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Explicit, analytical forms are obtained for the elastic constants arising from the PFC model in
which the dependence of the constants on proxies for the temperature and density in the PFC model
is clearly exhibited. The expressions indicate that the elastic constants are multi-valued in certain
temperature ranges corresponding to regions where two or more phases co-exist, in agreement with
experimental observations.

The analytical formulae for the variation of the elastic constants with density agree with those
obtained using a computational approach in [1] but only in certain regimes. Specifically, if it is
assumed that only the body centered cubic state is present, then our formulae agree with the
numerical results presented in [1]. In general, the Bcc state is not the only phase present and, if
other phases are taken into account, then the results differ in those regions where alternative states
are favoured energetically. Similar conclusions hold if one looks at temperature dependence instead
of density variation.
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I. INTRODUCTION

The modelling of ordered structures using the phase
field crystal approach in the pioneering work of Elder
and Grant [2, 3] has attracted considerable attention as
an effective technique for capturing the complex spatial
structures and phase transitions which previously could
only be observed using an atomistic level model. Early
successes of the model included the prediction of the
phase diagram, grain boundary energies consistent with
the Reed-Shockley law amongst many others.
Despite the fact that the elastic properties have been

studied right from the earliest works on the PFC model,
it was only relatively recently [1] pointed out that the
evaluation of the elastic constants must take pre-existing
strains into account. In particular, in [1] it was shown
that one can achieve this by constructing a new thermo-
dynamic formulation to incorporate the pre-stressed state
in both solid and liquid phases through either a general-
ized Gibbs free energy or a via new finite strain tensor if
using the Helmholtz free energy. Examples given in [1]
make use of a numerical optimisation based approach for
obtaining the elastic constants from the PFC model.
The current work aims to obtain explicit, analytical

forms for the elastic constants arising from the PFC
model in which the dependence of the constants on prox-
ies for the temperature and density in the PFC model
is clearly exhibited. While the variation of the elastic
constants with temperature is only to be expected, the
behaviour of the elastic constants in certain temperature

∗ This work was supported by the MURI/ARO on “Fractional
PDEs for Conservation Laws and Beyond: Theory, Numerics and
Applications” (W911NF-15-1-0562). This work was also sup-
ported in part by the DOE PhILMs project (No. de-sc0019453).

† Corresponding authors.

200 220 240 260 280 300
0.55

0.6

0.65

0.7

200 220 240 260 280 300
0.2

0.4

0.6

0.8

200 220 240 260 280 300
0.2

0.22

0.24

0.26

FIG. 1: Elastic constants C11, C12 and C44 against
temperature for LiKSO4. The circles are the

experimental values; the solid lines represent the linear
fits to the data. See also [4, Figures 2-3].

ranges may come as a surprise to some. For example,
results reported in [4] for LiKSO4 (reproduced here in
Figure 1) show that the elastic constants C11, C12 and
C44 are multi-valued in certain temperature ranges. Al-
though we do not attempt to model LiKSO4 here, the
analytical formulae we obtain for the elastic constants
predicted by the PFC model considered in [1] are also
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found to be multi-valued in certain temperature ranges
corresponding to regions where two or more phases co-
exist.
The analytical result we obtain for the variation of the

elastic constants with density agree with those obtained
using a computational approach in [1] but only in certain
regimes. In particular, if one restricts attention to the
body centered cubic state, then our formulae are in agree-
ment with the numerical results presented in [1] across
the full range. However, if one takes into account the
existence of other phases then the results differ in those
regions where the Bcc state is not energetically favoured.
Moreover, as with the temperature variation, it is shown
that the explicit expressions predict multi-valued elastic
constants in regions of co-existence.
Finally, we investigate what the explicit formulae have

to say about the Poisson’s ratio. Simple manipulations
of the expressions leads to the conclusion that the Pois-
son ratio predicted using the PFC model should lie in
the range [1/3, 1/2) for Bcc, [1/4, 1/2) for hexagons and
[0, 1/2) for stripes.

