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Abstract

Perpendicularly magnetized thin films with strong Dzyaloshinskii-Moriya

interaction (DMI) exhibit chiral spin structures such as Néel domain walls

and skyrmions. These structures are promising candidates for next gener-

ation magnetic memory devices. Determining the magnitude of DMI ac-

curately is key to engineering materials for such applications. Existing ap-

proaches are based either on quantities extracted from magnetization dy-

namics, which presents experimental and theoretical challenges, or from

measurements of quasistatic domain spacing, which so far have been ana-

lyzed using incomplete models or prohibitively slow micromagnetic simu-

lations. Here, we show that extraction of DMI from domain spacing can

be done rapidly, accurately, and self-consistently provided the domain wall

energy in chiral systems is accurately accounted for. Specifically, we show

that DMI can be obtained from measurement of the magnetic domain width

in the demagnetized state, the perpendicular anisotropy constant, and the

saturation magnetization. We extract DMI from domain width measurements

in micromagnetically simulated films within a 1% error margin. Additionally,

we show that our model can be used to estimate the error in the extracted

DMI based on its relative strength compared to the exchange and magnetostatic

energies in the system. We provide a simple and robust tool to determine the
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DMI strength of a material system with significant DMI, that falls into a

multidomain state, as we demonstrate experimentally for a thickness-graded

multilayer magnetic film. Here, we use a recently developed analytical

model of stripe domain widths in perpendicularly magnetized multilayers to

extract the DMI from domain images combined with magnetometry data.

Our approach is tested on micromagnetically simulated domain patterns,

where we achieve a 1% agreement of the extracted DMI with the DMI

used to run the simulation. We then apply our method to determine the

thickness-dependent DMI in two experimental materials, one with ([Pt(2.5

- 7.5 nm)/Co60Fe20B20(0.8 nm)/MgO(1.5 nm)]13) and one without ([Pt(2.5

- 7.5 nm)/Co(0.8 nm)/Pt(1.5 nm)]13) inversion symmetry breaking. We dis-

cuss the means to obtain realistic error bars with our method. Our results

demonstrate that analytical domain spacing analysis is a powerful tool to

extract DMI from technologically relevant multilayer materials.
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1 Introduction

Chiral spin textures, such as homochiral domain walls (1, 2) and skyrmions (3,

4), have been found in materials with sizable perpendicular magnetic anisotropy

(PMA) and Dzyaloshinskii-Moriya interaction (DMI), where those interactions

are generated at heavy-metal/ferromagnet interfaces. Typically, the DMI alone is

insufficient to break the homogeneous out-of-plane spin state favored by anisotropy

and exchange. However, when stacked to In asymmetric multilayers, the demag-

netizing energy helps to break the uniform magnetization state into multiple stripe

or labyrinth domains. These stripe and labyrinth domains have been found to be

useful in creating skyrmion lattices in thin-film heterostructures (5–8). Quanti-

fying the DMI in such films accurately and reliably is of critical importance for

identifying potential materials for skyrmion-based devices.

First principle calculations (9, 10) have been used to predict the origin and

materials dependence of DMI at thin-film interfaces, but systematic experimental

studies for comparison are hindered by a lack of techniques that are simple to per-

form and interpret. Most experimental estimates of DMI have been derived from

dynamics, including field-driven (11) or current-driven (1) domain wall motion, or

asymmetries in the spin wave spectrum (12, 13). However, domain wall dynamics

studies require many assumptions and are often ambiguous (14–16), particularly

5



the common bubble-expansion experiments in which the detailed pinning land-

scape and associated domain wall energies and creep parameters are challenging

to model (17). Spin wave studies are more straightforward to analyze and inter-

pret, but are usually only practical in materials with low damping (18). All of

these methods are limited in their applicability since sophisticated experiments

must be performed, sometimes requiring device patterning into, e.g., racetracks

(2).

