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We demonstrate a real-space imaging of heterodyne signal of light that is produced as a result
of the Brillouin light scattering by coherently driven magnons in magnetostatic modes. With this
imaging technique, we characterize surface magnetostatic modes (Damon-Eshbach modes) in a 1D
magnonic crystal, which is formed by patterned aluminum strips deposited on the ferromagnetic film.
The modified band structures of the magnonic crystal are deduced from the Fourier transforms of
the real-space images. The heterodyne imaging provides a simple and powerful method to probe
magnons in structured ferromagnetic films, paving a way to investigate more complex phenomena,
such as Anderson localization and topological transport with magnons.

I. INTRODUCTION

Bloch electrons in crystals exhibit ample phenomena
in solid state physics largely due to the associated band
structures [1]. Inspired by that, photonic crystals have
been explored to manipulate photons by means of pe-
riodic modulation of refractive index [2, 3]. Similar
ideas can be applied to other bosonic excitations, such
as phonons and magnons.

Among other bosonic excitations magnons in ferro-
magnetic insulators are peculiar in the following three
senses: They are (i) breaking time-reversal symmetry
(ii) having long coherence time, and (iii) optically de-
tectable. These features offer interesting opportunities
to magnons as a carrier of information, entropy, energy,
momentum, and angular momentum [4–7]. In the field
of magnonics, magnon band engineering with magnonic
crystals [8] has been explored to manipulate propagation
and localization of magnons [9] for data processing with
magnons [10], and to render magnons topologically pro-
tected [11, 12].

To facilitate further development of magnonics, imag-
ing of magnetostatic modes in real-space can be a vital
approach. The micro-focused Brillouin light scattering
(µ-BLS) imaging technique [13, 14] has been developed
and widely used in this respect. The µ-BLS imaging is
capable of mapping the intensity profile of magnetostatic
modes with high spatial resolution and high sensitivity.
These are achieved by meticulously filtering the photons
from the inelastic Brillouin scattering with Fabry-Pérot
cavities and detecting the filtered photons with a photon
counter [14]. The photon counting method used in the
µ-BLS imaging is intrinsically incapable of detecting the
phase of light. The phase information is, however, es-
sential to fully understand the dynamics of magnons and
plays a vital role in topological physics [15]. With an ad-
ditionally introduced local oscillator it is possible to make
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the µ-BLS imaging phase-sensitive, though [14, 16–19].
Here, we demonstrate an optical heterodyne µ-BLS

imaging of magnetostatic modes, where the beat note be-
tween the scattered sideband optical field and the input
carrier field is detected with a high-speed photodetector.
The advantage of the heterodyne imaging is to simulta-
neously obtain the amplitude and phase of a microwave-
driven magnetostatic mode. We use this method to char-
acterize surface magnetostatic modes (Damon-Eshbach
modes) [20–23] in a 1D magnonic crystal formed by pat-
terned aluminum strips deposited on the ferromagnetic
film. From the Fourier transforms of the spatial images,
the resultant modification of the band structure is ver-
ified. This frequency-domain spectroscopic reconstruc-
tion of the dispersion of the magnetostatic mode can be
viewed as a complementary approach to the all-optical
time-domain reconstruction of spin-wave dispersion [24].

II. EXPERIMENTAL SETUP

Figure 1 shows the simplified experimental setup for
the optical heterodyne imaging. A light field from a
CW laser with the wavelength of 1550 nm propagates
toward the negative x-direction as shown in Fig. 1(a).
Here the input polarization is purified along the z-axis
with the first polarizer as shown in Fig. 1(b). The
input field is tightly focused (waist radius ≈ 4.3 µm)
onto a sample of a ferromagnetic film by an objective
lens [Mitsutoyo M Plan APO NIR 10×]. The sample
can be moved in 3D with respect to the focus of the input
optical field with a three-axis stage with stepper motor
actuators [Thorlabs ZFS13B]. Although the input field
has the relatively long Rayleigh range (∼ 37 µm), the
field is mainly scattered by the magnons on the upper
side of the film since the antenna strongly excites the
magnons on that side. The field thus undergoes Bril-
louin light scattering which creates sideband fields with
a different polarization as we will describe below. The
scattered sideband fields, as well as the unscattered car-
rier field, are collected by another lens [Mitsutoyo M
Plan APO NIR 10×] and coupled to a high-speed pho-
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FIG. 1. (a) Experimental setup. A light field from a CW laser with the wavelength of 1550 nm is sent through polarizer 1 and
propagates toward the negative x-direction. The input field is tightly focused on a sample by objective lens 1. The sample can
be moved with a three-axis motorized stage. The scattered sideband fields, as well as the unscattered carrier field, are collected
by objective lens 2 and coupled to a photodetector through polarizer 2. The heterodyne beat note between the scattered
sideband fields and the carrier field is amplified and fed into a vector network analyzer (VNA). (b) The detailed picture of the
setting of polarizers: Polarizer 1 sets the input carrier field z-polarized. The scattered sideband field is y-polarized. The carrier
and sideband fields are mixed through polarizer 2, which is rotated by 45◦ with respect to polarizer 1.

