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Nodal line semi-metals with symmetry protected band structure offer a platform for the investiga-
tion of a number of emerging quantum phenomena. Using first-principles calculation combined with
symmetry analysis, we show that Ba3TiIr2O9 hosts Dirac nodal line (DNL) along the A-L direction
of the Brillouin zone, protected by the glide reflection symmetry. In the presence of the spin-orbit
coupling, even though the DNL along A-L direction is protected, DNLs along other directions as
well as multiple nodal loops present in the system gap out. The gapped out Dirac nodal loops act
as a source of spin Berry curvature, resulting in a large spin Hall conductivity (≈ 300 ~

e
Ω−1cm−1).

This suggests the possible application of the material as a spin current detector.

Topological semi-metals (TSM) are characterized by
the non-accidental band-crossings which can not be re-
moved by the perturbation of the Hamiltonian without
breaking any of its symmetry. The search for new mate-
rials hosting gapless topological states has been an active
area of research over the past decade [1–3], driven in part
by the prediction of a plethora of exotic quantum phe-
nomena for these systems such as the chiral anomaly [4],
topological transport [5], and quasi-topological electro-
magnetic response [6].

The two typical examples of 3D TSM, viz., Dirac and
Weyl semi-metals have respectively four-fold and two-
fold degenerate band-crossings near the Fermi level, the
low energy excitations of which are respectively Dirac
and Weyl fermions, well known in the standard model
of relativistic high-energy physics. In contrast to the
zero dimensional band-crossings in Dirac and Weyl semi-
metals, nodal line semi-metals have bands that cross each
other along a line [7] and have low energy excitations
which do not have any high-energy counterpart. Such
nodal lines are protected by the non-symmorphic symme-
try which, in turn, is predicted to give rise to intriguing
nodal-fermion features that include hourglass fermions
[8], Möbius-twist surface states [9] and nodal chains [10].
These various fascinating predictions result in a grow-
ing field of research based on the material realization of
the nodal line semi-metals [11, 12]. The presence of the
nodal lines may also suggest the possibility of a large spin
Hall effect (SHE) [13], a phenomenon where the electric
current is converted into a spin current and hence is at
the heart of the spintronics. A variety of exotic phases
including the quantum spin liquid state has already been
reported [14] for a number of iridates belonging to the
6H family, the subject of the present work.

In the present work, we have predicted the presence
of Dirac nodal line, which is protected by the non-
symmorphic glide reflection symmetry, in the 6H per-
ovskite iridate Ba3TiIr2O9 (BTIO), a material that has
been synthesized previously [15]. The material hosts mul-
tiple Dirac nodal lines and loops (DNL) in the mirror
planes in the absence of spin-orbit coupling (SOC), which
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become gapped out with the inclusion of the SOC except
along the A → L direction of the hexagonal Brillouin
zone (BZ), enforced by the off-centered glide reflection.
Not surprisingly, owing to the small energy denominator
in the Kubo expression, the gapped out nodal loops fa-

cilitate a large spin Berry curvature Ωηn,µν(~k), the central
quantity in the determination of the SHE [13]. Explicit
calculations presented below show that BTIO exhibits a
large spin Hall conductivity (SHC), and therefore may
have potential application in spintronics as a spin cur-
rent detector. In addition, we find that the DNLs can be
transformed into Weyl nodal lines (WNL) by the appli-
cation of an external magnetic field.

BTIO crystallizes in the hexagonal centro-symmetric
P63/mmc space group in the 6H perovskite structure
(stacking sequence hcchcc) [15] containing face-shared
IrO6 octahedra, arranged on a triangular network (Fig.
1). The structure hosts 24 symmetry operations that
include three equivalent mirror-reflection planes M100,
M010, M110 as well as the off-centered glide reflection
(reflection plus translation) M̃z ≡ {Mz|~τ = ẑ

2}. Mag-
netic measurements [15] show that the system does not
exhibit any long range magnetic order down to 1.8 K,
consistent with the recent density functional calculations,
which found a non-magnetic ground state below a criti-
cal value of U (Uc ≈ 3.5 eV) [16]. Thus in addition to

the inversion (I) and non-symmorphic (M̃z) symmetry,
we also have the time-reversal (TR) symmetry (T ), all
essential ingredients to protect the DNL in any material.