An alternative technique is based on domain spacing measurements in the

equilibrium state, which is determined by minimization of the total energy includ-

ing demagnetizing and domain wall energies (5, 7). Since most micromagnetic

parameters can be determined by conventional magnetometry, measurement of the

domain spacing can be used to determine the domain wall energy, which allows

the DMI to be estimated with very few assumptions. The advantages of extracting

DMI from domain spacing as opposed to magnetization dynamics are that it only

requires that the samples be prepared in a global energy minimum demagnetized

state, i.e., a state in which the domain width is determined by competing mag-

netic energies and not by nucleation or pinning. There are no restrictions on the

shape of the hysteresis loop as long as there is PMA. The domains should be large

enough of suitable size to be measured in standard domain imaging tools such
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as magnetic force microscopy (MFM), transmission x-ray microscopy (STXM),

small angle x-ray scattering (SAXS), or similar techniques. Although Several

prior works (5, 7) have used domain spacing analyses to extract DMI in thin-

film multilayers. However, on the one hand, Ref. (5) relied on inaccurate has

used oversimplified expressions for domain wall energy based on approximations

that have recently been shown to lead to considerable quantitative errors, particu-

larly in chiral systems of interest with Néel domain walls (19). Moreau-Luchaire

et al. (7), on the other hand, made an attempt to extract DMI by comparing to

micromagnetic simulations, which is a slow and inefficient process. Moreover,

error estimates on the extracted DMI are hard to obtain unless every magnetic

parameter is varied separately in simulations which would be even slower. In

this work, we use an analytical model for the energy density of a stripe domain

state, which yields the equilibrium domain widths almost instantaneously. We use

this model to determine the DMI strength corresponding to the measured domain

widths. We highlight the importance of using the most accurate domain wall en-

ergy model (19) since simpler conventional models lead to importance of using

the full domain wall energy model, and show that only the complete model allows

accurate extraction of DMI. We show that when analyzed with commonly-used

models, the DMI values obtained can show considerable quantitative error. We
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then experimentally demonstrate that the accurate domain wall energy model can

be used to accurate and self-consistently analyze and extract DMI in multilayer

films with a continuous thickness gradient. By analyzing multilayer films with

thickness gradients, we demonstrate that consistent fitting can be obtained across

a wide range of material properties using only a few free parameters. The exper-

imental data reveal that the anisotropy and DMI in such films scales in a more

complex way than a simple inverse-thickness behavior, which has practical im-

portance in the interpretation of experiments in such systems.

2 Analytical models for out-of-plane stripe domains

In this section, we compare the key features of various analytical models for out-

of-plane stripe domains and estimate DMI in a micromagnetically simulated mul-

tilayer magnetic film using these models. The earliest model predicting domain

size in perpendicularly magnetized thin films with Bloch domain walls was de-

veloped by Kittel (20) and extended to multi-layers by others (21–24). It assumes

domain walls to be sharp, i.e., it approximates the domain wall width, ∆, to be 0.

Correction to this model for Néel domain walls was suggested (25) in the form of

an extra domain wall transverse anisotropy term, 𝐾⊥, which includes effects of
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DMI and volume charges inside Néel walls. In the case of films with significant

DMI and Néel walls, the effects of finite domain wall width were further intro-

duced with a revised analytical model (19), whose accuracy was demonstrated

by comparing extensively with full micromagnetic simulations. According to this

model, the total energy per unit volume, ℰ𝑡𝑜𝑡, of a demagnetized magnetic multi-

layer film is given by

ℰ𝑡𝑜𝑡 =
1

𝑑

[︂
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(2)

The surface stray field energy, ℰ𝑠, is the stray field in a magnetic film with

stripe domains and finite domain wall width, ∆. The volume stray field energy,

ℰ𝑣, is the energy in the stray field interactions between volume charges in the Néel

domain walls of the magnetic film. In these equations, 𝑀𝑆 is the saturation mag-

netization, 𝑑 is the stripe domain width, 𝑡 is the thickness of the magnetic film,𝐾𝑈

is the uniaxial anisotropy, ∆ is the domain wall width, 𝐴𝑒𝑥 is the exchange con-

stant and 𝑓 is the scaling factor defined as the ratio of thickness of each magnetic
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layer to the multi-layer period (as shown in Figure 1). Extraction of the domain

wall energy from equilibrium domain spacing, 𝑑, hence can be used to extract the

DMI strength 𝐷, as long as the other magnetic parameters are known through,

e.g., conventional magnetometry.