II. PHASE FIELD CRYSTAL MODEL

We consider the usual free energy functional for the
phase field crystal (PFC) model [2, 3]:

F(φ) =

∫

Ω

{

φ

2

[

λ(q20 +∇2)2
]

φ+ F (φ)

}

dr

with the function F (φ) given by

F (u) = aφ+
b

2
φ2 +

g

4
φ4,

where the order-parameter φ(r) is a measure of the crys-
tal density field measured from some constant reference
value ρ0, namely, φ(r) = ρ(r) − ρ0 with ρ(r) being the
density, and λ, q0, a, b and g are phenomenological pa-
rameters. The wavenumber q0 determines the magnitude
|Ki| of the principal reciprocal lattice vectors that corre-
spond to the first peak of the liquid structure factor [3].
The parameters λ and b can be selected by fitting the
functional b + λ(q20 +∇2)2 to the first order peak in ex-
perimental measurements of the structure factor. Typi-
cally, the linear and cubic terms aφ, φ3 appearing in the
free energy (1) are omitted [1, 5]. However, it has been
shown in [1] that the linear term plays crucial role in
determining the pre-existing pressure of the system and
hence on the calculation of elastic constants, and we shall
therefore retain the term.
The dimensionless free energy functional [1]

F(ϕ(r)) =

∫

Ω

{

γϕ+
ϕ

2

[

−ǫ+ (1 +∇2)2
]

ϕ+
1

4
ϕ4

}

dr

(1)
is obtained by applying the affine transformations

q0r → r,
√

g/λq4
0
φ → ϕ,

g

λ2q4
0

F → F ,

with the dimensionless parameters given by

γ =
a

q6
0

√

g/λ3, ǫ = − b

λq4
0

.

For an elastic deformation with strain ε, the total num-
ber of particles

N =

∫

Ω

ρ(r)dr = ρ̄|Ω|

remains constant, and hence the relationship

ρ̄ε =
|Ω0|
|Ωε|

ρ̄0 (2)

holds between the average density of the strained system
and that of the unstrained system. Here |Ω0| and |Ωε|
are the undeformed and deformed volumes, respectively,
which are related according to the equation

|Ωε| = det[I + ε] · |Ω0| (3)

with I being the second-order unit tensor and ε being
the strain. In turn ϕ̄0 and ϕ̄ε, satisfy the following rela-
tion [1]:

ϕ̄ε =
|Ω0|
|Ωε|

(ϕ̄0 + ρ̃0)− ρ̃0, (4)

where ρ̃0 =
√

g/(λq4
0
)ρ0.

The phase field crystal model can be viewed as the
gradient flow in H−1 associated with the above free en-
ergy functional so that the dynamics, in the conservative
sense, are given by

∂ϕ

∂t
= ∇ ·

(

∇dF
dϕ

)

resulting in a dimensionless partial differential equation
(PDE)

∂tϕ−∆
(

(1 +∇2)2ϕ+ f(ϕ)
)

= 0, (5)

where f(ϕ) = ϕ3 − ǫϕ+ γ.

III. FORMATION OF ORDERED STRUCTURES

AND PHASE DIAGRAM

A key feature of the equation (5) is the existence
of ordered structure phases or, pattern formation [6–8].
One of the main ideas behind PFC modeling is to inter-
pret these patterns as corresponding to different physical
phases (liquid, different crystalline structures, . . . ).
In this section, we briefly describe the pattern forma-

tion. To this end, one looks for non-trivial solutions to
(5) in the form

ϕ(r, t) = ϕ̄(t) +
∑

K

AK(t)eiK·r, (6)
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where K is the (nonzero) reciprocal lattice vector and
AK is the corresponding Fourier-component amplitude
with A−K = A∗

K
. The issue then becomes one of deter-

mining the lattice vector and the amplitudes.
One approach [1] uses direct numerical minimisation

of the free energy

F0 = min
{AK},{K}

F({AK}, {K}, ϕ̄, |Ω|)

with fixed ϕ̄ and Ω. The resulting minimizers give the
total energy as well as the amplitude {AK} of the un-
strained state, but do not necessarily satisfy the equa-
tion (5). Instead, we pursue an alternative approach to
obtain steady state solutions, whereby we derive the am-
plitudes equation for different types of pattern, and then
solve to obtain explicit expressions for the steady states
which satisfy equation (5).

