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Density functional theory has been used to investigate the elastic properties of various Bi-based
alloy materials as potential replacements of lead-based solders. We compare calculated quantities
which can be used to determine the effectiveness of our proposed replacements, such as the bulk
(K ), shear (G), and Young’s (E) moduli. We also computed the Pugh ratio (γ = K/G), a quantity
that is used to estimate the ductility of a solid, for each of the alloys. The effect of spin-orbit
coupling on these materials has also been investigated. By analyzing the changes in charge density
as Bi is substituted, we link the predicted changes in ductility in these materials to atomistic
descriptors; specifically, delocalization of the charge density is known to be a signature of increased
ductility, whereas more localized charge density is typically associated with brittleness. Through
Bader charge analysis we provide quantitative insight into the uniformity of charge distribution and
how this alters the ductility of these alloys. By using density functional theory to calculate the
elastic properties of different Bi1-xZ x alloys (Z = Sb, Te, In, Sn; 0 ≤ x ≤ 1), we correlate changes
in ductility and corresponding changes in the electronic structure of a material. We have found
that low concentrations of Sn and Te, substituted into the hexagonal crystal structure of Bi, induce
significant increases in ductility.

I. Introduction

Bismuth (Bi) is a desirable replacement for lead (Pb) in
many applications because they have similar properties,
but Bi has a very low level of toxicity while maintain-
ing a tunable melting point when used in alloys1. Al-
though there are many different alternatives that are in
use, cost, melting point, and growing health concerns re-
lated to using these replacement materials has increased
the difficulty in providing industry-wide alternatives2,3.
Along with good thermal conductivity, one of the im-
portant qualities in a good solder material is ductility.
Brittle materials are not capable of accommodating the
stress that occurs during deformation, thus they will be-
gin to crack or fracture entirely. Experimentally, Bi is
found to be brittle4–6, but it has been demonstrated that
through alloying, it can be made ductile7. For exam-
ple, it has been shown that by alloying Bi with Sb, the
bulk, shear, and Young’s moduli could be manipulated to
create a more ductile material7. Previous work has also
shown that by alloying Bi with other known Pb-free sol-
ders (particularly Sn-3.5Ag-Bi), the mechanical fatigue
of the solder was reduced8,9. For these reasons, it is be-
lieved that Bi alloys should be investigated as possible
replacements for Pb-based solder10.

The formation and synthesis of Bi1-xSbx alloys
has been previously studied through experiment and
computation11–13. While much work has been done on
unique phases of the Bi1-xSbx alloys, it is known that
these alloys form a homogeneous solid solution main-
taining the R3̄m space group13. Previous studies have
also provided computational and experimental insight
into known, stable Bi1-xSbx compositions7,14–17. In
those works, potential Bi1-xSbx compositions were in-
vestigated, verifying their stability and thermoelectric,
transport, and elastic properties. The unique nature of
the Bi-Sb alloys has shown that they exhibit thermoelec-

tric and semiconducting behavior at particular concen-
trations. Thermoelectric and thermomechanical proper-
ties (such as lattice thermal conductivity) of Bi2Te3 have
been studied extensively through computation, along
with their phonon dispersion18–20. In that work there
was an emphasis placed on the temperature dependence
of the elastic properties of Bi2Te3, but the values calcu-
lated using density functional theory (DFT) are in good
agreement with the values extrapolated from the tem-
perature dependent experimental work. The Bi2Te3 al-
loy shares the same space group (R3̄m) as the materials
explored in the present work, which consist of six atoms
along the [0 0 0 1] direction, whereas the Bi2Te3 alloy only
has five atoms along the same direction. The hexagonal
structure of Bi2Te3 is known to be stable, but there are
trigonal and rhombohedral phases of bimuth tellurides
that are also stable with the concentrations of BiTe and
Bi4Te3, respectively18,21.