todetector [New Focus 1554-B] through a single-mode
fiber after the second polarizer rotated by 45 degrees from
the y-axis as shown in Fig. 1(b). The heterodyne beat
note between the scattered sideband fields and the carrier
field is then amplified [Mini Circuits ZX60-83LN-S+]
and fed into a vector network analyzer [Agilent Tech-
nologies N5232A], which demodulates the beat signal
with the drive signal used to excite the magnons.

The Brillouin light scattering takes place when the
field creates additional magnons or annihilates magnons.
Since each magnon possesses a spin angular momentum
~, creation or annihilation of magnon means the change
of the polarization of a photon in the scattered field. This
correspondence between the magnon and the scattered
photon in terms of spin angular momentum is due to
the conservation of angular momentum. Furthermore,
the number of the scattered photons is proportional to
that of magnons, and the phase information of excited
magnons is also coherently transferred to the scattered
photons. Thus by looking at the beat note between the
scattered photons and input photons, we could obtain
full information regarding the magnons involved in the
scattering.

At this juncture, let us discuss the performance of
the heterodyne µ-BLS imaging. The detectable magnon
bandwidth by the heterodyne µ-BLS imaging is only lim-
ited by the photodetector bandwidth, which can be as
large as 10 GHz. The sensitivity of the heterodyne imag-
ing is shot-noise-limited, which differs from the conven-
tional photon-counting-based µ-BLS imaging for which
the sensitivity is limited by the dark counts. This means
that, given that the number of input carrier photons is
N per second, the noise-equivalent scattering rate would
be
√
N per second.
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FIG. 2. Micrographs of samples: (a) Plain ferromagnetic film,
and (b) 1D magnonic crystal with aluminum stripes. A vector
network analyzer (VNA) is connected to a metallic antenna
for excitation. Magnons excited by the antennas propagate
toward the positive y-direction. The dotted arrows show scan-
ning paths of a focused laser spot over the sample. The static
magnetic field (Bext ∼ 106 mT) is applied for each sample
along the z-axis. The unit cell of the magnonic crystal is
highlighted with the dashed rectangle. (c) Unit-cell design
for the magnonic crystal.



3

III. RESULTS

A. Plain ferromagnetic film

We first show how the optical heterodyne imaging tech-
nique works in a simple setup. To this end, we focus here
on the Damon-Eshbach modes with a plain ferromag-
netic thin film. Here we see that the optical heterodyne
imaging technique enables us to reconstruct the peculiar
dispersion of the modes.

1. Sample

The samples are tangentially magnetized under a static
magnetic field (Bext ∼ 106 mT) along the positive z-
direction as shown in Fig. 1, which is produced by a pair
of permanent magnets with a pure-iron magnetic circuit
and an additional solenoid winding around the magnetic
circuit so as fine tune the static magnetic field. The sam-
ples are thin films made of yttrium iron garnet (YIG)
[thickness: d = 9.5 µm, crystal orientation: (111)] on
gadolinium gallium garnet (GGG) substrate [thickness:
0.5 mm, crystal orientation: (111)]. Figure 2(a) shows
a sample with a microwave antenna made of aluminum,
which is deposited on the plain YIG film. The antenna
is designed to excite mainly magnons in the Damon-
Eshbach mode [20, 21]. The magnons in the Damon-
Eshbach mode are propagating only in one direction on
the upper surface of the film (to the positive y-direction)
and in the opposite direction on the bottom surface (to
the negative y-direction).