A. Pattern formation

The standard approach for identifying two dimensional
structures consists of seeking non-trivial solutions to (5)
of the form

ϕ(r, t) =A1(t)e
ik1·r +A2(t)e

ik2·r

+A3(t)e
ik3·r + c.c.+ ϕ̄(t),

(7)

where c.c. denotes the complex conjugate and

k1 = v, k2 = Rk1, k3 = Rk2

with R denoting a rotation by 2π/3 and v is an arbi-
trary fixed orientation e.g. v = (1, 0). By substituting
the Ansatz (6) into (5) and comparing coefficients of the
modes eikj ·r, j = 1, 2, 3, one obtains the following equa-
tions [9] for the amplitudes in (6):

∂tA1 =
(

(ǫ− 3ϕ̄2)A1 − 6ϕ̄A∗
2A

∗
3

−A1(3|A1|2 + 6|A2|2 + 6|A3|2)
)

,

∂tA2 =
(

(ǫ− 3ϕ̄2)A2 − 6ϕ̄A∗
3A

∗
1

−A2(3|A2|2 + 6|A3|2 + 6|A1|2)
)

,

∂tA3 =
(

(ǫ− 3ϕ̄2)A3 − 6ϕ̄A∗
1A

∗
2

−A3(3|A3|2 + 6|A1|2 + 6|A2|2)
)

,

(8)

together with the following equation for the evolution of
ϕ̄(t):

dϕ̄(t)

dt
= 0.

The simplest non-zero solution of the form (6) is ob-
tained by taking

A1(t) = A2(t) = A3(t) = 0.

This solution shows no spatial structure and is therefore
interpreted as the liquid phase.

In addition to the liquid phase, the amplitude equa-
tions possess two distinct types of spatially structured
solutions: stripes, that are invariant under the transla-
tion x2 → x2 + const; and hexagons, that are invariant
under rotation by ±2π/3.
For the stripe solutions, one seeks a non-trivial solution

of the form (6) with

A1(t) = As(t) 6= 0, A2(t) = A3(t) = 0.

The amplitude equations then reduce to the single equa-
tion

∂tAs = (ǫ − 3ϕ̄2)As − 3|As|2As,

which has a trivial stationary solution As(t) = 0 and two
nontrivial stable stationary solutions in which

As(t) = A± = ±
√

(ǫ− 3ϕ̄2)/3, ǫ ≥ 3ϕ̄2. (9)

Turning now to hexagonal patterns one seeks a solution
of the form (6) with

A1(t) = A2(t) = A3(t) = Ah(t) 6= 0.

The amplitude equations (8) then reduce to a single equa-
tion of the form

∂tAh = (ǫ− 3ϕ̄2)Ah − 6ϕ̄A2

h − 15A3

h,

which has a trivial (unstable) solution Ah(t) = 0 and two
nontrivial (stable) stationary solutions:

Ah(t) = A± = −1

5
ϕ̄± 1

15

√

15ǫ− 36ϕ̄2, ǫ ≥ 36

15
ϕ̄2. (10)

Here, the + (resp. − ) sign is chosen when ϕ̄ is negative
(resp. positive).
In addition, one can also obtain a non-trivial three

dimensional structure, body-centered cubic (Bcc) steady
state, in the form

ϕ(r, t) =ϕ̄(t) + 4Ab(t)
(

cos (qx) cos (qy)

+ cos (qy) cos (qz) + cos (qz) cos (qx)
)

,

where q = 1/
√
2. Substituting the above expression into

the free energy functional (1) yields the following ampli-
tude equation for Ab corresponding to the Bcc

∂tAb = (ǫ− 3ϕ̄2)Ab − 12ϕ̄A2

b − 45A3

b ,

which has a trivial (unstable) solution Ab(t) = 0 and two
nontrivial (stable) stationary solutions:

Ab(t) = A± = − 2

15
ϕ̄± 1

15

√

5ǫ− 11ϕ̄2, ǫ ≥ 11

5
ϕ̄2. (11)