We first highlight the errors introduced by earlier, simplified domain wall en-

ergy models by applying analytical domain spacing analysis to micromagnetically

computed domain images based on known input material parameters. Simula-

tions were performed using the MUMAX3 software package (26). Similar to

multilayer-films that have previously been used to realize skyrmions (5–7) and

to the films used in experiments below, our simulations used the following mag-

netic and structural parameters: saturation magnetization, 𝑀𝑆 = 7 × 105 A/m,

exchange constant, 𝐴𝑒𝑥 = 10−11 J/m, uniaxial anisotropy energy, 𝐾𝑈 = 5 × 105

J/m3, thickness of each magnetic layer, 𝑇 = 0.9 nm, number of repeats, 𝑁 = 15,

and DMI constant,𝐷 = 1 mJ/m2. The scaling factor, 𝑓 , was varied from 0.1 to 0.3,

corresponding to the range in the experiments described later in this work. The

cell size chosen for the simulations is 2 nm × 2 nm × thickness of the film. The

lateral dimensions of the simulation cell are chosen to be a few times smaller than

the domain wall width for the magnetic film simulated, which in this case is ∆ ∼

6 nm. Figure 1 shows a schematic of a perpendicularly magnetized multilayer thin
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film with stripe domains with key thicknesses highlighted. The initial magnetiza-

tion state in the simulations was chosen to be random. The magnetization was

then relaxed at zero external fields and the equilibrium labyrinth domain width in

the relaxed magnetic contrast images was extracted by taking a Fourier transform

(FT). Figures 2a, b show 5×5 µm2 simulated out-of-plane magnetization images

after relaxation at scaling factors, 𝑓 = 0.3 and 𝑓 = 0.1, respectively. Figures 2c, d

show the FT of the domain patterns in Figures 2a, b, respectively. The FT inten-

sity was radially averaged and the peak was fit to a Gaussian function, as shown

in Figures 2e, f for scaling factors, 𝑓 = 0.3 and 𝑓 = 0.1, respectively. The do-

main spacing, 𝑑, was calculated as half of the period obtained from the inverse

of the peak frequency in FT. The variation of domain size thus obtained with 𝑓 ,

and the least square fit of the data with the three stripe domain models described

earlier is shown in Figure 2g. The error bars on the simulated data correspond to

the uncertainties in the Gaussian fit to the radially averaged intensity of the FT

(Figures 2e, f). For larger domains, as in Figure 2b, the errors in domain sizes are

higher since there are fewer domains in the simulated image, thereby making the

Gaussian peak broader.

Specifically, we show the degree of inaccuracy in measurement of DMI through

the use of the following 3 models: Model 1 is the original stripe-domain model
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(20–24) developed for single- and multi-layered films of intermediate thicknesses

with PMA and Bloch domain walls. It assumes the domain walls to be sharp,i.e.,

∆ = 0. Model 2 is a modification of model 1 for Néel domain walls and includes

the domain wall transverse anisotropy, 𝐾⊥ (25). The surface stray field energy

still assumes infinitely sharp walls but the domain wall energy now includes the

effects of DMI and volume charges inside Néel walls. Model 3 is built upon

model 2 to also include effects of finite domain wall width, ∆, and interactions of

volume charges between different Néel domain walls (19). Moreover, this model

incorporates the film thickness dependence of the domain wall width, ∆, and the

domain wall angle, 𝜓.

While a good fit is obtained with all models, the DMI values obtained from

the three models are very different. The blue curve in Figure 2g shows a fit to

the isolated domain wall approximation that does not include the effect of volume

charges in the domain wall via 𝐾⊥ (model 1). It gives a very small value of 𝐷

= 0.28 mJ/m2. The green curve shows the fit obtained from using model 2 and

gives a 6% error in estimation of DMI. This does not include the effect of a finite

domain wall width ∆ but includes effects of volume charges within domain walls

via 𝐾⊥. The red curve is the most accurate fit (model 3) with only 1% error. Note

that this was a one parameter optimization with the DMI constant, 𝐷, as the only
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fitting parameter. Thus, we show that if all other parameters of the film are known

accurately, model 3 gives the DMI value to within 1% of the actual value. We

therefore use model 3 for the remainder of the paper.