The growth and formation of Bi1-xSnx materials
(which has two known phases: the rhombohedral struc-
ture of Bi, and the body-centered tetragonal structure of
β-Sn) has been investigated through experiment, along
with their stability as potential solder joints22,23. There
is a known tetragonal phase BiSn alloy that is discussed
in literature24, but the energy is considerably above the
convex hull. Temperature variations of the elastic prop-
erties of certain anisotropic Bi-Sn alloys have previously
been reported25. It was found that using Bi-Sn sol-
der alternatives will maintain a similar strength and mi-
crostructure as Pb-based solder, reduce whisker forma-
tion due to stress, and reduce the weight of the prod-
uct while maintaining similar cost26,27. Previous work
has also introduced the potential of ternary alloys us-
ing Bi and Sn in conjunction with Pb, Ag, or In to
create a more stable alloy23,28. When alloying Bi-Sn
with In, this ternary alloy maintains the same phase as
the original binary alloy (rhombohedral or body-centered
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tetragonal)28. Previous analysis of the convex hull for Bi-
In alloys has shown stable tetragonal phases of BiIn and
Bi3In5, and a hexagonal phase of BiIn2

24. It has been
shown in other systems that the inclusion of tempera-
ture can alter the phonon spectra of different materials29,
which can then affect the elastic properties of those ma-
terials. Temperature is an important factor in determin-
ing ductility30, however for the materials studied in this
work we are interested in an investigation of the effects
of atomic substitution, as opposed to the effect of tem-
perature.

In this work we use first-principles DFT calculations
to study the elastic properties of different Bi-based alloys
of the form Bi1-xZ x (Z = Sb, Te, In, Sn; 0 ≤ x ≤ 1).
Through an investigation of the bulk (K ), shear (G), and
Young’s (E ) moduli, along with Poisson’s ratio (ν) and
the Pugh ratio (γ = K/G), we will discuss the effect of
the alloy proportions on the properties of Bi. Through
Bader charge analysis and comparative charge density
analysis of each alloy, we show how changes in bonding
impact the properties of these materials. Finally, because
of the relatively large size of Bi, which results in strong
spin-orbit coupling (SOC)31,32, we investigate the effects
of SOC on the elastic properties of the alloys.

II. Computational Methods

A. Elastic Properties

The Pugh ratio is the calculated quantity related to
ductility that is considered in this work. The Pugh ra-
tio is a dimensionless quantity defined as the ratio of the
bulk modulus to the shear modulus of a material; it has
been found that this ratio yields information about the
ductility of that material because it assigns a numerical
value for ductility, which can then be used for compar-
ison to known materials33. A material with a Pugh ra-
tio greater than 1.75 is considered to be ductile, while
a material that has a Pugh ratio less than 1.75 is con-
sidered to be brittle33. Although Pugh’s original works
were related to phenomenological findings, the Pugh ra-
tio is readily used as a computational tool for predicting
ductility. While not an all-encompassing quantity (as it
is a ratio of other properties, not a uniquely calculated
descriptor), it is very useful as it allows one to quantita-
tively assign ductility based on a single value calculated
from first principles.

B. Computational Details

The hexagonal crystal structure for Bi can be seen in
Fig. 1(a). This unit cell has six unique sites that are avail-
able for substitution during the alloy process; each site
was tested to confirm that the properties were calculated
for the lowest energy state in the hexagonal crystal struc-
ture. For all concentrations, each possible configuration
of the ordered hexagonal structure was fully relaxed, af-
ter which the most energetically favorable configuration
was chosen for the calculations that followed. The results

of this site testing can be seen in Fig. 1(b)–1(f) and all
relevant structural data for each alloy is shown in Sup-
plemental Information Tables S7 - S2634.

Each of the investigated materials was fully relaxed
and the elastic tensor was computed using DFT35,36 as
implemented in the Vienna ab initio Simulation Package
(VASP)37–39. VASP uses a plane wave basis set, and ion-
electron interactions were approximated using the pro-
jector augmented wave (PAW) potentials40. Both the
kinetic energy cutoff and k -point grid were tested with
the criterion for convergence being an energy variation
of less than 1 meV/atom. The reciprocal space was sam-
pled using a Γ-centered Monkhorst-Pack k -point grid41.
It was found that 15×15×5 is a sufficient k -point grid
for sampling the reciprocal space of the Bi crystal struc-
ture. The Brillouin zone was sampled by the Methfes-
sel and Paxton method42, and all structural relaxations
and energy calculations were performed using the PBE
functional43. A plane-wave energy cutoff of 450 eV was
found to be sufficient for this work.