Band calculations were performed using the density
functional theory (DFT) with the plane wave basis and
the generalized-gradient approximation [17], as imple-
mented in the VASP code [18]. In the absence of SOC,
multiple DNLs in the band structure are formed in the
kz = π plane of the BZ in addition to the Dirac nodal
loops in the three planes (kx = 0, ky = 0, and kz = 0)
as indicated schematically in Fig. 2. All bands along
the DNLs are four-fold degenerate. The existence of the
Dirac nodal loops may be inferred by examining the band
structure shown in Fig. 2 (c) for symmetry lines in the
kz = 0 plane in the BZ. The band crossing along M→ Γ
involves states with B1 and B2 symmetries of the little
group C2v with opposite mirror eigenvalues. This band
crossing persists along all directions in the kz = 0 plane,
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FIG. 1. (a) The hexagonal unit cell of BTIO, consisting of
two formula units (Ba3TiIr2O9)2 with each Ir atom in an
octahedral environment. Two face-sharing IrO6 octahedra
form an Ir dimer (the two Ir atoms of the dimer are colored
white and orange). (b) The triangular network formed by the
dimers as viewed from the top. As a result of the inversion
I and the off-centered glide reflection M̃z, the centre of the
triangular network formed by the top dimer is shifted with
respect to the same for the bottom dimer (connected by the
dashed line). (c) The band connectivity for the space group
P63/mmc along the the A−R−L line, which forms the four-
fold degenerate DNL, protected by symmetry.

resulting in a nodal loop. Similar nodal loops exist on
the kx = 0 and ky = 0 planes as well.

In the presence of SOC, the four-fold degenerate DNLs
gap out, resulting in two 2-fold degenerate states at each
k point, except that the DNL along A (0, 0, π) → L
(π, 0, π) in the kz = π plane is still protected by the

glide reflection M̃z, leading to a star-like structure, re-
sulting from the six-fold rotational symmetry of the crys-
tal structure, as shown in Fig. 2 (f). This gapping out
along a large number of k points plays a central role in
producing the large SHC as discussed later.

Glide reflection and Dirac nodal lines: The glide re-
flection symmetry is an essential ingredient for the for-
mation of the DNLs with four fold degeneracy. To show
this, we imagine that we have found a solution |Ψ〉 with
energy ε at a Brillouin zone point k, for which I, T , and
glide reflection M̃z are symmetry elements of the little
group of k which is true for the k points A and L on
the kz = π plane and Γ and M on the kz = 0 plane.
These k points in the BZ are the so-called TR invariant
momentum (TRIM) points, because under TR, they are
transformed back to themselves due to the fact that the
time-reversed momentum is connected via a reciprocal

lattice vector (-~k = ~k + ~G). We will see that we can
generate four orthogonal states with the same energy for
points along A→ L, resulting in the DNL, with the four-
fold degeneracy protected by the glide reflection M̃z, but
not along Γ→M .

Consider first the kz = 0 and kz = π planes, for
which the glide reflection is a symmetry element and
[Hk,M̃z] = 0, so that we can construct simultaneous

eigenstates of Hk and the glide reflection M̃z : (x, y, z)→
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FIG. 2. Density-functional band structure of BTIO, both in
the absence (a, c) and presence (b, d) of the SOC, indicating
the presence of DNLs in both cases. Figs. (e) and (f) show
the DNLs in the absence of SOC, of which only the star-like
DNL (purple lines in (f)) along A→ L is symmetry-protected
in the presence of SOC. Fig. (c) indicates the presence of a
Dirac nodal loop in the band structure (inset shows the full
loop), while the gapping out of the loop in the presence of
the SOC is apparent from Fig. (d). The unshaded (shaded)
regions in (a) and (b) correspond to the kz = 0 (kz = π) plane
of the BZ.

