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The existence of an equilibrium glassy phase for charges in a disordered potential with long-range electrostatic
interactions has remained controversial for many years. Here we conduct an extensive numerical study of the
disordertemperature phase diagram of the three-dimensional Coulomb glass model using population annealing
Monte Carlo to thermalize the system down to extremely low temperatures. Our results strongly suggest that,
in addition to a charge order phase, a transition to a glassy phase can be observed, consistent with previous
analytical and experimental studies.

I. INTRODUCTION

The existence of disorder in strongly-interacting elec-
tron systems–which can be realized by introducing ran-
dom impurities within the material, e.g., a strongly-doped
semiconductor–plays a significant role in understanding trans-
port phenomena in imperfect materials and bad metals, as well
as in condensed matter in general. When the density of im-
purities is sufficiently large, electrons become localized via
the Anderson localization mechanism [1] and the long-range
Coulomb interactions are no longer screened. This, in turn,
leads to the depletion of the single-particle density of states
(DOS) near the Fermi level, as first proposed by Pollak [2]
and Srinivasan [3], thus forming a pseudogap. Later, Efros
and Shklovskii [4] (ES) solidified this observation by describ-
ing the mechanisms involved in the formation of this pseudo-
gap. The ES theory explains how the hopping (DC conduc-
tivity) within a disordered insulating material is modified in
the presence of a pseudogap, also referred to as the “Coulomb
gap.” Numerous analytic studies have predicted, [5–15], as
well as experimental studies observed [16–30] the emergence
of glassy properties in such disordered insulators, leading to
the so-called “Coulomb glass” (CG) phase. Experimentally,
to date, none of the aforementioned studies have observed a
true thermodynamic transition into a glass phase but rather
have found evidence of nonequilibrium glassy dynamics, i.e.,
dynamic phenomena that are suggestive of a glass phase, such
as slow relaxation, aging, memory effects, and alterations in
the noise characteristics. Theoretically, more recent semi-
nal mean-field studies by Pankov and Dobrosavljević [12], as
well as Müller and Pankov [31] have shown that there exists
a marginally stable glass phase within the CG model whose
transition temperature Tc decreases as Tc ∼ W−1/2 for large
enough disorder strength W , and is closely related to the for-
mation of the Coulomb gap. Whether the results of the mean-
field approach can be readily generalized to lower space di-
mensions is still uncertain. However, as we show in this work,
the mean-field results of Ref. [12] quantitatively agree with
our numerical simulations in the charge-ordered regime (see
Fig. 1) with similar values for the critical disorder Wc where
the charge-ordered phase is suppressed. The critical tempera-
tures Tc for the glassy phase , on the other hand, are substan-

tially smaller than in the mean-field predictions. This, in turn,
suggests that the mean-field approach of Ref. [12] includes the
fluctuations of the uniform charge order collective modes, but
not of the glassy collective modes.

There have been multiple numerical studies that attempt to
both understand the DOS, as well as the nature of the tran-
sitions of the CG model. In fact, there has even been some
slight disagreement as to what the theoretical model to simu-
late should be with some arguing for lattice disorder to intro-
duce randomness into the model [32, 33] and others suggest-
ing that the disorder should be introduced via random biases.
Numerically, a Coulomb gap in agreement with the ES the-
ory has been observed in multiple studies. However, there is
no consensus in the vast numerical work [32, 34–53] on the
existence of a thermodynamic transition into a glassy phase.
Nonequilibrium approaches suggest the existence of glassy
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FIG. 1: Phase diagram of the three-dimensional Coulomb glass
model. There is a charge order (CO) phase for W . 0.131 where
electrons and holes form a checkerboard-like crystal. For W &
0.131 the system undergoes a glassy transition into the Coulomb
glass (CG) phase, albeit at considerably lower temperatures than in
the CO phase. The dashed lines indicate extrapolations where nu-
merical simulations are not available.
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behavior, however, thermodynamic simulations have failed to
detect a clear transition.

In this paper we investigate the phase diagram of the CG
model using Monte Carlo simulations in three spatial dimen-
sions. For the finite-temperature simulations we make use
of the population annealing Monte Carlo (PAMC) algorithm
[54–58] which enables us to thermalize for a broad range of
disorder values down to unprecedented low temperatures pre-
viously inaccessible. In addition, we argue that the detection
of a glass phase requires a four-replica correlation length, as
commonly-used in spin-glass simulations in a field [59, 60].
Our main result is shown in Fig. 1. Consistent with previous
numerical and analytical studies [12, 48, 61] we find a charge
ordered (CO) phase for disorders lower than Wc = 0.131(2)
where electrons and holes form a checkerboard-like crystal.
This is in close analogy with the classical Wigner crystal [62]
which happens at low electron densities where the potential
energy dominates the kinetic energy resulting in an ordered
arrangement of the charges. It should however be noted that
at W = 0 the lattice model, unlike in the continuum case, is
not a standard Wigner crystal [63] because the system exhibits
a pseudogap in the excitation spectrum (unrelated to Coulomb
gap) prior to entering the charge-ordered phase. For disorders
larger than Wc we find strong evidence of a thermodynamic
glassy phase restricted to temperatures which are approxi-
mately one order of magnitude smaller compared to the CO
temperature scales. This, in turn, suggests that, indeed, a ther-
modynamic glassy phase can exist in experimental systems
where typically off-equilibrium measurements are performed.
It also resolves the long-standing controversy where numeri-
cal simulations were unable to conclusively detect a thermo-
dynamic glassy phase while mean-field theory predicted such
a phase. We note that for the disorder strength values studied,
we are unable to discern a monotonic decrease in the critical
temperature, as suggested by mean-field theory.