Here, the + (resp. − ) sign is chosen when ϕ̄ is negative
(resp. positive).
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B. Phase diagram

The question as to which of the solutions given above is
preferred leads to the study of the phase diagram [10]. To
this end, we compute the free energy densities f = F/|Ω|
of each kind of patterns.
The total energy of the steady states is obtained by

substituting the steady state solutions into the free en-
ergy functional (1), namely,

F0 = F(ϕ0(r)),

where ϕ0(r) is a steady state solution. In particular, we
are interested in the constant state,

ϕc(r) = ϕ̄;

the stripe state

ϕs(x) = As cos(x) + ϕ̄;

the hexagon state

ϕh(x, y) = 2Ah

(

cosx+ 2 cos(x/2) cos(
√
3y/2)

)

+ ϕ̄,

and; the Bcc state

ϕb(x, y, z) = 4Ab

(

cos (qx) cos (qy)

+ cos (qy) cos (qz) + cos (qz) cos (qx)
)

+ ϕ̄

with q = 1/
√
2.

Substituting these states into the dimensionless free
energy functional (1) yields the free energy density for:
the constant phase

fc(ϕ̄) = γϕ̄+
1− ǫ

2
ϕ̄2 +

ϕ̄4

4
; (12)

the stripe phase

fs(ϕ̄, As) =
1

2π

∫ 2π

0

Φ(ϕs)dx

=γϕ̄+
1− ǫ

2
ϕ̄2 +

ϕ̄4

4
− ǫA2

s + 3ϕ̄2A2

s +
3

2
A4

s,

(13)
where

Φ(ϕ) = γϕ+
ϕ

2
(1 +∇2)2ϕ− ǫ

2
ϕ2 +

ϕ4

4
; (14)

the hexagon phase

fh(ϕ̄, Ah) =

√
3

4π2

∫ 2π
√

3

0

∫ 2π

0

Φ(ϕh)dxdy

=γϕ̄+
1− ǫ

2
ϕ̄2 +

ϕ̄4

4

− 3ǫA2

h + 9ϕ̄2A2

h + 12ϕ̄A3

h +
45

2
A4

h,

(15)

and; the Bcc phase

fb(ϕ̄, Ab) =

√
2

32π3

∫ 4π
√

2

0

∫ 4π
√

2

0

∫ 4π
√

2

0

Φ(ϕb)dxdydz

=γϕ̄+
1− ǫ

2
ϕ̄2 +

ϕ̄4

4

− 6ǫA2

b + 18ϕ̄2A2

b + 48ϕ̄A3

b + 135A4

b .

(16)

Applying the Maxwell equal-area construction rule [11]
gives the phase diagram shown in Figure 2.

FIG. 2: Phase diagram for the steady states (12)-(16).
Shaded areas correspond to regions where two states

can co-exist.

IV. ELASTIC CONSTANTS

Consider a system originally in an unstrained state
with volume Ω0 and average density ρ0. The system is
then subjected to a strain ε resulting in the system hav-
ing density ρε and volume Ωε given by (2) and (3), and
order parameter ϕ̄ε given by (4). Traditionally, the elas-
tic constants have been computed using the expression

Cijkl =
1

|Ω0|
∂2F (ϕ̄ε, |Ωε|)

∂εij∂εkl

∣

∣

∣

ε=0

. (17)

However, as discussed in [1], the above formula is only
valid when there is no pre-existing pressure in the initial
undeformed state. If this is not the case, then it has been
shown in [1] that the elastic constants are determined by
the Gibbs free energy

G(ϕ̄ε, |Ωε|) = F (ϕ̄ε, |Ωε|) + P0(ϕ̄ε) · |Ωε|, (18)

which takes account of the pre-existing pressure of the
initial undeformed state

P0(ϕ̄ε) = − 1

|Ω0|
∂F (ϕ̄ε, |Ωε|)

∂εii

∣

∣

∣

ε=0

. (19)
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The elastic constants are then given by the expression:

Cijkl =
1

|Ω0|
∂2G(ϕ̄ε, |Ωε|)