(x, y,−z+ 1
2 )iσz. Since M̃2

z = −I, all Bloch states within

these planes can be chosen to have definite M̃z eigen-
values, i.e., M̃z |Ψ±〉 = ±i |Ψ±〉, with the correponding
energy ε+ or ε−. We can then construct four eigenstates
with the same energy for each case as indicated in Table
I.

Table I is obtained by the successive application of
the symmetry operations M̃z and I : (x, y, z) →
(−x,−y,−z), from which we can see that

M̃zI |Ψ±(~k)〉 = e2πi(
~k·~τ)IM̃z |Ψ±(~k)〉 . (1)

This shows that I |Ψ±〉 is also an eigenstate of M̃z

with similar and opposite glide symmetry eigenvalues for
the kz = 0 and π planes respectively. Similarly, for
the TR symmetry, T = iσyκ (κ is the complex con-

jugation operator), we have the result M̃zT |Ψ±(~k)〉 =
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TABLE I. The two sets of four eigenstates each, one set gen-

erated from Ψ+(~k) and the other from Ψ−(~k), for ~k on the

kz = 0 or the kz = π plane. As discussed in the text, the M̃z

eigenvalues indicate symmetry-protected four-fold degenerate
states at the TRIM points A and L on the kz = π plane, but
not at the TRIM points Γ and M located on the kz = 0 plane.

Index Eigenstates Eigenvalues of M̃z

of M̃z kz = 0 kz = π

(i) |Ψ±〉 ±i ±i
(ii) I |Ψ±〉 ±i ∓i
(iii) T |Ψ±〉 ∓i ∓i
(iv) IT |Ψ±〉 ∓i ±i

−T M̃z |Ψ±(~k)〉, which yields the glide symmetry eigen-
values for the time reversed state.

Using Table I, it is now easy to show that the en-
ergy bands at the TRIM points A and L are four-fold
degenerate protected by symmetry, while no such pro-
tection exists for the TRIM points Γ and M . The TRIM
points have the additional inversion and TR symmetry,

because as stated above −~k = ~k+ ~G, so that now we have
[Hk, S] = 0, where S = I, T , or M̃z. This means that
the two sets of four eigenstates have the same energy, ε+
for the Ψ+ set and ε− for the Ψ− set. All that remains
to be shown now is that the four individual wave func-
tions within the set don’t interact among themselves, so
that the four-fold degeneracy is preserved. The TR sym-
metry demands the double degeneracy for the Kramer’s
doublets, (Ψ, IT Ψ) and (IΨ, T Ψ). At the TRIM points
on the kz = π plane, they can’t hybridize since these two
doublets have opposite M̃z eigenvalues, leading to the
four-fold degeneracy. At the Γ and M TRIM points on
the kz = 0 plane, however, there is no such symmetry
protection from M̃z, and the two Kramer’s doublets can
hybridize, so that the four-fold degeneracy is not guar-
anteed. This is seen from the band structure presented
in Fig. 2 (b), and it is consistent with the dimensions of
the irreducible representations (IR) as indicated in Fig.
1 (c). A similar argument leads to the four-fold degener-
acy along the A → L line (R point), and it also follows
from the connectivity of the IRs.

Connectivity of the Bloch bands along A→ L line: The
occurrence of the DNL along A → L can be argued from
the connectivity of the Bloch bands, determined from
the corresponding double valued IRs in presence of TR
symmetry. The double valued IRs at the TRIM point
A are Ā4, Ā5 and Ā6, out of which Ā4 and Ā5 are two-
dimensional complex IRs, while Ā6 is four-dimensional
pseudo real IR. Now, pseudo-real IRs are TR symmetric
by themselves while complex IRs are needed to be paired
up to construct the TR symmetric IRs [19]. Thus the TR
symmetric IRs at the A point are Ā6 (4) and Ā4Ā5 (4).
Similarly, the TR symmetric IR at the L point is L̄3L̄4