The paper is structured as follows. In Sec. II we introduce
the CG model, followed by the details of the simulation in
Sec. III. Section IV is dedicated to the results of the study.
Concluding remarks are presented in Sec. V.

II. MODEL

The CG model in three spatial dimensions is described by
the Hamiltonian

H =
e2

2κ

∑

i6=j
(ni − ν)

1

|rij |
(nj − ν) +

∑

i

niφi, (1)

where κ = 4πε0, ni ∈ {0, 1}, and ν is the filling factor.
The disorder φi is an on-site Gaussian random potential, i.e.,
P(φi) =

(
2πW 2

)−1/2
exp

(
−φ2

i /2W
2
)
. At half filling (ν =

1/2) the CG model can conveniently be mapped to a long-
range spin model via si = (2ni− 1). The Hamiltonian can be
made dimensionless by choosing the units such that e2/κ = 1

and a = 1 in which a is the lattice spacing. We thus simulate

H =
1

8

∑

i6=j

sisj
|rij |

+
1

2

∑

i

siφi, (2)

where si ∈ {±1} represent Ising spins.

III. SIMULATION DETAILS

In order to reduce the finite-size effects we use periodic
boundary conditions. Special care has to be taken to deal
with the long-range interactions. We make infinitely-many
periodic copies of each spin in all spatial directions, such that
each spin interacts with all other spins infinitely many times.
We use the Ewald summation technique [64, 65], such that the
double summation in Eq. (2) can be written in the following
way

1

2

N∑

i=1

N∑

j=1

sisj

[
f

(1)
ij + f

(2)
ij + f

(3)
ij + f

(4)
ij

]
, (3)

where the terms fij are defined as

f
(1)
ij =

1

4

∑′

n

erfc (α|rij + nL|)
|rij + nL| , (4)

f
(2)
ij =

π

N

∑

k6=0

e−k
2/4α2

k2
cos(krij), (5)

f
(3)
ij =

π

3N
ri.rj , (6)

f
(4)
ij = − α

2
√
π
δij . (7)

Here, erfc is the complimentary error function [66], α is a
regularization parameter, and k = 2πn/L is the reciprocal
lattice momentum. The vector index n in Eq. (4) runs over
the lattice copies in all spatial directions and the prime indi-
cates that n = 0 is not taken into account in the sum when
i = j. For numerical purposes, the real and reciprocal space
summations, i.e., Eqs. (4) and (5), respectively, are bounded
by |rij + nL| < rc and k < 2πnc/L. The parameters α, rc,
and nc are tuned to ensure a stable convergence of the sum.
We find that 2 < α < 4, nc & 4L, and rc = L/2 are suffi-
cient for the above purpose.

We use population annealing Monte Carlo (PAMC) [54–58]
to thermalize the system down to extremely low temperatures.
In PAMC, similar to simulated annealing SA [67], the system
is equilibrated towards a target temperature starting from a
high temperature following an annealing schedule. PAMC,
however, outperforms SA by introducing many replicas of the
same system and thermalizing them in parallel. Each replica is
subjected to a series of Monte Carlo moves and the entire pool
of replicas is resampled according to an appropriate Boltz-
mann weight. This ensures that the system is equilibrated
according to the Gibbs distribution at each temperature. For
the simulations we use particle-conserving dynamics to en-
sure that the lattice half filling is kept constant, together with
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TABLE I: PAMC simulation parameters used for the finite-
temperature simulations in the CO phase (W ≤ 0.131). L is the
linear system size, R0 is the initial population size, M number of
Metropolis sweeps, T0 is the lowest temperature simulated, NT the
number of temperatures and Nsa is the number of disorder realiza-
tions. Note that the the values in the table vary slightly for different
values of the disorder W .
L R0 M T0 NT Nsa

4 2 × 104 10 0.05 401 5000
6 5 × 104 10 0.05 601 5000
8 1 × 105 20 0.05 801 2000
10 2 × 105 20 0.05 1001 1000
12 5 × 105 30 0.05 1201 500

TABLE II: PAMC simulation parameters used for the finite-
temperature simulations in the CG phase (W > 0.131). For details
see the caption of Tab. I. Note that the the values in the table vary
slightly for different values of the disorder W .

4 2 × 104 20 0.004 401 100000
6 5 × 104 30 0.004 601 50000
8 1 × 105 40 0.004 801 30000
10 2 × 105 60 0.004 1001 20000

a hybrid temperature schedule linear in β and linear in T [58].
We use the family entropy of population annealing [56] as an
equilibration criterion. Hard samples are re-simulated with a
larger population size and number of sweeps until the equi-
libration criterion is met. Note that we have independently
examined the accuracy of the results, as well as the quality
of thermalization for system sizes up to L = 8 using paral-
lel tempering Monte Carlo [68]. Both data from PAMC and
parallel tempering Monte Carlo agree within error bars. We
investigate the phase diagram of the CG model using fixed
values of the disorder width, i.e., vertical cuts on WT plane.
Further details of the simulation parameters can be found in
Tabs. I and II for the CO and CG phases, respectively.

IV. RESULTS

A. Charge-ordered phase

To characterize the CO phase, we measure the specific heat
capacity cv = Cv/N (only used to extract critical exponents,
see App. B for details), staggered magnetization

ms =
1

N

N∑

i=1

σi, (8)

where σi = (−1)xi+yi+zisi andN = L3 the number of spins,
as well as the disconnected and connected susceptibility

χ̄ = N [〈m2
s 〉], (9)

χ = N [〈m2
s 〉 − 〈|ms|〉2]. (10)
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FIG. 2: Finite-size correlation length per system size ξ/L versus
temperature T for various disorder strengths. (a) no disorder, (b)
small disorder (W = 0.05). In both cases we observe a crossing of
the data for different system sizes, suggesting a phase transition be-
tween a disordered electron plasma and a CO phase. (c), (d) Finite-
size scaling analysis used to determine the best estimates for the crit-
ical temperature Tc, as well as the critical exponent ν at the afore-
mentioned disorder values. Note that the smallest system size is left
out of the analysis for better accuracy. The transition temperature Tc

of the CO phase decreases as the disorder grows.