Next, we show in Figure 3 how uncertainties in the determination of various

material parameters impact the value of the extracted DMI and its error bars for

commonly studied magnetic films for skyrmion applications (5–7). For this anal-

ysis, we choose film parameters similar to the micromagnetic simulations: 𝑀𝑆

= 7×105 A/m, 𝐴𝑒𝑥 = 10−11 J/m, 𝐾𝑈 = 5 × 105 J/m3, 𝑇 = 0.9 nm, multilayer

periodicity 𝜆 = 4.9 nm, and 𝑁 = 15. The general trend is for 𝑑 to decrease with

increasing DMI, 𝐷, due to the reduction in domain wall energy. The gray regions

denote the family of 𝑑 versus 𝐷 curves for 10% typical experimental variation

uncertainties in the given respective material parameter.

As seen in Figure 3, the errors in the DMI measurement are highest in the

low DMI regions. How strongly the domain width varies with the DMI depends

on how important the DMI is with respect to other parameters in determining the

domain wall energy and its relative strength with respect to the stray field energy.

In films where magnetostatics dominate, i.e., where the DMI energy is weaker, the

DMI extraction shows larger error. When the DMI strongly influences the domain

sizes (e.g., the region with 𝐷 > 1 mJ/m2), the error in extraction of DMI is lower.

13



The saturation magnetization is one of the strongest influences on estimated

DMI as can be seen in Figure 3a since 𝑑 depends on the square of 𝑀𝑆 (19).

Increasing 𝑀𝑆 serves to increase magnetostatic energy thereby decreasing the

domain size. A 10% 10% change in𝑀𝑆 would result in ∼ 50% error in estimation

of DMI for the same 𝑑. The influence of 𝑀𝑆 on the extracted 𝐷 depends also

on other parameters, such as its relative importance compared to 𝐾𝑈 . In the

experimental films studied in the previous section, the variation in 𝐷 with 𝑀𝑆

is significantly lower while the variation of 𝐷 with 𝐾𝑈 is much stronger as shown

by the inability to obtain a fit without accounting for the anisotropy variation

with changing Pt thickness. Figures 3b and 3c show the variation in 𝐷 with

uncertainties in 𝐾𝑈 and 𝐴𝑒𝑥, respectively. For the film parameters chosen, the

variation in extracted 𝐷 is smaller for these parameters. Both 𝐾𝑈 and 𝐴𝑒𝑥 serve

to increase domain wall energy and therefore increase the remanent domain sizes.

However, a 10% error in𝐾𝑈 and 20% error in 𝐴𝑒𝑥 gives< 20% error in estimated

𝐷. This is because 𝑑 depends on the square-root of 𝐾𝑈 and 𝐴𝑒𝑥.

In the next section, we apply the analytical model (model 3) to measure DMI

in sputtered multilayer magnetic thin films.
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3 Measurement of DMI in experimental films

We measure DMI for two films, one similar to that which has exhibited the skyrmion

lattices material in references (5, 27), with inversion asymmetry, and the second

with similar layer thicknesses as the first one, but with the same non-magnetic ma-

terial at the top and bottom of the magnetic layer, i.e., with inversion symmetry,

and hence an expected 𝐷 = 0. For both films, we show that the measured DMI

indeed agrees with expected values from theory and values obtained by other au-

thors for similar films. We also find that the film growth mechanism imposes a

variation in anisotropy with the thickness of the film, which is important to ac-

count for in the extraction of DMI. The two films chosen have different magnetic

materials, CoFeB and Co, respectively, as well as a range of film thicknesses.

The different magnetic materials chosen show the applicability of our technique

of extracting DMI over a wide range of magnetic parameters and thicknesses.

Multi-layer thin films were deposited with the stacking structure: Ta(3 nm)/[Pt(2.5

- 7.5 nm)/Co60Fe20B20(0.8 nm)/MgO(1.5 nm)]13/Ta(2 nm) and Ta(3 nm)/[Pt(2.5 -

7.5 nm)/Co(0.8 nm)/Pt(1.5 nm)]13/Ta(2 nm). Henceforth, they are referred to as

the asymmetric and symmetric films, respectively. The deposition was done on

Si(100) substrates with 50 nm thermally-grown SiO2, at room temperature, with

a base pressure of ∼3×10−8 Torr, and at Ar pressure of 4.7 mTorr. The CoFeB
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and MgO layers were deposited by rotational RF sputtering while the Ta and Co

layers were deposited by rotational DC magnetron sputtering. Pt was deposited

as a wedge where the thickness of the Pt layer was systematically varied from 2.5

nm to 7.5 nm, via stationary DC magnetron sputtering, across a lateral distance of

76.2 mm. The distance from the sputtering gun determined the thickness profile

of the deposited Pt film.

