this way, at the cost of
more computation. While we do not claim that this procedure
makes the self-energy strictly causal under all circumstances,
we find that it removes even the small degree of non-causal
behaviour observed at very small broadenings in this work.
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