In addition, we measure the Binder ratio g [69]

g =
1

2

(
3−

[
〈m4

s 〉
]

[〈m2
s 〉]2

)
, (11)

and the finite-size correlation length ξ/L [70–72] defined via

ξ =
1

2 sin (|kmin|/2)

(
χ(0)

χ(kmin)
− 1

)1/2

, (12)

where kmin = (2π/L, 0, 0) is the smallest nonzero wave vec-
tor and

χ(k) =
1

N

∑

ij

[〈σiσj〉] exp(ikrij) (13)

is the Fourier transform of the susceptibility. Furthermore,
〈· · · 〉 represents a thermal average and [· · · ] is an average over
disorder. According to the scaling Ansatz, in the vicinity of a
second-order phase transition temperature Tc, any dimension-
less thermodynamic quantity such as the Binder ratio and the
finite-size correlation length divided by linear system size will
be a universal function of x = L1/ν(T − Tc), i.e., g = F̃g(x)

and ξ/L = F̃ξ(x), where ν is a critical exponent. Therefore,
an effective way of probing a phase transition is to search for
a point where g or ξ/L data intersect. Given the universal-
ity of the scaling functions F̃g and F̃ξ, if one plots g or ξ/L
versus x = L1/ν(T − Tc), the data for all system sizes must
collapse onto a common curve. Because we are dealing with
temperatures close to Tc, we may approximate this univer-
sal curve by an appropriate mathematical function such as a
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FIG. 3: Zero-temperature simulation results for the plasmaCO phase
transition. The quantity Γ defined in Eq. (14) is used to perform a
finite-size scaling analysis. We conclude that the CO phase termi-
nates at Wc = 0.131(2). The statistical error bars are estimates by
bootstrapping over disorder instances. erfc(x) is the complimentary
error function which is used to fit the Binder ratio data (see text).

third-order polynomial f(x) = P3(x) in the case of ξ/L or a
complimentary error function f(x) = 1

2erfc(x) when study-
ing the Binder cumulant. Hence, by fitting f(x) to the data
with Tc and ν as part of the fit parameters, we are able to de-
termine their best estimates. The statistical error-bars of the
fit parameters are calculated by bootstrapping over the disor-
der realizations. In Fig. 2 we show the simulation data as well
as the finite-size scaling (FSS) plots for ξ/L at two different
disorder values. Crossings can clearly be observed which sig-
nals a phase transition into the CO phase. Simulating multiple
values of W , we observe a phase transition between a disor-
dered electron plasma and a CO phase for W < 0.131(2),
consistent with previous studies [12, 48, 61]. The CO phase
is a checkerboard-like crystal [62], where electrons and holes
form a regular lattice as the potential energy dominates the
kinetic energy at low temperatures.

We have also conducted zero-temperature simulations us-
ing simulated annealing to determine the zero-temperature
critical disorder Wc that separates the CO from the CG phase.
We average over Nsa = 2048 different disorder realizations
for disorders W > 0.10 and Nsa = 512 for W ≤ 0.10. Each
disorder realization is restarted at least at 20 different initial
random spin configurations and at each temperature step equi-
librated Neq Monte Carlo steps. If at least 15% of the runs
reach the same minimal energy configuration, we assume that
the chosen Neq was large enough and that the reached con-
figuration is likely the ground state. If less than 15% of the
configurations reach the minimal state, we increase Neq and
re-run the simulation until the 15% threshold is achieved. For
the largest simulated system size (L = 8) and large disor-
ders, typical equilibration times are Neq = 227 Monte Carlo
sweeps.

To estimate Wc, we use the Binder ratio defined in Eq. (11)

which by definition quickly approaches 1 when T → 0 within
the CO phase. Therefore, in order to retain a good resolution
of a putative transition, we use an alternative quantity Γ which
is defined in the following way [50]:

Γ = − ln(1− g). (14)

Close to Wc, we may assume the following finite-size scaling
behavior for Γ:

Γ = F̃Γ

[
L1/ν(W −Wc)

]
(15)

As g is restricted to 0 ≤ g ≤ 1 with a step-function like shape,
we may use a complimentary error function 1

2erfc(x−µσ ) to
represent the universal scaling function F̃Γ in which x =
L1/ν(W −Wc) and Wc, ν, µ, σ are the fit parameters. The fit
is shown in Fig. 3 where we obtain Wc = 0.131 ± 0.002 and
ν = 0.71± 0.05.

In Tab. III (App. B) we list the values of the critical ex-
ponents for the plasmaCO phase transition for various dis-
order values W after a comprehensive FSS analysis of dif-
ferent observables. Note that we have used the methods de-
veloped in Ref. [73] to compute the exponents α and γ at
T = 0. An important observation one can promptly make is
that the exponentsexcept for ν which is universalvary with dis-
order. This can be attributed to the fact that the perturbations
at large length scales are contested between random field fluc-
tuations which have static nature and dynamic thermal fluc-
tuations [74–76]. At W = 0, the perturbations are purely
thermal, while at T = 0, the random field completely domi-
nates. At such large length scales, the interactions within the
charge ordered phase resemble the random-field Ising model
(RFIM) [77–80] with short-range bonds, namely, screening
takes place. This can be understood by remembering that the
dynamics of the system is constrained by charge conservation.
In the spin language, excitations are no longer spin flips but
spin-pair flip-flops owing to the conservation of total magne-
tization. For instance, one can create a local excitation while
preserving charge neutrality by moving a number of electrons
out of a subdomain in the CO phase. The excess energy of
such a domain scales like its surface, similar to the short range
ferromagnetic Ising model. It is worth mentioning that the
Imry-Ma [81] picture gives a lower critical dimension of 2
for discrete spins with short-range interactions. Hence three-
dimensional Ising spins, such as in the RFIM, are stable to
small random fields as we also find here.