Domains were imaged in the as-prepared and AC-demagnetized states using

MFM with low moment CoCr magnetic tips. The AC-demagnetization process

served to reorient the domains from labyrinth to stripe-like (Figure 4b-d) and en-

sured that the domain pattern thus obtained was the lowest energy configuration.

Domain widths were quantified from the Fourier transform FT of 10×10 µm2

MFM images (such as those shown in Figure 4b-d and Figure 6b-d) taken at dif-

ferent Pt thicknesses along the wedge. Figure 5b and Figure 7b show the domain

size variation as a function of scaling factor for the asymmetric and symmetric

films, respectively. Domain sizes decrease with increasing 𝑓 for both films, as

expected from theory and simulations.

Figure 4a shows a schematic of the asymmetric multilayer film with the gra-

dient of the wedge exaggerated for clarity. Each substrate was cleaved into 12

rectangular pieces with each piece corresponding to a different average Pt thick-
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ness along the wedge. The variation of Pt thickness on each piece was ∼8 %.

Easy- and hard-axis hysteresis loops were measured for every piece using Vibrat-

ing Sample Magnetometry (VSM). The saturation magnetization, 𝑀𝑆 , was aver-

aged across different Pt thicknesses and measured to be 6.9±0.2×105 A/m for the

asymmetric stack. One can also see that Domain widths monotonically increase

with increasing Pt thickness (Figure 4b-d) due to relatively weaker magnetostatic

interaction as the separation between magnetic CoFeB layers increases.

Figure 4e-g show the variation in the shape of hysteresis loops of the asymmetric

stack with changing Pt thickness. The multilayer film in the region of the thickest

Pt layer (Figure 4g) shows a butterfly easy-axis hysteresis loop (typical of multi-layer

magnetic films with stripe domains) (28, 29) and a linear hard-axis loop. As Pt

thickness is decreased, the easy-axis hysteresis loops get more and more sheared

while the hard-axis hysteresis loops get more and more S-like (Figure 4g-e). This

variation in hysteresis loop shape can be understood from the increase in density

of magnetic layers with decreasing Pt thickness. As the magnetic layers come

closer to each other, the interaction between them increases, resulting in a stronger

magnetostatic coupling which is manifested as more sheared hysteresis loops with

higher saturation fields (24).

Figures 4e-g show the FT of the domain patterns in 4b-d, respectively. Since
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the domains are aligned vertically, the FTs show single peaks on the x-axis for

Figures 4b,c. The FT intensity was averaged along the y-axis for Figures 4e,f and

radially averaged for Figure 4g. The peak intensity was fit to a Gaussian function

as in Figures 4h-j to determine the domain widths and their error bars.

For the asymmetric film we found that the anisotropy energy measured from

the area between easy- and hard- axes hysteresis loops, 𝐾ℎ𝑦𝑠, varies with the

thickness of the Pt layer (Figure 5a). 𝐾ℎ𝑦𝑠 in magnetic thin films is related to

the uniaxial anisotropy, 𝐾𝑈 , as

𝐾ℎ𝑦𝑠 = 𝐾𝑈 − 𝜇0𝑀
2
𝑆

2
; (3)

𝐾ℎ𝑦𝑠 represents the energy difference between saturating the magnetic film

in the easy direction and the hard direction, which is the definition of the total

anisotropy in the film irrespective of the equilibrium domain structure and thick-

ness of the film (30). For multilayer magnetic films, Equation (3) is valid for the

unscaled quantities, i.e., energy (area) or magnetization per unit magnetic volume

(and not total volume of all the layers). If the interfacial contribution to anisotropy

were independent of the Pt layer thickness, then one would expect 𝐾ℎ𝑦𝑠 to be in-

dependent of 𝑓 in our thickness-graded multi-layer film since the magnetic layer

thickness, 𝑇 , remains constant throughout the wedge.
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Experimentally, we find instead a variation of 𝐾ℎ𝑦𝑠, which is well approx-

imated phenomenologically by a second order polynomial. The origin of this

strong variation in anisotropy with Pt thickness is unclear, but we suggest that it

might arise as a manifestation of the film growth mechanism (directional deposi-

tion of Pt as opposed to rotational sputtering which gives a more uniform layer)

which could induce variations in grain size or roughness with changing thickness

of the Pt layer (31, 32).