∂εij∂εkl

∣

∣

∣

ε=0

. (20)

Our objective here is to obtain closed form expressions
for the elastic constants with the dependence on the tem-
perature and density given explicitly. The free energy F0

of the unstrained state takes the form

F0 = F(ϕ0(r)) = |Ω0| · f, (21)

where f is given by one of fc, fs fh or fb, i.e., equations
(12), (13), (15) and (16). For the strained state, the free
energy is given by

Fε = min
{AK}

F(ϕε(r)) = min
{AK}

F({AK}, {Kε}, ϕ̄ε, |Ωε|),
(22)

where Kε is the strained reciprocal lattice vector given
by

Kε = (I + ε)−1
K0.

A direct calculation, detailed in the Appendix, yields ex-
plicit expressions for the amplitudes {AK} of the strained
state as well as the first order derivative with respect to
the strain ε, i.e., ∂AK

∂εij
, see equation (A.9). Moreover, one

finds that (see (A.2))

∂ϕ̄ε

∂εii

∣

∣

∣

ε=0

= −(ϕ̄0 + ρ̃0), (23)

To ease the notation in what follows, we shall not exhibit
explicitly that these quantities are understood as being
evaluated at ε = 0. Likewise, closed forms of the elastic
constants can be obtained by using equations (18)-(22);
again details are pronounced in the Appendix.
Stripe State:

P0 = −fs −
∂ϕ̄ε

∂ε11

(

6A2

sϕ̄0 + γ + (1 − ǫ)ϕ̄0 + ϕ̄3

0

)

(24)

and elastic constants

C11 = 8A2

s +
∂ϕ̄ε

∂ε11

( ∂ϕ̄ε

∂ε11

(

1 + 6A2

s − ǫ+ 3ϕ̄2

0

)

+ 12Asϕ̄0

∂Aε
s

∂ε11

)

(25)

and

C12 =
∂ϕ̄ε

∂ε11

( ∂ϕ̄ε

∂ε22

(

1 + 6A2

s − ǫ + 3ϕ̄2

0

)

+ 12Asϕ̄0

∂Aε
s

∂ε22

)

,

(26)

where ∂ϕε

∂εii
is given by (23), As is the unstrained stripe

amplitude given by (9) and
∂Aε

s

∂εii
is the first-order deriva-

tive of the strained striped amplitude given by (A.9).
Hexagonal State:

P0 = −fh−
∂ϕ̄ε

∂εii

(

12A3

h + 18A2

hϕ̄0 + γ + (1− ǫ)ϕ̄0 + ϕ̄3

0

)

,

(27)

and elastic constants

C11 = 9A2

h +
∂ϕ̄ε

∂ε11

( ∂ϕ̄ε

∂ε11

(

1 + 18A2

h − ǫ+ 3ϕ̄2

0

)

+ 36
∂Aε

h

∂ε11
(Ahϕ̄0 +A2

h)
)

(28)

and

C12 = 3A2

h +
∂ϕ̄ε

∂ε11

( ∂ϕ̄ε

∂ε22

(

1 + 18A2

h − ǫ+ 3ϕ̄2

0

)

+ 36
∂Aε

h

∂ε22
(Ahϕ̄0 +A2

h)
)

.

(29)

The elastic constant C44 vanishes for both stripes and
hexagons.
Body Centered Cubic State:

P0 = −fb−
∂ϕ̄ε

∂εii

(

48A3

b + 36A2

bϕ̄0 + γ + (1 − ǫ)ϕ̄0 + ϕ̄3

0

)

,

(30)
and elastic constants

C11 = 8A2

b +
∂ϕ̄ε

∂ε11

( ∂ϕ̄ε

∂ε11

(

1 + 36A2

b − ǫ + 3ϕ̄2

0

)

+ 72
∂Aε

b

∂ε11
(Abϕ̄0 + 2A2

b)
)

(31)

and

C12 = 4A2

b +
∂ϕ̄ε

∂ε11

( ∂ϕ̄ε

∂ε22

(

1 + 36A2

b − ǫ + 3ϕ̄2

0

)

+ 72
∂Aε

b

∂ε22
(Abϕ̄0 + 2A2

b)
)

(32)

and

C44 = 4A2

b , (33)

where Ab is the unstrained Bcc amplitude given by (11).
Observe in each case, the obtained elastic constants are

independent of the linear term in the free energy func-
tional, i.e., the value of the parameter γ [1].