Returning to the discussion of the critical exponents, we
note that scaling relations such as

γ = β(δ − 1) = (2− η)ν, (16)

as well as the modified hyperscaling relation

(d− θ)ν = 2− α = 2β + γ (17)

can be utilized to obtain estimates for the critical exponents
η, θ, and δ. For instance, using the values in Tab. III, we see
that η(W = 0.0) = −0.05(2) and η(W = 0.05) = 0.22(1).
Near criticality, the correlation functions decay as a power of
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FIG. 5: Spin-glass finite-size correlation length ξSG/L as a function
of temperature T at various disorder strengthsW . (a)W = 0.15, (b)
W = 0.30, (c) W = 0.50, and (d) W = 1.20. For W & 0.15 the
data for different system sizes cross, indicating a plasmaCG phase
transition. Corrections to scaling must be considered to reliably esti-
mate the value of the critical temperature Tc (see text for details).

distance, i.e., G(x) ∼ 1/|x|d−2+η . The fact that the expo-
nent η is slightly negative for W = 0.0 shows that correlation
between the spins remains in effect over a much longer dis-
tance in the absence of disorder. Physically this is plausible,
as disorder tends to decorrelate the spins.

B. Coulomb glass phase

To examine the existence of a glassy phase in the CG
model, we measure the spin-glass correlation length defined
in Eq. (12), however, for a spin-glass order parameter, namely

ξSG =
1

2 sin (|kmin|/2)

(
χSG(0)

χSG(kmin)
− 1

)1/2

. (18)

Here, the spin-glass susceptibility χSG has the following def-
inition [72]:

χSG(k) =
1

N

N∑

i=1

N∑

j=1

[
(〈sisj〉 − 〈si〉〈si〉)2

]
eik(ri−rj).

(19)

It is important to note that 〈si〉 6= 0 because the Hamiltonian
[Eq. (2)] is not symmetric under global spin flips. Therefore,
at least four replicas are needed to compute the connected cor-
relation function in Eq. (19). We start with the partition func-
tion of the system, using Eq. (2)

Z =
∑

{si}
exp


−β


1

8

∑

i 6=j

sisj
|rij |

+
1

2

∑

i

siφi




 . (20)

We may now expresses any combination of the spin moments
in terms of the replicated spins variables sαi in the following
way

〈s11 . . . s1k1
〉l1 . . . 〈sm1 . . . smkm 〉lm

=
1

Zn

∑

{sαi }
e
−β

n∑
α=1
H[{sαi }]

s1
11
. . . s1

1k1
· · · snm1

. . . snmkm

=
1

n!

n∑

α1...αn

〈sα1
11
. . . sα1

1k1
· · · sαnm1

. . . sαnmkm 〉, (21)

where n = l1 + · · · + lm is the total number of replicas and
replica indices α1, . . . αn are all distinct. As a special case,
one can show

(〈sisj〉 − 〈si〉〈sj〉)2
=

2

4!

4∑

α,β

〈sαi sαj sβi sβj 〉

− 2

4!

4∑

α,β,γ

〈sαi sαj sβi sγj 〉+
1

4!

4∑

α,β,γ,λ

〈sαi sβi sγj sλj 〉. (22)

Using the above expression, the spin-glass susceptibility
[Eq. (19)] can be written in terms of the replica overlaps as
follows:

χSG(k) =
N

6

4∑

α<β

[
〈qαβ(k)q∗αβ(k)〉

]

− N

6

4∑

α

4∑

β<γ

[
〈qαβ(k)q∗αγ(k)〉

]

+
N

3

4∑

α<β

4∑

γ<λ

[
〈qαβ(k)q∗γλ(k)〉

]
. (23)
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FIG. 6: Process of estimating the critical exponents, as well as the critical temperature Tc of the plasmaCG phase transition for W = 0.5.
Other values of W are analyzed using the same procedure. (a) The temperatures where ξSG/L curves of different systems sizes cross are
used to determine the critical temperature Tc. The crossing temperatures decay towards the thermodynamic-limit Tc. (b) The cumulative
distribution function (CDF) is constructed by minimizing χ2 with respect to Θξ and φ while holding Tc constant. The shaded region shows
the 68% confidence interval and the green vertical line indicates the best estimate of Tc. (c) The value of Tc obtained in the previous step is
used to determine ω. At T = Tc and optimal ω, ξSG/L is linear as a functions of L−ω , i.e., it has zero curvature as demonstrated in panel
(d). (e) The critical exponent ν is estimated using the derivative of ξSG/L with respect to temperature which scales as L1/ν when evaluated at
Tc. Some deviations are evident for the smallest system size. (f) The spin-glass susceptibility χSG at T = Tc which scales as L2−η is used to
determine the best estimate of the exponent η.