Figure 5b shows a plot of domain sizes obtained from MFM images as a func-

tion of 𝑓 for the asymmetric film. The error bars correspond to the variation in

domain sizes as measured from the uncertainty in the Gaussain fits to peak spa-

tial frequency in the FT of the MFM images. We fitted these data to the full

domain wall energy model model 3 described in the previous section. To do so,

a model curve for domain spacing versus 𝑓 was computed using the dependence

of domain wall energy (Equation (1)) on 𝑓 , using the experimentally-determined

𝑀𝑆 and a second-order polynomial that accounts for the dependence of 𝐾𝑈 on 𝑓 .

We assumed here an exchange constant 𝐴𝑒𝑥 = 10−11 J/m (5), which will impact

the magnitude of the extracted DMI but not the general analysis presented here.

Note that other methods to extract DMI, such as those discussed in the Introduc-

tion, other than the ones (12, 13) based on Brillouin Light Scattering (BLS), must
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also assume a value for exchange constant since there is no reliable experimental

measurement for 𝐴𝑒𝑥. The curve was then fitted to the data using 𝐷 as the only

free fitting parameter. We note that if a single value of 𝐾𝑈 is used for all values of

𝑓 in the model, a consistent fit to the data cannot be obtained. The blue curve in

Figure 5b shows the best fit using linear least squares optimization. An optimized

value of 𝐷 = 1.6 ± 0.2 mJ/m2 is obtained. To calculate the error in estimated

𝐷, 𝑀𝑆 was varied within the measured error range, and 𝐴𝑒𝑥 and 𝐾𝑈 were varied

by 20 % each. All three quantities were varied in a Gaussian distribution around

their expected values with distribution widths equal to the uncertainties in their

estimation. The standard deviation of the resulting 𝐷 values is shown as the er-

ror in 𝐷. The value of 𝐷 measured using our method is similar to the 𝐷 = 1.2

mJ/m2 measured for [Pt(3 nm)/CoFe(0.6 nm)/MgO(1.8 nm)] film by domain wall

motion experiments (33), and 𝐷 = 1.8 mJ/m2 measured for [Pt(4 nm)/CoFeB(1

nm)/MgO(2 nm)] by spin Hall switching experiments (34). 𝐷𝑡ℎ𝑟, the minimum

DMI required to exhibit Néel domain walls for this film, was calculated as in Ref.

(19) and found to be < 0.1 mJ/m2, which is significantly smaller than the 𝐷 value

extracted. This confirms that our film shows Néel domain walls. with domain

wall angle 𝜓 = -90∘. For low DMI films, the walls might be transient intermediate

with 𝜓 in between 0∘ and 90∘ or twisted (35–37). For such films, ignoring the film
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thickness dependence of 𝜓 and ∆ might lead to significant error in extraction of

DMI.

A large variation in anisotropy across the wedge (as seen in Figure 5a) suggests

that the interface quality is varying in some systematic way across the wedge. This

would indicate that DMI, which also comes from interfaces, might also vary sys-

tematically across the wedge. We also see that the fit to small scaling factors and

large domain sizes in Figure 5b is poor. To consider the possibility of DMI varia-

tion across the wedge, DMI was calculated separately for different Pt thicknesses

using their corresponding𝐾ℎ𝑦𝑠 values (from Figure 5a). When calculated for each

point on the wedge separately, DMI shows a trend following a similar pattern as

that of 𝐾ℎ𝑦𝑠 as seen in Figure 5c varying within a range of 0.4 mJ/m2. The small

scaling factor data deviate the most from the fit value of 𝐷 = 1.6 mJ/m2 and show

higher uncertainty in determination of 𝐷. The higher DMI for small scaling fac-

tors explains the smaller experimental domain sizes compared to the fit curve in

Figure 5b . This shows that a single DMI value does not completely capture the

interfacial DMI for the range of scaling factors in this film and a point by point

analysis must be done.