(4) constructed from the two-dimensional complex dou-
ble valued IRs L̄3 and L̄4. The TR symmetric IR at the
intermediate point R (u, 0, 12 ) is 2R̄5(4) constructed from
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FIG. 3. DNLs and Spin Berry curvatures obtained from the
model calculation, Eqs. (2) and (4). (a) The Dirac nodal loop
in the absence of SOC (similar loops exist in the ky − kz and
kx−kz planes as indicated in Fig. 2 (e). (b) The gapping out
of the same nodal loop in the presence of SOC (λ = 0.4 eV).

(c) Spin Berry curvatures Ωx
zy(~k) (units of Å2) in the same

plane, showing the dominant contributions from the gapped-
out nodal loop. Figs. (d) (B = 0) and (e) (B = 0.5 eV) show
the transformation of the DNLs along A → L into pairs of
WNLs under the application of an external magnetic field.

two-dimensional and real double valued IR R̄5. All Bloch
bands along the A→ R→ L, satisfying the compatibility
relations Ā6(4) → 2R̄5(4) and Ā4Ā5(4) → 2R̄5(4) will,
therefore, lead to four-fold degenerate DNL, as seen from
Fig. 1 (c).

The DNLs are captured within a Ir-d tight-binding
(TB) model for the hexagonal lattice of BTIO, but keep-
ing only the four Ir atoms in the unit cell. The Hamilto-
nian is

H =
∑

ilσ,jmσ

tlmij c
†
ilσcjmσ +

λ

2

∑
η

∑
ilσ,mσ′

c†ilσL
η
lmσ

η
σσ′cimσ′ ,

(2)
where ilσ are the site, orbital, and spin indices, η denotes

the three cartesian components, λ is the SOC, ~L is the
orbital angular momentum, ~σ is the electron spin, and
the Hamiltonian parameters including the hopping tlmij
are extracted from the DFT results [20]. The computed
eigenvalues of the Hamiltonian (2) reproduce the DNLs
for both with and without SOC, consistent with the DFT
results, as it must, since it is a property of the symmetry.

The SHC σηµν is computed from the momentum sum

of the spin Berry curvatures Ω(~k)

σηµν =
e

NkVc

occ∑
n~k

Ωηn,µν(~k), (3)

where η, µ, ν are cartesian components, js,ηµ = σηµνEν is
the spin current density along the µ direction with the
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TABLE II. Spin Hall conductivity for BTIO, computed using
the Kubo formula Eq. (3).

Components SHC ( ~
e

Ω−1cm−1)

σz
xy -12

σx
yz 47

σx
zy -302

spin polarization along η, generated by the electric field
along the ν direction, n is the band index, and Vc and
Nk are respectively the primitive cell volume and the
number of k points used in the BZ sum. Analogous to
the ordinary Berry curvature, the spin Berry curvature
is evaluated from the Kubo formula

Ωηn,µν(~k) = −2~2
∑
n′ 6=n

Im[〈ψn~k|J
η
µ |ψn′~k〉〈ψn′~k|vν |ψn~k〉]

(εn′~k − εn~k)2
,

(4)
where the spin current operator is J ηµ = 1

4{vµ, ση}, with

vµ = 1
~
∂H
∂kµ

being the velocity operator. It can be easily

seen from the Kubo formula that with both inversion and
TR symmetries present, as is the case here, the spin Berry
curvature is non-zero, while the ordinary Berry curvature
would vanish in this case.

The SOC mixes the different spin components of the
wave functions making the numerator in (4) non-zero, so
that those DNLs that gap out (due to the same SOC)
make a large contribution to the SHC due to the small
energy denominator. This is seen from the numerical
results [Fig. 3 (c)], where the spin Berry curvature sum∑occ
n Ωxzy(~k) shown for the kz = 0 plane has a strong

contribution coming from the gapped-out Dirac nodal
loop which exists on this plane. Since a large number of
the DNLs gap out due to the SOC as indicated from Fig.
2, their contributions add up resulting in a large SHC for
BTIO (≈ 45% of the total SHC). The contributions from
the DNL and the rest of the Brillouin zone are discussed
in detail in the Supplemental Materials [21].