2. Dispersion of the Damon-Eshbach modes

We scanned a focused laser spot over the sample along
the dotted arrow shown in Fig. 2(a). Figures 3(a) and
(b) respectively show the 1D real-space images of the
intensity (power) and phase of the heterodyne signal as
a function of the drive frequency for the magnons in the
plain YIG film shown in Fig. 2(a). Here, the phase is
defined with respect to the edge of the antenna as shown
by arrows in Figs. 3(b). The intense signals are found
around the dashed lines in Fig. 3(a). These are attributed
to a beam-like mode, called the caustic wave beam [25],
which is diagonally propagating from the corner of the
antenna. We shall explain how the caustic wave beam
emerges from the peculiar hyperbolic-like dispersion of
the Damon-Eshbach modes in Appendix A.

The measured 1D real-space images of the intensity
and phase, shown in Figs. 3(a) and (b), respectively, can
be used to reconstruct the dispersion relations by per-
forming the discrete Fourier transform of the real-space
images. The transformation is given by

[F(s)]m =
1

N

N−1∑
n=0

sn exp
(

2π j
mn

N

)
, (1)
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FIG. 3. 1D real-space images of (a) intensity and (b) phase
of the heterodyne signal from the Brillouin light scattering
by magnons in the plain ferromagnetic film as a function of
the microwave frequency (vertical axis) at which magnons are
excited. The dashed line in (a) represents the position where
the caustic wave beam coming from the antenna corner hits
the 1D scanning line (see Appendix A). The phase reference
point is represented by arrows in (b). The vertical grey strips
represent the regions where aluminum is deposited. In these
regions, we cannot obtain the heterodyne signal. Thus, we
filled the signal data of the region with zero when we per-
formed the Fourier transform. (c) Dispersion reconstructed
from the real-space images shown in (a) and (b) by a Fourier
transform for the range 0.32 mm < y < 2 mm. The dot-
ted line indicates the theoretically evaluated dispersion with
Ms = 166.4 kA/m and Bext = µ0Hext = 109.0 mT.
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where the complex amplitude of the optical heterodyne
signal [measured as S21 in the VNA shown in Fig. 1(a)]
at x = xj = j∆x (j = 0, 1, · · · , N − 1) is denoted by sj ,
and [F(s)]m with s = [s0 s1 · · · sN−1]T is the complex
amplitude at the angular wavenumber km = m∆k, the
step of which is ∆k = 2π/(N∆x) with the length interval
∆x of data points. Figure 3(c) shows the result of the
Fourier transform for the range 0.32 mm < y < 2 mm of
the 1D real-space image.

In the magnetostatic regime, the Damon-Eshbach
mode obeys the following dispersion relation [21–23]:

k = − 1

2d
ln

[
1 +

4

ωM
2

[
ω0(ω0 + ωM )− ω2

]]
, (2)

where ωM = −γµ0Ms and ω0 = −γBext with d be-
ing thickness of the film, µ0 being the vacuum perme-
ability, Ms being the saturation magnetization, and γ
(< 0) being the gyromagnetic ratio. For YIG, we have
γ ≈ −1.761 × 102 rad GHz/T. The blue dotted line in
Fig. 3(c) corresponds to the theoretical dispersion of the
Damon-Eshbach mode [the inverse form of Eq. (2)]:

ω =

√
ω0(ω0 + ωM ) +

ωM
2

4
[1− exp(−2kd)], (3)

where Ms and Bext are used as the fit parameters. From
the least squares fit to the spatial peak positions of
the power in each frequency, we obtain Ms = 166.4 ±
0.5 kA/m and Bext = µ0Hext = 109.0 ± 0.2 mT, which
are reasonable agreements with the expected value of Ms

at room temperature, 140 kA/m [28], and the measured
value of Bext ∼ 106 mT, respectively. This suggests that
the method to reconstruct the dispersion relation from
the real-space imaging works well. It is emphasized that
to reconstruct the dispersion from the real-space imag-
ing it is vital to have both of the amplitude and phase of
the optical signal. We can reconstruct not only the am-
plitude of the dispersion shown in Fig. 3(c) but also the
phase in the reciprocal space. The phase information in
the reciprocal space could be useful when the topological
aspects of the dispersion are of interest.

B. 1D magnonic crystal

We now apply the optical heterodyne imaging tech-
nique to the investigation of magnons in a 1D magnonic
crystal for the Damon-Eshbach modes.

1. Sample

Figure 2(b) shows a sample with four microwave anten-
nas embedded in the 1D magnonic crystal [29–32]. The
unit cell for the magnonic crystal is defined in a rectangle
of 1 mm × 120 µm as shown in the dashed rectangle in
Fig. 2(c). The aluminum region imposes an additional
boundary condition on the tangential electric field, and
thus modifies the effective magnetic dispersions.