V. INTERPRETATION OF THE RESULTS

A. Relationship with Experimental Observations

One expects the elastic constants to vary with the tem-
perature, a fact which is also confirmed by experiment,
e.g. [4, 12–15]. Less obvious perhaps, but nevertheless
also confirmed by experimental observation [4, Figures
2-3] is that the elastic constants are multi-valued in the

co-existing region between two states. What do the an-
alytic formulas for the elastic constants derived earlier
have to say in this case? Figures 3, 4 and 5 contain plots
of the elastic constantsC11, C12 and C44 against the value
of the value of −ǫ (corresponding to temperature) across
phase transitions. In particular, we observe from Figures
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FIG. 3: Variation of the elastic constant C11 against the
value of −ǫ corresponding to the temperature.

ϕ̄ = −0.24, ρ̃0 = 0.251.
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FIG. 4: Variation of the elastic constant C12 against the
value of −ǫ corresponding to the temperature.

ϕ̄ = −0.24, ρ̃0 = 0.251.

3-4 the multi-valued nature of the elastic constants C11

and C12 in the coexistence regions.

Similarly, one can also consider how the elastic con-
stants depend on the average of density. Figure 6, Figure
7 and Figure 8 show the elastic constants C11, C12 and
C44, respectively. Again, we observe that the elastic con-
stants are multi-valued in region where phases co-exist.

-0.4 -0.35 -0.3 -0.25 -0.2 -0.15 -0.1
-0.02

-0.015

-0.01

-0.005

0

0.005

0.01

0.015

0.02

0.025

Hexagonal phase
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FIG. 5: Variation of the elastic constant C44 against the
value of −ǫ corresponding to the temperature.

ϕ̄ = −0.24, ρ̃0 = 0.251.
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0
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0.15

0.2

0.25

0.3

0.35

Stripe phase

Hexagonal phase

Bcc phase

FIG. 6: Variation of the elastic constant C11 against the
average of the density ϕ̄. ǫ = 0.0923, ρ̃0 = 0.251.

B. Relationship with Existing Work

In [1], the elastic constants were computed using a di-
rect computational minimisation of the free energy in
which one first minimizes the free energy F numerically
to determine the equilibrium unstrained state, then ap-
plies various strains in a range from −3% to 3% to the
equilibrium state and minimizes the free energy again
using the corresponding strained values of Kε, |Ωε| and
ϕ̄ε, and finally using equations (19)-(20) and the fitting
first- and second-order derivatives of F (ε) with respect
to εij . Figure 9 compares the results of the present work
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FIG. 7: Variation of the elastic constant C12 against the
average of the density ϕ̄. ǫ = 0.0923, ρ̃0 = 0.251.
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FIG. 8: Variation of the elastic constant C44 against the
average of the density ϕ̄. ǫ = 0.0923, ρ̃0 = 0.251.

with those given in [1] for the pressure and elastic con-
stants C11, C12 and C44. Observe that the results are
consistent with one another if one uses the expressions
(30)-(33) for the pressure and the elastic constants for
the Bcc phase across all densities. However, as shown in
Section III, phase changes occur at certain densities and
temperatures. Taking the phase changes into account re-
sults in multi-valued expressions which, it seems, are not
readily obtained using the direct numerical simulation.