Once again, the indices α, β, γ, and λ must be distinct.
Here, q∗αβ(k) represents the complex conjugate of qαβ(k),
and qαβ(k) is the Fourier transformed spin overlap, i.e.,

qαβ(k) =
1

N

N∑

i=1

sαi s
β
i eik.ri . (24)

To underline the significance of this matter, we have shown in
Fig. 4 the spin-glass correlation length calculated using two
replicas, as has been done in some previous numerical studies
of the CG [32, 82]. The inset shows the same quantity com-
puted using four replicas. While the two-replica version of the
finite-size correlation length shows no sign of a CG transition,
the four-replica expression captures the existence of a phase
transition into a glassy phase.

We have performed equilibrium simulations for W ∈
{0.15, 0.30, 0.50, 0.80, 1.2}. In Fig. 5 we plot the four-replica
spin-glass correlation length as a function of temperature at
selected disorder values. Our results strongly suggest that
there is a transition to a glassy phase which persists for rel-
atively large values of the disorder. This is significant in the
sense that it confirms the phase transition via replica symme-
try breaking as predicted by mean-field theory. The nontrivi-
ality of our findings can be better understood if one juxtaposes

the CG case with that of finite-dimensional spin glasses lack-
ing time reversal symmetry due to an arbitrarily small external
field where the existence of de Almeida-Thouless [83] transi-
tion, except for a few rare cases [84, 85], has been ruled out
by numerous studies [59, 86–90]. For the random-field Ising
model the droplet picture of Fisher and Huse [86, 87] can be
invoked to show the instability of the glass phase to infinites-
imal random fields. Yet, the CG model is different in two
significant ways: typical compact domains are not charge neu-
tral, and therefore can not be flipped; and the long range of the
interactions, while does not affect the domain wall formation
energy in the ordered phase, may be significant in the more
complex domain formation of the glass phase. It is worth em-
phasizing here that proper equilibration is key in observing a
glassy phase in the CG simulations. For instance, in Fig. 8 of
App. A we show an example of a simulation where the cross-
ing in the spin-glass correlation length is completely masked
due to insufficient thermalization.

Some corrections to scaling must be considered in the anal-
ysis in order to estimate the position of the critical tempera-
ture and the values of the critical exponents. In the vicinity
of the critical temperature Tc and to leading order in correc-
tions to scaling, we may consider the following FSS expres-
sions for the spin-glass susceptibility χSG and the finite-size
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two-point correlation length divided by the linear size of the
system, ξSG/L:

χSG ∼ CχL2−η
[
1 +AχL

−ω +BχL
1/ν(T − Tc)

]
, (25)

ξSG/L ∼ Cξ +AξL
−ω +BξL

1/ν(T − Tc), (26)

where Aχ, Bχ, Cχ, Aξ, Bξ, and Cξ are constants. In order
to find the critical temperature Tc as well as the critical expo-
nents ν, η, ω, we perform the following procedure.

(i) Estimation of Tc: Given any pair of system sizes (L1, L2)
we have

L1 = L̄−∆L/2, L2 = L̄+ ∆L/2, (27)

in which ∆L = L2 − L1 and L̄ = (L1 + L2)/2. Using
Eq. (26), to the leading order in ∆L/L̄ we find

ξSG(Li, T )

Li
∼ ξSG(L̄, T )

L̄
− (−1)i

∆L

2L̄

[
ωAξL̄

−ω

−Bξ
ν
L̄1/ν(T − Tc)

]
, (28)

where the index i can take values i = 1, 2. One can now use
Eq. (28) to determine the temperature T ∗(L1, L2) at which
the curves of ξSG/L cross, in other words, ξSG(L1, T

∗)/L1 =
ξSG(L2, T

∗)/L2 and

T ∗(L1, L2) ∼ Tc + ΘξL̄
−ω−1/ν = Tc + ΘξL̄

−φ. (29)

Here Tc is the true critical temperature in the limit L → ∞
and Θξ is a constant. In Fig. 6(a), we show the Tc estimate
for the case W = 0.50. The best fit curve is obtained by
minimizing the sum of square of the residuals.

χ2 =

N∑

i=1

(
T ∗i − Tc −ΘξL̄

−φ
i

)2

, (30)

where i runs over all pairs of linear systems sizes. Now we
vary Tc, minimizing χ2 along the way with respect to the re-
maining parameters. Since Θξ appears linearly in the model,
it can be eliminated [91] to reduce the optimization task to one
free parameter, i.e., φ.

(
∂χ2

∂Θξ

)

Tc

= 0 ⇒ Θ̃ξ(Tc, φ) =

N∑
i=1

(T ∗i − Tc)L̄−φi

N∑
i=1

L̄−2φ
i

. (31)

Because there are five data points with three parameters in
the original model, we have two degrees of freedom. There-
fore, the probability density function (PDF) is proportional to
e−χ

2/2. To determine the confidence intervals, we calculate
the cumulative distribution function (CDF) [92].

Q(Tc) =

∫ Tc

e−
1
2χ

2(T ′
c)dT ′c. (32)

As an example, in Fig. 6(b) we have shown the 68% confi-
dence interval as well as the best estimate for the critical tem-
perature.

(ii) Estimation of ω: From Eq. (26) we observe that

ξSG(Tc)/L ∼ Cξ +AξL
−ω. (33)

Thus, using the best estimate of Tc from the previous step, we
expect that the data points of ξSG(Tc)/L as a function of L−ω

to follow a straight line when ω is chosen correctly. We can
therefore vary ω and measure the curvature until it vanishes
at the optimal value. We have demonstrated this in Figs. 6(c)
and 6(d). Note that the error bar for ω is calculated using the
bootstrap method.