Upon completion of the structural and electronic re-
laxations, the formation energy (EForm) of each alloy was
calculated (Eq. 1),

EForm =
Ealloy −mEBi − nEZ

m+ n
, (1)

where E alloy is the energy of the relaxed alloy, EBi is the
energy per atom of Bi in its ground state, EZ is the en-
ergy per alloy atom in its ground state, and m and n are
the number of Bi atoms and alloy atoms in the Bi1-xZ x

structure, respectively. These calculations provide in-
sight into the stability of the alloys investigated in this
work. When EForm ≤ 0, these structures are potentially
stable.

The elements of the elastic tensor (Cij) are determined
through the generalized stress-strain variant of Hooke’s
Law (Eq. 2),

σi = Cijεj , (2)

where σi and εj are the tensile stress and longitudinal
strain, respectively. After the elastic tensor is calculated,
the bulk modulus (K) and the shear modulus (G) can be
found using the following equations, respectively:

KV =
1

9
(C11 + C22 + C33) +

2

9
(C12 + C23 + C13), (3)

GV =
1

15
(C11 + C22 + C33) − 1

15
(C12 + C23 + C13)

+
1

5
(C44 + C55 + C66). (4)

By the nature of this calculation, these will provide the
upper bounds for the quantities that are being computed.
In order to obtain the lower bound, a slight variation of
the equations must be used:

1

KR
= (S11 + S22 + S33) + 2(S12 + S23 + S13), (5)
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FIG. 1. Top (left column) and side (right column) views of
Bi1-xZ x crystal structure where (a) x = 0, (b) x = 0.17, (c) x
= 0.33, (d) x = 0.5, (e) x = 0.67, (f) x = 0.83. Orange atoms
are Bi, pink atoms represent Z. Directions are as follows: a =
[2 1̄ 1̄ 0], b = [1̄ 2 1̄ 0], and c = [0 0 0 1].

1

GR
=

4

15
(S11 + S22 + S33) − 4

15
(S12 + S23 + S13)

+
1

5
(S44 + S55 + S66), (6)

where Sij corresponds to the matrix elements of the in-
verse of the elastic tensor (i.e., the compliance tensor).
When the lower bound is obtained, it will be multiplied
with the upper bound and a square root will be taken in
order to give us a single value to report for each property.
This method of processing the elastic tensor is known as
the Voigt-Reuss-Hill approximation44, which allows for
the approximation of polycrystalline properties from sin-
gle crystal data. After the bulk and shear moduli are
calculated, other physical properties can be computed
including Young’s modulus (E, Eq. 7), Poisson’s ratio
(ν, Eq. 8), and the Pugh ratio (γ, Eq. 9):

E =
9KG

3K +G
, (7)

ν =
3K − 2G

2(3K +G)
, (8)

γ =
K

G
, (9)

where γ is used to estimate the ductility of different ma-
terials.

Bader charge density analysis was also carried out
based on the calculated charge densities from VASP using
the code from the Henkleman group45–48. All structures
were modeled using the Visualization for Electronic and
Structural Analysis (VESTA)49. VESTA was also used
to visualize the charge densities, and the effective charge
differences of each alloy.

III. Results and Discussion

A. Crystal Structure and Stability

The purpose of this work is to determine the effect of
alloying on the elastic properties of the hexagonal Bi crys-
tal structure, for this reason atomically ordered struc-
tures have been used for all calculations in this work.
It should be noted that the degree of order/disorder in
a system can alter the outcome of the calculated elas-
tic properties and formation energies, though this was
not considered in this work50. Of the materials chosen
to alloy with Bi (Sb, Te, In, Sn), only Sb shares the
same bulk crystal structure with Bi. The bulk crystal
structures for the other proposed materials are trigonal
(Te), body-centered tetragonal (In), and diamond cubic
(Sn). Because of the two possible configurations (when
x = 1 the material could be in the hexagonal crystal
structure of Bi, or it could be in the native structure of
the dopant material), calculations of all elastic properties
of the Bi0Z 1 materials were performed in both crystal
structures for the sake of comparison and each of those
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values are also reported. The results of the EForm calcu-
lations are shown in Table I. It is noted that the Bi1-x Inx

and Bi1-xSnx alloys would be unlikely to form, but the
Bi1-xSbx and Bi1-xTex would form metastable (or possi-
bly stable) materials.