A similar analysis was carried out for the symmetric film. Figure 6a shows a

schematic of the symmetric multilayer film with the MFM images in Figures 6b-
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d showing increasing domain widths with increasing thickness of the Pt wedge

layer. The average saturation magnetization measured across 12 equally spaced

locations on the wedge was measured to be 14.2 ± 0.2 × 105 A/m. The easy axis

hysteresis loops showed a higher coercivity, as compared to the asymmetric film,

with magnetization remanence ratio of 1. The hard axis loops were observed to be

more linear (Figure 6e-g) than those of the asymmetric film across the full range

of Pt thicknesses. The variation in the shape of the hysteresis loops across the

symmetric wedge was seen to be much weaker in comparison with the asymmetric

film, especially for the hard-axis loops.

Figures 6e-g show the FT of the domain patterns in Figures 6b-d, respectively.

The domains are aligned vertically in Figure 6b and isotropically in Figures 6c,d.

Therefore, the FT for Figure 6b shows single peaks on the x-axis, see Figure 6e.

By contrast, the FT of Figures 6c,d show peaks of the shape of isotropic rings

(Figures 6f,g). The FT intensity was averaged along the y-axis for Figure 4e and

radially averaged for Figures 4f,g. For every FT, the peak intensity was fit to a

Gaussian function, as in Figures 4h-j, to determine the domain width, 𝑑, and its

error bar.

Figure 7 shows the DMI extracted for the symmetric sample. Here again,

anisotropy variation was observed across the wedge (Figure 7a), which suggests a
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variation in the interfacial anisotropy as a function of the Pt layer thickness.

Figure 7b shows that the symmetric film exhibits a decreasing domain size

with increasing scaling factor. Note that the domain sizes for the symmetric film

are larger than that of the asymmetric one (Figure 7b) implying a higher domain

wall energy in the symmetric film. The blue curve shows The fit of the domain

size versus scaling factor data to the model with yields 𝐷 = 0 ± 0.1 mJ/m2. The

uncertainty in 𝐷 originates from the uncertainty in measured 𝑀𝑆 and an assumed

20 % error bar in 𝐴𝑒𝑥 and 𝐾𝑈 , where these parameters are varied in Gaussian

distributions around their expected value. 𝐷𝑡ℎ𝑟 for this film was calculated to

be 0.03 mJ/m2. The 𝐷 obtained is consistent with the concept of cancellation of

interfacial DMI at the top and bottom interfaces in symmetric magnetic multilayer

films (38, 39).

Figure 7c shows the variation of DMI with scaling factor when DMI is calcu-

lated for each value of Pt thickness separately. The negative error bars terminate at

0 since we imposed a constraint to allow for only positive 𝐷 values for our films.

In our model, we extract only the magnitude of 𝐷. The handedness of DMI is

taken into account via the domain wall angle. The large error bars show that it is

difficult to extract 𝐷 precisely for films with very small DMI. In films with small

DMI, the walls might be intermediate with domain wall angle, 𝜓, in between 0∘
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and 90∘ or even twisted (35–37). For such films, ignoring the dependence of 𝜓

and ∆ on the film thickness might lead to significant error in extraction of DMI.

4 Summary

Measurement of DMI in experimentally grown single- and multi-layered magnetic

thin films is necessary for assessing their potential as materials for skyrmionic

memory and logic applications. In this work, we have shown that the DMI strength

can be measured using well-established static magnetic characterization tech-

niques. With the help of micromagnetic simulations, we show that the earlier

models of stripe domains in demagnetized single and multi-layer magnetic films

do not fully explain the domain spacing in magnetic thin films with DMI and Néel

domain walls. By ignoring the volume charges in domain walls, An error of 72%

is observed in the extraction of DMI in a micromagnetically simulated multilayer

film when the analytical model used to extract DMI ignores volume charges in

domain walls. using analytical model expressions for the domain spacing. After

including volume charges in domain walls but ignoring the interaction of domain

walls with each other, an error of 6% is observed. With the effects of finite do-

main wall width and inter-domain wall interaction (19), an error of only 1% is
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observed in extracted DMI. DMI is then measured in two experimentally grown

sputtered wedged magnetic multi-layer films. The film with asymmetrical top and

bottom interface The first one shows a strong DMI with 𝐷 = 1.6± 0.2 mJ/m2 and

second one the film with symmetrical interfaces shows 𝐷 = 0 ± 0.1 mJ/m2. The

DMI extracted for both films is found to be consistent with values expected from

theoretical predictions and observed in literature. The impact of uncertainties in