(iii) Estimation of ν and η: It is straightforward to show form
Eqs. (25) and (26) that to the leading order in corrections,

χSG(Tc) = CχL
2−η(1 +AχL

−ω), (34)
d

dT
(ξSG/L)(Tc) = BξL

1/ν(1 +DξL
−ω), (35)

in which the best estimates obtained for Tc and ω are used. We
see that the above quantities simply scale as χSG(Tc) ∼ L2−η

and d
dT (ξSG/L)(Tc) ∼ L1/ν for large enough L. Therefore,

a linear fit in logarithmic scale will yield the exponents ν and
ω. This is shown in Figs. 6(e) and 6(f), respectively.

The above procedure has been repeated for all other values
of the disorder W . The results are summarized in Tab. IV of
App. B. We observe that within the error bars, the critical ex-
ponents ν and ω are robust to disorder which underlines the
universality of these exponents. Nevertheless, larger system
sizescurrently not accessible via simulationwould be needed
to conclusively determine the universality class of the model.
The fact that we observe stronger corrections to scaling for
smaller disorder shows that the energy landscape is rougher
due to competing interactions where finite size effects are ac-
centuated. For larger values of W , on the other hand, the sys-
tem becomes easier to thermalize as the disorder dominates
the electrostatic interactions.

V. CONCLUSION

We have shown that, using the four-replica expressions for
the commonly-used observables, the CG model displays a
transition into a glassy phase for the studied system sizes, pro-
vided that large enough disorder and sufficiently low temper-
atures are used in the simulations (see Fig. 1 for the complete
phase diagram of the model). Previous numerical studiesin-
cluding a work [49] by a subset of ushave failed to observe
the glassy phase. In this study, we are able to present strong
numerical evidence for the validity of the mean-field results in
three space dimensions, which predicts transition to a glassy
phase at large disorder via replica symmetry breaking. More-
over, we corroborate the results of previous studies for the
low-disorder regime where a CO phase, similar to the ferro-
magnetic phase in the RFIM, is observed. Interestingly, for
large disorder values, the CG and the RFIM are different, as
the RFIM does not exhibit a transition into a glassy phase (see,
for example, Ref. [80] and references therein). A possible



8

reason is the combination of the constrained dynamics (mag-
netization conserving dynamics) and the long-range Coulomb
interactions not present in the RFIM. These two factors can
increase frustration such that a glassy phase can emerge. Our
findings open the possibility of describing electron glasses
through an effective CG model both theoretically and numeri-
cally. Because most of the electron glass experiments are per-
formed in two-dimensional materials, it would be desirable to
investigate these results in two-dimensional models. Our pre-
liminary results in two space dimensions show no sign of a
glass phase.
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Appendix A: Equilibration

In this appendix, we outline the steps taken to guarantee
thermalization. The data for this work are predominantly gen-
erated using population annealing Monte Carlo (PAMC). In
order to ensure that the states sampled by a Monte Carlo simu-
lation are in fact in thermodynamic equilibrium, i.e., weighted
according to the Boltzmann distribution, one needs to strive
against bias by controlling the systematic errors intrinsic to
the algorithm due to the finite population size.

Fortunately, PAMC offers a convenient way to study and
tune the systematic errors to a desired accuracy. It can be
shown [56] that the systematic errors in a PAMC simulation
are directly proportional to the equilibration population size
ρf which has the following definition:

ρf = lim
R→∞

R var(βF ). (A1)

Here, R is the population size and F is the free energy. ρf is
an extensive quantity defined at the thermodynamic limit al-
though in reality it converges at a large but finite R. Because
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FIG. 7: Equilibration of a PAMC simulation. (a) Equilibration pop-
ulation size ρf versus entropic family size ρs for a CG simulations
at W = 0.5. 100 instances for each system size have been studied.
Evidently, ρs is greatly correlated to ρf which controls the system-
atic errors in thermodynamic quantities. Because ρf is computation-
ally expensive to measure, one may instead use ρs as the measure of
thermalization. (b)(f) ρs versus the population sizeR for system size
L = 8 at various number of temperaturesNT and Metropolis sweeps
M . when ρs converges, the system is guaranteed to be in thermal
equilibrium. As seen from the plots, convergence is achieved faster
as the number of temperatures and sweeps is increased. However,
for extremely large values of NT and M , marginal improvement in
equilibration is gained at the cost of extended run time of the simu-
lation.

ρf is computationally expensive to measure as it requires mul-
tiple independent runs, one may alternatively study the en-
tropic family size ρs defined as

ρs = lim
R→∞

Re−Sf , (A2)

where Sf is the family entropy of PAMC. As shown in of
Fig. 7(a), ρs is well correlated with ρf which is why we can
reliably use ρs as the measure of equilibration. ρs similar to
ρf converges at a finite R. The population size at which the
convergence is achieved is a function of the number of tem-
peratures NT as well as the number of Metropolis sweeps M .
Optimization of PAMC is studied in great detail in the context
of spin glasses [57, 58] much of which can be carried over to
the CG simulations. As an example we show in Figs. 7(b)7(f)
how we choose the optimal values of the PAMC parameters.
We observe that the convergence of ρs is attained faster as the
number of temperatures and sweeps is increased.
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TABLE III: Critical parameters of the plasmaCO phase transition at different disorder values. The exponents, except for ν, change with
disorder. Note that at T = 0, the exponents α and γ have been calculated in a different way (see text in App. B).

Model W Tc ν α/ν β/ν γ̄/ν γ/ν
CG 0.000 0.1284(1) 0.76(4) 0.550(2) 0.42(1) 2.41(1) 2.05(2)
CG 0.050 0.1187(3) 0.87(14) 0.418(25) 0.305(19) 2.67(2) 1.79(3)
CG 0.131(2) 0.000 0.71(5) 0.006(31) 0.154(5) 2.88(1) 1.55(4)

TABLE IV: Critical parameters of the plasmaCG phase transition for various values of the disorder W . The exponent ν and ω are independent
of W within error bars highlighting their universality whereas the exponent η varies as the disorder strength increases.