TABLE I. Formation energy per atom of each investigated
alloy, where Z = Sb, Te, In, Sn.

EForm(meV/atom)

Material Sb Te In Sn

Bi0.83Z 0.17 9 -1 194 40
Bi0.67Z 0.33 11 -68 331 57
Bi0.50Z 0.50 14 -132 453 64
Bi0.33Z 0.67 11 -90 636 67
Bi0.17Z 0.83 9 -40 786 70

We also considered the possibility of dopant atoms to
occupy interstitial sites within the Bi crystal structure.
For this work, six locations were chosen throughout the
unit cell and the dopant atom would be placed there. The
material was allowed to fully relax, and the formation en-
ergy of these materials was compared to those of the alloy
material; it was determined that it was not favorable for
the dopants to occupy interstitial sites.

B. Elastic Properties

As a validation of the computational technique, cal-
culations were carried out on several known materials
to evaluate agreement with experiment. The materials
tested were gold (Au), diamond (C), copper (Cu), silver
(Ag), nickel (Ni), and platinum (Pt). Because these ma-
terials have known property values, the computational
technique could be verified, and the effect of SOC could
also be tested. The results of this validation process are
shown in Supplemental Table S134. Included in these re-
sults are the calculated elastic properties for each of the
Z materials needed for the Bi1-xZ x alloys. For all ma-
terials, we find that there is strong agreement with and
without the use of SOC in the calculation of the elastic
properties.

For all bulk materials used to verify the computational
technique (reported in Supplemental Table S134), the
Pugh ratio correctly predicts whether that material is
ductile or brittle, apart from Bi and Te. However, the
calculated bulk, shear, and Young’s moduli for Bi are in
agreement with experimental results. It was previously
found that the properties of Te are highly dependent on
temperature and pressure, which could explain the dis-
crepancy in the calculated results51. We next calculated
the elastic properties of Bi1-xSbx alloys. We find that the
bulk and shear moduli (Fig. 2(a) and 2(b), respectively)
undergo a very large drop upon the initial alloying of Bi
with Sb. Because the change in G is more substantial
than the change in K, there is an effective increase in the
ductility, as determined by the Pugh ratio (Fig. 2(d)).

FIG. 2. (a) Bulk modulus, (b) shear modulus, (c) Young’s
modulus, and (d) Pugh ratio of Bi1-xSbx alloys with (square)
and without (circle) SOC. The alternate data points are for
Sb in the hexagonal crystal structure with (diamond) and
without (triangle) SOC. Here the dotted line represents the
boundary value (1.75) between brittle and ductile.

After this drastic change we find that as the amount of
Sb in the system increases, the brittleness of the system
also increases due to the brittle nature of Sb. Because Sb
and Bi share the same crystal structure, valence electron
configuration, and electronegativity values, it is reason-
able that the system (which provides an incorrect γ value
for bulk Bi) would have a relatively gradual change in its
elastic properties as the concentration of Sb increases.
By definition, a high Young’s modulus (Fig. 2(c)) also
corresponds to a stiff material. Thus, the inverse rela-
tionship between E and γ confirms the increase in brit-
tleness at higher concentrations of Sb. This is in very
close agreement with a previously performed computa-
tional investigation7.