2. 1D magnonic crystal and bandgap formation

We scanned a focused laser spot over the sample along
the dotted arrow shown in Fig. 2(b). Figures 4(a) and
(b) respectively show the frequency dependence of the
real-space imaging of the intensity and phase of the het-
erodyne signal obtained with the 1D magnonic crystal.
With these data, we performed a discrete Fourier trans-
form [Eq. (1)] for the range 0.31 mm < y < 2 mm. Fig-
ure 4(c) shows the resultant Fourier transform. We can
clearly see the bandgaps around 5.3 GHz and 5.5 GHz.
Note that in the results shown in Fig. 4(c) the portion of
the dispersion curves where the magnon has a negative
group velocity is absent. This can be understood by the
fact that the magnons excited by the antenna, mainly on
the upper side of the film, flow from left to right.

Now let us analyze the observed bandgaps. The
magnonic crystal shown in Fig. 2(b) has metallic stripes.
The region with a top metal is denoted by M, while
that without the metal is written as A. If the metal
thickness is larger than the microwave penetration depth
(≈1.2 µm at 5 GHz for aluminum with the conductiv-
ity σdc = 27 nΩ·m), the metal can be safely considered
perfectly conducting, and the dispersion relation in the
region M can be given by [23, 33]:

k± = − 1

2d
ln

[(
1 + 2

ω0

ωM
± 2

ω

ωM

)
ω0 + ωM ∓ ω
ω0 + ωM ± ω

]
, (4)

for propagation toward the positive (negative) y-
direction. This modification of the dispersion compared
to that in the region M [given in Eq. (2)] is the key to
realize the magnonic crystal.

Bandgap formation due to the magnonic crystal can
be captured by a simple one-dimensional transfer matrix
model. Consider a magnetostatic potential [23], ψ(y, t) =

ψ̃(y) exp( jωt)+c.c., inside the magnonic crystal with the

complex amplitude ψ̃(y), which is defined in terms of the
induced magnetic field along the y-axis, h(y, t), by

h(y, t) ≈ − ∂

∂y
ψ(y, t). (5)

Here, for simplicity, we suppress z and x dependencies in
ψ. We can decompose ψ̃(y) into the counter propagating

components ψ̃+(y) and ψ̃−(y) as ψ̃(y) = ψ̃+(y) + ψ̃−(y),
where + and − represent positive and negative propa-
gation along the y-axis, respectively. These components

are combined and denoted as ψ̃(y) =

[
ψ̃+(y)

ψ̃−(y)

]
.

To calculate the dispersion relation of the magnonic
crystal, we define a transfer matrix of the unit cell shown
in Fig. 5 as

Tunit = TA
f T

AM
s TM

f TMA
s . (6)

Here, TA
f (TM

f ) is a free propagation transfer matrix in
the region A (M). At the interface between the region A
(M) and M (A) a distinct transfer matrix TAM

s (TMA
s )
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FIG. 4. 1D real-space images of (a) intensity and (b) phase
of the heterodyne signal from the Brillouin light scattering
by magnons in the 1D magnonic crystal as a function of the
microwave frequency (vertical axis) at which magnons are ex-
cited. The phase reference point is represented by arrows
in (b). The vertical grey strips represent the regions where
aluminum is deposited. In these regions, we cannot obtain
the heterodyne signal. Thus, we filled the signal data of
the region with zero when we performed the Fourier trans-
form. (c) Dispersion reconstructed from the real-space im-
ages shown in (a) and (b) by a Fourier transform for the
range 0.31 mm < y < 2 mm. The dashed line indicates the
theoretically calculated dispersion with Ms = 164.91 kA/m
and Bext = 99.56 mT using a transfer matrix model.
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a
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FIG. 5. Schematic model of the cross-section of a unit cell of
the magnonic crystal. TA

f (TM
f ) is a free propagation transfer

matrix in the region A (M) while TAM
s (TMA

s ) is a transfer
matrix at the interface between the region A (M) and M (A).
The external magnetic field is along the z-axis.

can be defined. We shall explain more details regarding
each transfer matrix later on. For a Bloch state ψ̃ with
y-component kc of the crystal wavenumber, we have

Tunitψ̃ = exp( jkca)ψ̃ (7)

with the unit cell length a. Therefore, by diagonalizing
Tunit for a given ω, we obtain kc as a function of ω.