C. Explicit Expression for Poisson’s Ratio

A drawback of the classical PFC approach is that the
Poisson’s ratio is always given by 1/3. However, the ar-
guments used in this work lead to analytical expressions
for the Poisson’s ratio which show that (for the Bcc state)
Poisson’s ratio varies between 1/3 and 1/2. In particular,

since ∂ϕ̄ε

∂ε11
= ∂ϕ̄ε

∂ε22
and

Aε

b

∂ε11
=

∂Aε

b

∂ε22
as ε → 0, using the

equation (31) and (32), the Poisson’s ratio for the Bcc
state is given by

ν =
C12

C11 + C12

=
4A2

b + a

12A2

b + 2a
, (34)

where

a =
∂ϕ̄ε

∂ε11

( ∂ϕ̄ε

∂ε11

(

1+36A2

b−ǫ+3ϕ̄2

0

)

+72
∂Aε

b

∂ε11
(Abϕ̄0+2A2

b)
)

.

(35)
Similarly, we can show that the Poisson’s ratio for the
hexagons

ν =
C12

C11 + C12

=
3A2

h + a

12A2

h + 2a
,

where

a =
∂ϕ̄ε

∂ε11

( ∂ϕ̄ε

∂ε11

(

1+18A2

h−ǫ+3ϕ̄2

0

)

+36
∂Aε

h

∂ε11
(Ahϕ̄0+A2

h)
)

,

(36)
or for the stripes

ν =
C12

C11 + C12

=
a

8A2
s + 2a

,

where

a =
∂ϕ̄ε

∂ε11

( ∂ϕ̄ε

∂ε11

(

1+6A2

s−ǫ+3ϕ̄2

0

)

+12Asϕ̄0

∂Aε
s

∂ε11

)

, (37)

We show in Figure 10 the value of a for all states. Observe
that we have nonnegative value of a for most of the region
of solid (stripe, hexagon and Bcc) (hatched region). By
providing that a ≥ 0, we have for the Bcc state,

ν − 1

3
=

a

36A2

b + 6a
≥ 0, ν − 1

2
=

−A2

b

6A2

b + a
< 0,

i.e., we have

1

3
≤ ν <

1

2
.

Similarly, we have for hexagons

1

4
≤ ν <

1

2
,

and for stripes

0 ≤ ν <
1

2
.
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FIG. 9: Comparison between the results obtained in the present work and the ones obtained in [1]. The circles
correspond to the results obtained in [1] whilst the solid and dash lines correspond to the results obtained in the

present work. Observe that the results agree in the Bcc phase but differ elsewhere since [1] does not take account of
the effect of phase transitions. ǫ = 0.0923, ρ̃0 = 0.251. Upper left: Pressure; upper right: C11; lower left: C12; lower

right: C44.

We show in Figure 11 the Poisson’s ratio regarding the
phase transition. Furthermore, we compare the results
of the present work with the ones of [1] for the Poisson’s
ratio. See Figure 12.

VI. CONCLUSIONS

The main goal of the current work is to demonstrate
that the PFC approach naturally gives rise to elastic
constants which exhibit multi-valued behaviour across
phase transitions. In order to readily facilitate compari-
son with previous work [1], we adopt the same basic set-
ting. Namely, we confine our attention to the basic free
energy functional considered in [1] in conjunction with
consideration of simple one-mode approximations of the
states. If one restricts attention to the body centered
cubic state, then our formulae are in agreement with the
numerical results presented in [1] across the full range.
However, if one takes account of multiple states, the re-
sults differ in those regions where the Bcc state is not
energetically favourable.

Interestingly, if one restricts attention to 2D states (by
excluding the Bcc phase) then one may interpret the re-
sults as corresponding to a plane strain condition for
which the Poisson ratio was shown in [16] to take the
value ν = 1/4. The dotted line shown in Figure 11
corresponds to excluding the Bcc phase and shows that
the resulting values of the Poisson ratio lie in the range
[1/4, 1/2), consistent with the findings of [16]. Further-
more, one can, at least in principle, restrict to a univari-
ate state by considering only the stripe state. Whilst no
regular solid materials have a such a 3D rod-like struc-
ture, block copolymers [17, Figure 4] do exhibit these
kinds of 3D rod-like structures and our results may find
application to such materials.