W Tc ν ω η
0.300 0.00446(25) 0.62(5) 1.26(7) 0.56(1)
0.500 0.00534(29) 0.74(5) 1.24(28) 0.82(5)
0.800 0.00590(56) 0.64(2) 1.28(20) 0.97(5)
1.200 0.00600(16) 0.65(3) 1.33(21) 1.09(1)

However, beyond a certain point, any further increase solely
prolongs the simulation time while contributing negligibly to
lowering the convergent value of ρs. A good rule of thumb
for checking thermalization, as seen in Fig. 7, is that ρs and
as a result ρf converges when ρs/R = exp(−Sf) < 0.01.
We ensure that the above criterion is met for every instance
that we have studied. This matter has been investigated thor-
oughly in Ref. [56]. It is worth mentioning here that proper
equilibration is crucial in observing phase transitions, espe-
cially in subtle cases like the CG model. We have illustrated
this matter in Fig. 8. Fig. 8(a) shows a simulation where the
system has been poorly thermalized in which ρs/R ∼ 0.1 on
average across the studied instances. By contrast in Fig. 8(b)
the same simulation is done with careful equilibration, that is
to say, the criterion ρs/R < 0.01 is strictly enforced for every
instance. It is clear that the observation of a crossing is con-
tingent upon ensuring that every instance has reached thermal
equilibrium. This, in turn, could explain why simulations us-
ing parallel tempering Monte Carlo, e.g., Ref. [48] see no sign
of a transition.
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FIG. 8: Importance of proper thermalization in observing a CG
phase transition. Panel (a) shows a simulation where some instances
have not reached thermal equilibrium whereas panel (b) illustrates
the same simulation in which all of the instances have been thor-
oughly thermalized.

Appendix B: Finite-size scaling results

In this Appendix we list the estimates for the critical param-
eters of the plasmaCO, as well as the plasmaCG phase tran-
sitions. Because the CO phase is essentially an antiferromag-
netic phase in the spin language, multiple critical exponents
such as ν, α, β, and γ can be measured numerically. We have
estimated these quantities using FSS techniques, specifically
by a FSS collapse of the data for different system sizes onto
a low-order polynomial, as explained in the main text. To es-
timate the exponent ν we have used the finite-size correlation
length per linear system size ξ/L [Eq. (12)]. Because this is
a dimensionless quantity, in the vicinity of the critical point it
scales as

0

2

4

6

8

1.8 2 2.2 2.4 2.6

α/ν = 0.418(28)

β/ν = 0.305(19)

γ/ν = 1.79(3)

γ̄/ν = 2.67(2)

lo
g
[F

(T
∗ c
,L

)]
∼

x ν
lo

g
(L

)

log(L)

cv

ms

χ

χ̄

FIG. 9: Finite-size scaling analysis for the plasmaCO phase transi-
tion at W = 0.05. The peak values of the specific heat capacity cv,
connected and disconnected susceptibilities χ and χ̄ as well as the
inflection point value of the staggered magnetization are used to esti-
mate the critical exponents α, β, γ, and γ̄, respectively. According to
Eqs. (B2)(B3), the above quantities scale as a power law in the linear
system size L as clearly seen from the figure.
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ξ/L = Fξ

[
L1/ν(T − Tc)

]
. (B1)

Other critical exponents such as α, γ, and β can be esti-
mated by performing a FSS analysis using the peak values
of the specific heat cv = Cv/N , connected susceptibility χ,
and the disconnected susceptibility χ̄ as well as the inflection
point value of the staggered magnetization ms which scale as
following.

cmax
v ∼ Lα/ν , minflect

s ∼ L−β/ν . (B2)

χmax ∼ Lγ/ν , χ̄max ∼ Lγ̄/ν . (B3)

As we can see in Fig. 9 the above scaling behaviors are very
well satisfied. The best estimates of the critical parameters for

various values of the disorder are listed in Tab. III. Note that
with the exception of the universal exponent ν, other critical
exponents vary with disorder which can be due to the trade-
off between large scale thermal and random field fluctuations.
Because at T = 0 the system has settled in the ground state,
one cannot use thermal sampling to measure the variance of
energy and staggered magnetization which are proportional to
the heat capacity and susceptibility, respectively. Instead, we
have used the techniques developed by Hartmann and Young
in Ref. [73].

For the plasmaCG transition we have calculated the critical
exponents ν and η, as well as the correction to scaling expo-
nent ω using the procedure explained in Sec. IV B. Tab. IV
lists the estimates of the critical parameters. Within the er-
ror bars, the exponents ν and ω are independent of disorder,
whereas η changes as the disorder strength increases.
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[50] A. Möbius and U. K. Rössler, Critical behavior of the Coulomb-
glass model in the zero-disorder limit: Ising universality in a
system with long-range interactions, Phys. Rev. B 79, 174206
(2009).

[51] M. Palassini and M. Goethe, Elementary excitations and
avalanches in the Coulomb glass, J. Phys.: Conf. Ser. 376,
012009 (2012).

[52] J. Rehn, R. Moessner, and A. P. Young, Spin glass behavior in
a random Coulomb antiferromagnet, Phys. Rev. E 94, 032124
(2016).

[53] M. Goethe and M. Palassini, Avalanches in the Relaxation Dy-
namics of Electron Glasses (2018), (arXiv:1808.01466).

[54] K. Hukushima and Y. Iba, in The Monte Carlo method in
the physical sciences: celebrating the 50th anniversary of the
Metropolis algorithm, edited by J. E. Gubernatis (AIP, Los
Alamos, New Mexico (USA), 2003), vol. 690, p. 200.