Now we explain the details of each transfer matrix.
The transfer matrix of free propagation along length l in
the region A is reciprocal and written as

TA
f =

[
exp( jkl) 0

0 exp(− jkl)

]
, (8)

where, for a given ω, k is given by Eq. (2). On the other
hand, that in the region M is nonreciprocal and written
as

TM
f =

[
exp( jk+l) 0

0 exp(− jk−l)

]
, (9)

where, for a given ω, we obtain k± through Eq. (4).
At the interface y = ξ between the region M and the

region A, for instance, the scattering occurs and mixes
up ψ̃+ and ψ̃−. This mixing is denoted with the transfer

matrix TAM
s by ψ̃A(ξ) = TAM

s ψ̃M(ξ). Here, TAM
s can be

determined from the following boundary conditions: At
y = ξ, ψ̃A and B̃A

y ≈ −µyy∂yψ̃
A must be equal to ψ̃M and

B̃M
y ≈ −µyy∂yψ̃

M, respectively. Here µyy represents yy-
component of the permeability tensor. These conditions
amount to

MAψ̃
A(ξ) = MMψ̃

M(ξ), (10)

where MA =

[
1 1
k −k

]
and MM =

[
1 1
k+ −k−

]
.The trans-

fer matrix TAM
s at the interface y = ξ is thus given by

TAM
s = M−1A MM. (11)

The transfer matrix TMA
s is similarly obtained as

TMA
s = M−1M MA. (12)

For a given angular frequency ω, we have a 2 × 2
transfer matrix Tunit for the unit cell of the magnonic
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crystal given by Eq. (7). From this characteristic equa-
tion, we can obtain kc as a function of ω, which is shown
as the blue dashed lines in Fig. 4(c). Here, the fit pa-
rameters are Ms and Bext. These values are found as
Ms = 164.91± 0.06 kA/m and Bext = 99.56± 0.03 mT,
which are similar to those obtained from the plain film
above. This agreement indicates that the model we devel-
oped captures the physics behind the bandgap formation
and that the optical heterodyne imaging provides a pow-
erful mean to diagnose magnon propagation in magnonic
crystals and related artificial magnetic structures.

IV. SUMMARY

The heterodyne µ-BLS imaging is demonstrated to
study a simple 1D magnonic crystal. In this method,
both the amplitude and phase of the optical hetero-
dyne signal, which stems from the scattering by the
microwave-driven magnons, are simultaneously obtained.
The Fourier transforms of the real-space images can be
used to obtain dispersion relations of the magnetostatic
modes and to verify the opening of the magnonic bandgap
caused by the 1D magnonic crystal. Our results show
that the heterodyne µ-BLS imaging could be a simple and
powerful way to probe magnons in ferromagnetic films,
paving a way to investigate more complex phenomena
with magnons in artificial structures.
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Appendix A: Effect of magnon caustics

Here, we discuss the physical origin of the intense sig-
nals around the dashed lines in Fig. 3(a). We shall see
that the signal is due to a non-diffracting beam-like mode
(called caustic wave beam [25–27]), which is generated
around the antenna corner. Note that, except for the
corner, the propagation direction of magnons generated
from the antenna is usually restricted to be perpendicular
to the lines due to the structure of the antenna.

To this end, let us consider the dispersion of the
Damon-Eshbach mode on a 2D surface. The dispersion
of the Damon-Eshbach mode is peculiar, whose isofre-
quency contour is hyperbolic-like shape as opposed to
the typical elliptical shape. The isofrequency contour is

2π

Ω = 0.875

Ω = 0.995

φy

φz

2π-2π

-π

-π π

π

0

0
-2π

FIG. A1. Isofrequency contours given by Eq. (A1) of the
Damon-Eshbach modes for Ω = ω/ωM ranging from 0.875 to
0.995.

given by [21]

(ϕe
x)2 + 2(1 + κ)ϕi

xϕ
e
x cot(ϕi

x)

−(1 + κ)2(ϕi
x)2 − (νϕy)2 = 0, (A1)

with the dimensionless wavenumbers, ϕe
x, ϕi

x, ϕy, and
ϕz, which are defined as

ϕe
x =

√
ϕy

2 + ϕz
2, (A2)

ϕi
x = j

√
ϕy

2 + ϕz
2/(1 + κ), (A3)

ϕy = kyd, (A4)

ϕz = kzd, (A5)

with κ ≡ ωMω0/(ω0
2 − ω2) and ν ≡ ωMω/(ω0

2 − ω2).
Here, d is the thickness of the film. Figure A1 depicts
such isofrequency contours for Ω ≡ ω/ωM from 0.875 to
0.995.