We note that even though the DNLs along L-H and
A-H also gap out (see Fig. 2), the corresponding contri-

butions to
∑occ
n Ωxzy(~k) are relatively less due to the fact

that the gapped-out bands, having opposite signs of spin
Berry curvatures, are either both occupied or both un-
occupied, leading to a net small contribution (∼ 10 Å2)
as compared to the gapped-out Dirac nodal loops (∼ 300
Å2).

The crystal symmetry of BTIO allows just three in-
dependent elements [23], viz., σzxy = −σzyx, σyzx = −σxzy,
and σxyz = −σyxz, the calculated values of which are listed
in Table II. We find that the largest component of the
conductivity tensor is σxzy (≈ 302 ~

eΩ−1cm−1), which
corresponds to a spin current along ẑ with spin polar-
ization along x̂, when the electric field is applied along ŷ.
The SHC is also found to be very anisotropic, which is
the result of the anisotropic hexagonal crystal structure.

Furthermore, BTIO is expected to have a much larger
efficiency for spin current detection than the pure metals
such as Pt, due to a much larger spin Hall angle ΘSH,
the ratio of the SHC to the charge conductivity, which
is the typical figure of merit for spin current detection.
The magnitude of the computed SHC in BTIO is com-
parable to the reported SHC of IrO2 (≈ 250 ~

eΩ−1cm−1)
[24]), a material that is commonly used for spin current
detection.

Another interesting point is the conversion of the DNL
(present along A→ L) into a pair of WNLs by breaking
the TR symmetry, which can be achieved either by ap-
plying an external magnetic field or by doping with mag-
netic ions. This would provide a mechanism for creating
WNLs, with the potential to host exotic surface states.
For the existence of the WNLs [25], we must have either
the TR or the inversion symmetry, but not both. It is
easy to see from the wave function symmetry in Table I
and our earlier arguments that with the broken TR sym-
metry, the four-fold degeneracy along A→ L breaks into
a pair of doubly-degenerate WNLs. We illustrate this
by computing the band structure by adding in the TB
Hamiltonian Eq. (2) an extra magnetic field term along

the ẑ direction, Hmag = −B
∑
iµ

∑
σ,σ′ c

†
iµσσ

z
σσ′ciµσ′ .

The results are shown in Figs. 3 (d) and (e), with the lat-
ter showing the two-fold degenerate WNLs along A→ L.

In conclusion, we have predicted the presence of DNL
in BTIO, a known compound that has been synthesized
some time ago. A number of Dirac nodal lines and loops
exist in the absence of the SOC, while with the intro-
duction of SOC, only a star-like DNL along A → L is
protected by the non-symmorphic glide reflection. The
remaining DNLs, not protected by symmetry, gap out in
the presence of the SOC, leading to a large SHC. The ex-
pected large efficiency for spin current detection (spin
Hall angle ΘSH) indicates the potential application of
BTIO as a spin current detector. The DNLs can easily
be probed by angle-resolved photoemission spectroscopy,
which can reveal the band crossings predicted for this ma-
terial. Further materials containing DNLs are expected
to show unusual electronic properties as compared to ma-
terials hosting nodal points or the conventional metals
[24, 26]. In fact, the DNLs in IrO2 have been proposed to
be responsible for the observed large magnetoresistance
in this material [24]. In view of this, it would be inter-
esting to investigate the transport properties of BTIO
experimentally. Finally, as our symmetry results are
not restricted to the present compound only, it would be
useful to look for the entire family of materials belonging
to the same space group [27] as potential candidates to
host DNL, and possibly with large SHC as well.

We thank the U.S. Department of Energy, Office of
Basic Energy Sciences, Division of Materials Sciences
and Engineering for financial support under Grant No.
DEFG02-00ER45818.
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