Next, we investigated the elastic properties of Bi1-xTex
alloys. After an initial drop in K for the Te alloys
(Fig. 3(a)), we find that K remains relatively constant
as the concentration of Te increases; however, significant
fluctuations in G (Fig. 3(b)) lead to noticeable changes
in the ductility of the Bi1-xTex alloys. G inversely affects
γ, thus the overall decrease in G results in an increase in
ductility (Fig. 3(d)) as the concentration of Te increases.
Compared to Sb, the inverse relationship between E and
γ is not as obvious. Instead, comparing Fig. 3(c) and
3(d) we find that below concentrations of x = 0.5, the
quantities follow similar trends, but when x ≥ 0.5 the
inverse relationship is intact. There are significant dif-
ferences in all the elastic properties for the two possible
configurations shown at x = 1, which imply that Te is not
inherently brittle, but the ductility is greatly dependent
on the structure.

Because it has been so extensively studied, and shares
a similar structure to the Bi based alloys discussed in
this work, the elastic properties of a layered phase of
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FIG. 3. (a) Bulk modulus, (b) shear modulus, (c) Young’s
modulus, and (d) Pugh ratio of Bi1-xTex alloys with (square)
and without (circle) SOC. The alternate data points are for Te
in the trigonal crystal structure with (diamond) and without
(triangle) SOC. Here the dotted line represents the boundary
value (1.75) between brittle and ductile.

Bi2Te3 were also calculated. This structure shares a sim-
ilar hexagonal pattern as the example shown in Fig. 1(d),
however a layer of Bi has been removed. The results for
this structure can be seen in Supplemental Table S134.
We have found that for this particular concentration G
and E provide similar results as the Bi0.33Te0.67 alloy
which was studied, but the value of K is significantly
different. This leads to a drastically reduced value of γ
(1.45 and 1.25, with and without SOC, respectively), in-
dicating that at 0 K, this material is predicted to be brit-
tle. While in good agreement with other computational
values, the elastic moduli differ significantly relative to
the experimental values for Bi2Te3

52,53, further increas-
ing the notion that the temperature dependence of these
properties can play a significant role.

We then investigated the elastic properties of Bi1-x Inx

alloys. As seen in Fig. 4, the properties have only slight
variations when x < 0.67. At higher concentrations of
In, the properties fluctuate significantly, indicating that
certain concentrations of In could provide an increase in
ductility, but the overall nature of the change is seemingly
less predictable than in the other materials. The calcu-
lations of the Bi0In1 properties are of interest because
in Fig. 4(a)–4(c), the properties of In in the hexagonal
crystal structure are consistent with the properties of In
in the body-centered tetragonal structure. However, the
Pugh ratio (Fig. 4(d)) is drastically reduced when it is in
the hexagonal crystal structure. Similar to Sb, E and γ
for the Bi1-x Inx alloys (Fig. 4(c) and 4(d), respectively)
obey an inverse relationship confirming the drastic in-
crease in ductility at higher concentrations of In. For the
alloy materials being discussed in this work, In (1.7) has
the largest difference in electronegativity from Bi (1.9);
In also has 2 fewer valence electrons than Bi. It is not

FIG. 4. (a) Bulk modulus, (b) shear modulus, (c) Young’s
modulus, and (d) Pugh ratio of Bi1-x Inx alloys with (square)
and without (circle) SOC. The alternate data points are for
In in the body-centered tetragonal crystal structure with (di-
amond) and without (triangle) SOC. Here the dotted line rep-
resents the boundary value (1.75) between brittle and ductile.

until a sufficient concentration of In is reached that the
Bi bonds will weaken, leading to an increase in ductility
(vide infra).

FIG. 5. (a) Bulk modulus, (b) shear modulus, (c) Young’s
modulus, and (d) Pugh ratio of Bi1-xSnx alloys with (square)
and without (circle) SOC. The alternate data points are for
Sn in the diamond cubic crystal structure with (diamond) and
without (triangle) SOC. Here the dotted line represents the
boundary value (1.75) between brittle and ductile.

Finally, we investigated the elastic properties of
Bi1-xSnx alloys. Low concentrations of Sn greatly al-
ter the properties of the Bi-based system (as seen in
Fig. 5(a)–5(c)). This overall impact leads to a substantial
increase in the Pugh ratio for Bi0.67Sn0.33 even though K,
G, and E are drastically reduced at that concentration
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compared to Bi and Sn in their bulk forms. Apart from
that spike, Fig. 5(d) shows that the ductility of Bi1-xSnx

alloys are relatively constant. As with Te, there is a
change from brittle to ductile which occurs for Bi0Sn1

showing the significance of crystal structure on the na-
ture of that material. The changes in K are consistent
with previous experimental results54.