measurement of three material parameters - 𝑀𝑆 , 𝐴𝑒𝑥 and 𝐾𝑈 - on the estimated

DMI is used to calculate error bars. The DMI estimation is more accurate for films

where the DMI strength is strong compared to the magnetostatic, anisotropic and

exchange energies in the system. We also show that experimental variations in

film deposition can lead to variations in DMI, possibly due to change in the qual-

ity of the interfaces between films. This work provides a fast and easy tool for

experimental determination of DMI in multi-layer magnetic films with sheared

hysteresis loops where experimental determination of DMI is complicated and

comparison with micromagnetic simulations can be slow and inaccurate.

25



References

1. S. Emori, U. Bauer, S.-M. Ahn, E. Martinez, G. S. D. Beach, Nature Mate-

rials 12, 611–6 (2013).

2. K.-S. Ryu, L. Thomas, S.-H. Yang, S. Parkin, Nature Nanotechnology 8,

527–33 (2013).

3. T. Skyrme, Nuclear Physics 31, 556–569 (1962).

4. A. Fert, V. Cros, J. Sampaio, Nature Nanotechnology 8, 152–156 (2013).
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Figures

Figure 1: Schematic of magnetic multilayer film with stripe domains of width, 𝑑.
The purple layers are magnetic films with thickness 𝑇 , while the cream layers are
non-magnetic. The thickness of each repeating set of layers is 𝜆. A key structural
parameter is the scaling factor, 𝑓 , defined as the ratio of thickness of each magnetic
layer to the thickness of a repeating set of layers, 𝑇/𝜆.
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Figure 2: Measurement of DMI for micromagnetically simulated multi-layer film
with DMI. a, b) 5×5 µm2 images simulated with MUMAX3 showing labyrinth
domains for scaling factors of 0.31 and 0.11, respectively. c, d) Fourier transforms
(FT) of images in a, b respectively. e, f) Gaussian fits to the peak of the radially
averaged intensity of the Fourier transforms in c, d. g) Domain size as a function
of scaling factor extracted from simulated images (black squares); fit to model 1
(blue curve), model 2 (green curve) and model 3 (red curve). The error bars on
black squares correspond to errors in extraction of domain size from FT.



Figure 3: Domain size dependence on DMI and the effect of errors in different
material parameters: a) saturation magnetization 𝑀𝑆 , b) magnetic anisotropy 𝐾𝑈 ,
c) exchange constant 𝐴𝑒𝑥.



Figure 4: a) Schematic of the asymmetric multi-layer magnetic film with Pt layer
wedged across the wafer. b) - d) 10×10 µm2 MFM images showing stripe do-
mains for Pt thicknesses 3.6 nm, 5.4 nm and 7.5 nm per repeating layer, respec-
tively. Inset of b) shows a 10× magnified image of stripe domains. e) - g) Fourier
transforms of images in b) - d), respectively. h) -j) Gaussian fits to the frequency
peaks in Fourier transforms in b) - d), respectively.



Figure 5: Measurement of DMI for the asymmetric film, [Pt/CoFeB/MgO]13. a)
Anisotropy obtained from hysteresis loops as a function of scaling factor, 𝑓 , b)
variation of domain size with scaling factor, 𝑓 , showing fit with model 3 with 𝐷
as fitting parameter (blue), c) 𝐷 calculated separately for different scaling factors.



Figure 6: a) Schematic of the symmetric multi-layer magnetic film with Pt layer
wedged across the wafer. b) - d) 10×10 µm2 MFM images showing stripe do-
mains at different Pt thicknesses. Fourier transforms of images in b) - d), respec-
tively. h) -j) Gaussian fits to the frequency peaks in Fourier transforms in b) - d),
respectively.



Figure 7: DMI calculation in the symmetric film, [Pt/Co/Pt]13. a) Anisotropy
obtained from hysteresis loops as a function of scaling factor, 𝑓 . b) Variation of
domain sizes obtained from MFM images (black squares) with scaling factor, 𝑓 ,
showing fit with model 3 (blue curve). c) 𝐷 calculated separately for different
scaling factors.