[55] J. Machta, Population annealing with weighted averages: A

Monte Carlo method for rough free-energy landscapes, Phys.
Rev. E 82, 026704 (2010).

[56] W. Wang, J. Machta, and H. G. Katzgraber, Population anneal-
ing: Theory and application in spin glasses, Phys. Rev. E 92,
063307 (2015).

[57] C. Amey and J. Machta, Analysis and Optimization of Popula-
tion Annealing (2017), (arXiv:1711.02146).

[58] A. Barzegar, C. Pattison, W. Wang, and H. G. Katzgraber, Op-
timization of population annealing Monte Carlo for large-scale
spin-glass simulations, Phys. Rev. E 98, 053308 (2018).

[59] A. P. Young and H. G. Katzgraber, Absence of an Almeida-
Thouless line in Three-Dimensional Spin Glasses, Phys. Rev.
Lett. 93, 207203 (2004).

[60] H. G. Katzgraber and A. P. Young, Probing the Almeida-
Thouless line away from the mean-field model, Phys. Rev. B
72, 184416 (2005).

[61] V. Malik and D. Kumar, Thermodynamics and excitations of
Coulomb glass, Phys. Rev. B 76, 125207 (2007).

[62] E. Wigner, On the Interaction of Electrons in Metals, Phys. Rev.
46, 1002 (1934).

[63] Y. Pramudya, H. Terletska, S. Pankov, E. Manousakis, and
V. Dobrosavljevic, Nearly frozen coulomb liquids, Phys. Rev.
B 84, 125120 (2011).

[64] P. P. Ewald, The calculation of optical and electrostatic grid
potential, Ann. Phys. 64, 253 (1921).

[65] S. W. de Leeuw, J. W. Perram, and E. R. Smith, Simulation of
Electrostatic Systems in Periodic Boundary Conditions I. Lat-
tice Sums and Dielectric Constants, Proc. R. Soc. A 373, 27
(1980).

[66] M. Abramowitz and I. A. Stegun, Handbook of Mathematical
Functions with Formulas, Graphs, and Mathematical Tables
(Dover, New York, 1964).

[67] S. Kirkpatrick, C. D. Gelatt, Jr., and M. P. Vecchi, Optimization
by simulated annealing, Science 220, 671 (1983).

[68] K. Hukushima and K. Nemoto, Exchange Monte Carlo method
and application to spin glass simulations, J. Phys. Soc. Jpn. 65,
1604 (1996).

[69] K. Binder, Critical properties from Monte Carlo coarse grain-
ing and renormalization, Phys. Rev. Lett. 47, 693 (1981).

[70] F. Cooper, B. Freedman, and D. Preston, Solving φ4
1,2 theory

with Monte Carlo, Nucl. Phys. B 210, 210 (1982).
[71] M. Palassini and S. Caracciolo, Universal Finite-Size Scaling

Functions in the 3D Ising Spin Glass, Phys. Rev. Lett. 82, 5128
(1999).

[72] H. G. Ballesteros, A. Cruz, L. A. Fernandez, V. Martin-Mayor,
J. Pech, J. J. Ruiz-Lorenzo, A. Tarancon, P. Tellez, C. L. Ullod,
and C. Ungil, Critical behavior of the three-dimensional Ising
spin glass, Phys. Rev. B 62, 14237 (2000).

[73] A. K. Hartmann and A. P. Young, Specific-Heat Exponent of
Random-Field Systems via Ground-State Calculations, Phys.
Rev. B 64, 214419 (2001).

[74] G. Grinstein, Ferromagnetic Phase Transitions in Random
Fields: The Breakdown of Scaling Laws, Phys. Rev. Lett. 37,
944 (1976).

[75] A. J. Bray and M. A. Moore, Critical behavior of the three-
dimensional Ising spin glass, Phys. Rev. B 31, 631 (1985).

[76] D. S. Fisher, Scaling and critical slowing down in random-field
Ising systems, Phys. Rev. Lett. 56, 416 (1986).

[77] A. A. Middleton and D. S. Fisher, Three-dimensional random-
field Ising magnet: Interfaces, scaling, and the nature of states,
Phys. Rev. B 65, 134411 (2002).

[78] N. G. Fytas and V. Martin-Mayor, Universality in the Three-
Dimensional Random-Field Ising Model, Phys. Rev. Lett. 110,
227201 (2013).



12

[79] N. G. Fytas, P. E. Theodorakis, I. Georgiou, and I. Lelidis, Crit-
ical aspects of the random-field Ising model, Eur. Phys. J. B 86,
268 (2013).

[80] B. Ahrens, J. Xiao, A. K. Hartmann, and H. G. Katzgraber,
Diluted antiferromagnets in a field seem to be in a different uni-
versality class than the random-field Ising model, Phys. Rev. B
88, 174408 (2013).

[81] Y. Imry and S.-K. Ma, Random-Field Instability of the Or-
dered State of Continuous Symmetry, Phys. Rev. Lett. 35, 1399
(1975).

[82] P. Bhandari and V. Malik, Finite temperature phase transition
in the two-dimensional Coulomb glass at low disorders, Eur.
Phys. J. B 92, 147 (2019).

[83] J. R. L. de Almeida and D. J. Thouless, Stability of the
Sherrington-Kirkpatrick solution of a spin glass model, J. Phys.
A 11, 983 (1978).

[84] R. A. Baños, A. Cruz, L. A. Fernandez, J. M. Gil-Narvion,
A. Gordillo-Guerrero, M. Guidetti, D. Iñiguez, A. Maiorano,
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