For each of the compounds discussed in Fig. 2–5, there
is a direct correlation between G and E, despite the de-
pendence of E on K. We find that G determines the trend
of Young’s modulus, but K determines the magnitude.

The effect of SOC on the elastic properties of the ma-
terials is most notably visible when looking at the Pugh
ratio because of the compounding effect of the differences
between K and G. These effects are most significant at
high concentrations of Bi with Sb and Sn, which can be
seen in Fig. 2(d) and 5(d), respectively. In each of these
cases, the general trend of the Pugh ratio is maintained,
but the magnitude of the value is significantly decreased
without the inclusion of SOC. The numerical results of
all property calculations are shown in Supplemental Ta-
ble S234.

C. Charge Analysis

Bader charge analysis was performed on each of the al-
loys in this work to determine the significance of electron
redistribution on the elastic properties of the materials.
The Bader charges give a quantitative measure of how the
charge on each atom has changed as the concentration
of Bi decreases. The results are shown in Supplemental
Table S3 - Table S634. Investigating the charge on the
Bi atoms upon the initial substitute atom being added
(Bi0.83Z 0.17), for each of the possible alloy materials, we
show that some Bi atoms gain charge while other atoms
lose charge, reducing uniformity of charge distribution.
However, as the concentration of Bi decreases (when x
≥ 0.50) for each material, the changes in charge on the
Bi atoms are uniformly distributed. In contrast to the
quantitative approach, a visual investigation of the com-
parative charge density of each of our alloys compared to
the charge density of bulk Bi has been performed such
that a qualitative assessment of the effects can be made.
With this we have also gained insight into the effect that
changes in electron density will have on the ductility of
a material. In general, a more uniform and delocalized
charge density is indicative of improved ductility, while
more localized charge density is not55–57.

Shown in Fig. 6–9 are comparative charge density plots
for each of the alloys investigated in this work. Figure 6
shows how the charge density distribution changes as Te
is added to the Bi crystal structure; this can be compared
to the Pugh ratio shown in Fig. 3(d). The comparative
charge density in Fig. 6(a) is used as a reference point
for the remainder of Fig. 6. Moving from Fig. 6(a) to
Fig. 6(b) there is an increase in the number of locations
showing a greater amount of charge density, which co-
incides with a small increase in the ductility. Increas-

(a) Bi0.83Te0.17 (b) Bi0.67Te0.33 (c) Bi0.5Te0.5

(d) Bi0.33Te0.67 (e) Bi0.17Te0.83

FIG. 6. Comparative charge density plots of the Bi1-xTex
alloys, with isosurface value 0.01e. Orange atoms are Bi, gold
atoms are Te. Green signifies an increase in electron density
compared to bulk Bi.

ing the concentration (Fig. 6(c)) does not show a signifi-
cant change in charge density nor Pugh ratio. At higher
concentrations of Te (Fig. 6(d)–6(e)), the charge density
increases notably and becomes increasingly delocalized.
These changes correlate with an increase in ductility.

The changes in ductility for the Bi1-xSnx alloys
(Fig. 5(d)) can also be explained using the compara-
tive charge density plots shown in Fig. 7. Again, we
use Fig. 7(a) as a reference point of charge density dif-
ference and ductility. From this point there is a dras-
tic change in ductility associated with the large, diffuse
charge density shown in Fig. 7(b). This transitions to
a localized amount of charge difference, that has dras-
tically decreased in magnitude in Fig. 7(c). A decrease
in ductility is confirmed in the Pugh ratio of Bi0.5Sn0.5.
As the concentration of Sn is increased, the Pugh ratio
remains relatively constant, and the comparative charge
densities are also constant (Fig. 7(d)–7(e)).