The motion of the magnons can be captured by a wave
packet picture. The wave packet propagations perpen-
dicular to the isofrequency contours. The isofrequency
contours here have asymptotes defined by θ:

tan θ ≡ η =
kz
ky

=
ϕz

ϕy
. (A6)

This indicates that all magnons originate from this
asymptote propagate in one direction, which is perpen-
dicular to the asymptote as shown in Fig. A2(a). This
leads to beam-like magnon propagations, that is, the so-
called caustic wave beams [25], as shown in Fig. A2(b).

Let us now analyze the intense signals around the
dashed lines in Figs. 3(a) and (b). We state that the
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FIG. A2. Schematic picture of the caustic wave beams from
the antenna corner. The group velocity is denoted as vg and
the asymptote of the isofrequency contours is along the angle
θ. (a) wave-vector space, (b) real space. In (b), the caustic
wave beam is assumed to be emitted from the corner of the
antenna. The vertical distance between the antenna corner
and the 1D scanning line (z = 0) is L. The caustic wave beams
that originate from the antenna corner arrive at y = L tan θ
on the 1D scanning line.

intense signal coming from the caustic wave beam orig-
inates from the antenna corner as shown in Fig. A2(b).
Only considering the asymptotes, we can put cotϕi

x →
− j in Eq. (A1). Then, Eq. (A1) becomes

(1 + η2) + 2(1 + κ)
√

1 + η2

√
1 +

η2

1 + κ

+ (1 + κ)2
(

1 +
η2

1 + κ

)
− ν2 = 0, (A7)

with η = kz/ky. In Fig. A2(b), we show how to calcu-
late the position y = L tan θ = Lη along the 1D scan-
ning line (z = 0) for obtaining the estimates of intense
line shown in Fig. 3(a), where the caustic wave beam is
assumed to be emitted from the corner of the antenna.
Using Eq. (A7) with L = 0.5 mm, Ms = 166.4 kA/m
and Bext = µ0Hext = 109.0 mT, d = 10.4 µm, and
Ω = 2πf/ωM , the positions y = Lη as a function of fre-
quency are depicted as the dashed blue line in Fig. 3(a).
The theoretical estimation nicely matches to the intense
line we observed. On the other hand, the propagation
direction of magnons generated in the inside of the an-
tenna is restricted to θ ∼ π/2 due to the structure of the
antenna.

To experimentally address the origin of the caustic
wave beam, we perform the 2D optical heterodyne imag-
ing. Figures A3(a) and (b) show the intensity and phase
images of the optical heterodyne signal for magnons prop-
agating around the corner. In this analysis, we use a dif-
ferent sample from the ones shown in Fig. 2. The thick-
ness of the YIG layer is d = 10.4 µm and its antenna’s
length is ∼ 3.5 mm , while the length of the antenna in
Fig. 2 is ∼ 1 mm. Caustic wave beams is indeed visible
in Fig. A3(a).

Next, we apply a 2D Fourier transform with hann win-

dows for the 2D data surrounded by the dotted frame
in Figs. A3(a) and (b) (0.54 mm < y < 1.04 mm,
0.025 mm < z < 1.2 mm), and obtain 2D dispersion re-
lations for each frequency as shown in Fig. A4. These
results clearly indicate the hyperbolic-like nature of the
isofrequency contours of Damon-Eshbach modes. The
calculated isofrequency contours are also plotted.
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FIG. A3. 2D real-space images of (a) intensity and (b) phase
of the heterodyne signal from the Brillouin light scattering
by magnons in the plain ferromagnetic film at the normalized
microwave frequency, Ω =1.01 (ω/2π ∼ 5.39 GHz) of the ex-
citation. The dotted frame shows the area where we perform
a Fourier transform for obtaining the corresponding plot in
Fig. A4. Note that the orientation of the antenna is different
from the one shown in Fig. 2. The aspect ratio of axes here
is not unity.
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FIG. A4. Experimentally reconstructed isofrequency contours
on the planes separated by the interval ∆Ω = 0.02. These
contours are obtained from the real-space images in Fig. A3.
The dashed lines and the curved surface indicate the theoret-
ically calculated contours [Eq. (A1)] with Ms = 151 kA/m
and Bext = 103.7 mT. Note that the aspect ratio of the axes
here is not unity.
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