As shown in Fig. 4(d), for low concentrations of In

(a) Bi0.83Sn0.17 (b) Bi0.67Sn0.33 (c) Bi0.5Sn0.5

(d) Bi0.33Sn0.67 (e) Bi0.17Sn0.83

FIG. 7. Comparative charge density plots of the Bi1-xSnx

alloys, with isosurface value 0.008e. Orange atoms are Bi,
gray atoms are Sn. Green signifies an increase in electron
density compared to bulk Bi.
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(a) Bi0.83In0.17 (b) Bi0.67In0.33 (c) Bi0.5In0.5

(d) Bi0.33In0.67 (e) Bi0.17In0.83

FIG. 8. Comparative charge density plots of the Bi1-x Inx

alloys, with isosurface value 0.003e. Orange atoms are Bi,
pink atoms are In. Green signifies an increase in electron
density compared to bulk Bi.

(x ≤ 0.5), there are no significant changes to the Pugh
ratio. The constant value of γ is consistent with the
comparative charge density plots shown for the corre-
sponding alloys (Fig. 8(a)–8(c)). For Bi0.33In0.67 there
is a noticeable decrease in ductility. At this concentra-
tion, the distribution of the charge density difference is
smaller and more localized than for the high Bi concen-
trations (Fig. 8(d)). But as the amount of In is increased,
the comparative charge density diffuses and increases in
magnitude (Fig. 8(e)), and the Pugh ratio increases.

Upon initial inspection, Fig. 9 and 2(d) provide a con-
tradictory argument to the previously discussed mate-
rials. When looking at the Pugh ratio, starting with
Bi0.83Sb0.17, there is a steady decrease in the predicted
ductility of the alloys as the concentration of Sb increases.
Yet, the adjoining comparative charge densities show an
increase in charge density difference as the amount of
Sb increases. In contrast to the previous materials dis-
cussed, even though these charge densities are increas-

(a) Bi0.83Sb0.17 (b) Bi0.67Sb0.33 (c) Bi0.5Sb0.5

(d) Bi0.33Sb0.67 (e) Bi0.17Sb0.83

FIG. 9. Comparative charge density plots of the Bi1-xSbx

alloys, with isosurface value 0.0045e. Orange atoms are Bi,
blue atoms are Sb. Green signifies an increase in electron
density compared to bulk Bi.

ing, they are staying localized among the Sb atoms and
are not interacting with the Bi atoms. For the higher
concentrations (Fig. 9(d) and 9(e)) this is more subtle
because the majority of the cell is Sb, but in the lower
concentrations it is clear. Using Fig. 9(a) as the initial
reference, there is no change in charge density between
the Bi and Sb. Increasing the amount of Sb, we show a
significant amount of charge density increase between the
two Sb atoms in Fig. 9(b) when the Sb atoms are imme-
diately adjacent to one another. Further increasing the
concentration of Sb (Fig. 9(c)), the comparative charge
density becomes drastically more localized. This leads to
an inherent increase in brittleness as the amount of Sb is
increased.

IV. Summary and Conclusions

In this work we investigated 20 unique Bi-based al-
loys of varying concentrations. We have found through
the calculation of formation energies that each of the
Bi1-xTex materials investigated are energetically favor-
able, and all of the Bi1-xSbx alloys are potentially
metastable. The elastic properties were computed for
each of the alloys, as well as for their bulk components.
When calculating the elastic properties of the alloys, the
effects of SOC were also considered and it was deter-
mined that the use of SOC is necessary for each of these
materials, regardless of concentration. For each element
being alloyed with Bi, the properties were calculated in
the hexagonal crystal structure, as well as the known
crystal structure for that element. While not energeti-
cally favorable, it was found that holding Te and Sn in
the hexagonal crystal structure would drastically alter
their elastic properties and lead to a significant increase
in ductility. We have detailed the effect that the charge
density distribution has on the properties of the alloys
by comparing the changes and how they relate to the
Pugh ratio (γ). By this analysis, it has been determined
that an increase in diffusivity and delocalization of the
charge density will lead to an increase in ductility. In
summary, we have shown that there are many possible
materials and concentrations which would allow us to in-
crease the ductility of Bi, with low concentrations of Sn
and Te providing the most beneficial changes in ductility
while maintaining a high concentration of Bi.
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