In principle there is no difficulty in extending the anal-
ysis to include other 3D states besides Bcc considered
here. However, our main objective here is to provide
a clear comparison with the results presented in refer-
ence [1], where only the Bcc state is primarily considered.
Likewise, one could generalize the approach to two-mode
expansions. While the current work focuses on obtaining
expressions for the elastic constants based on expressions
for the state variable, one could follow [18] and attempt to
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FIG. 10: Sign of the coefficient a defined in equations
(35)-(37) with temperature and density. The red dashed
line indicates the separation between the liquid and
solid phases considered above. The coefficient a is

non-negative in the hatched region.
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FIG. 11: Variation of the Poisson’s ratio ν against the
average of the density ϕ̄. ǫ = 0.0923, ρ̃0 = 0.251. The
dashed line shows the corresponding results if one

excludes the Bcc state leaving only 2D states
corresponding to plane strain conditions. Observe that
the resulting Poisson’s ratio lies in the range [1/4, 1/2)

consistent with the findings of [16].

derive analytic expressions for strain components across
phase transitions.
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FIG. 12: Poisson’s ratio ν against the average of the
density ϕ̄ for ǫ = 0.1, 0.2, 0.3, 0.4, 0.5 (from top to

bottom) and ρ̃0 = 0.251. The results corresponding to
solid and dash lines are the results of the present work
whilst the ones corresponding to the symbol circles are

the results of the work in [1].

Appendix: Calculation of the elastic constants for

stripes, hexagons and Bcc

In this appendix, we present the calculation of the an-
alytic forms of the elastic constants. Before doing this,
let us first compute the value of partial derivatives of
the average of the strained state with respect to the

strain at the limit of vanishing strain, i.e., ∂ϕ̄ε

∂εii

∣

∣

∣

ε=0

and

∂2ϕ̄ε

∂εii∂εjj

∣

∣

∣

ε=0

. By using equations (3) and (4) and noting

that

|Ωε| = det[I + ε] · |Ω0|

=|Ω0|



1 +
∑

i

εii +
1

2

∑

i,j

(

εiiεjj − εijεji +O(ε3)
)



 ,

(A.1)
we have

∂ϕ̄ε

∂εii

∣

∣

∣

ε=0

= (ϕ̄0 + ρ̃0)
∂
(

det−1[I + ε]
)

∂εii

∣

∣

∣

ε=0

= −(ϕ̄0 + ρ̃0),

(A.2)

and

∂2ϕ̄ε

∂εii∂εjj

∣

∣

∣

ε=0

= (ϕ̄0 + ρ̃0)
∂2

(

det−1[I + ε]
)

∂εii∂εjj

∣

∣

∣

ε=0

=

{

2(ϕ̄0 + ρ̃0), if i = j,
ϕ̄0 + ρ̃0, if i 6= j.

(A.3)

We first consider the case of zero shear strain, i.e., εij =
0 for i 6= j. In this case, we can compute the pre-existing
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pressure P0 and the elastic constants C11, C12. We begin
by compute the free energy of the strained state. By
substituting the following strained solution

ϕε(r) = ϕ̄ε +
∑

Kε

AKε
eiKε·r

into the free energy functional (1), we obtain the total
free energy of the strained state

Fε = |Ω0| · det[I + ε]fε, (A.4)

where

fε = f0

ε + f1

ε +O(ε3) (A.5)

is the free energy density of the strained state with f0
ε

and f1
ε being given by

f0

ε
= fs(ϕ̄ε, A

ε

s), f
1

ε
= 4ε211(A

ε

s)
2 (A.6)

for stripes, or

f0

ε = fh(ϕ̄ε, A
ε

h), f
1

ε =

(

9

2
(ε211 + ε222) + 3ε11ε22

)

(Aε

h)
2

(A.7)
for hexagons, or

f0

ε
= fb(ϕ̄ε, A

ε

b ),

f1

ε
=



4

3
∑

i=1

ε2ii + 2

3
∑

i,j=1,i6=j

εiiεjj



 (Aε

b )
2

(A.8)

for Bcc, where the forms of fs(ϕ̄ε, A
ε
s), fh(ϕ̄ε, A

ε

h) and
Aε

h) and fb(ϕ̄ε, A
ε

b ) are given by (13), (15) and (16), re-
spectively. Minimizing the strained free energy yields the
amplitudes of the strained stripe, hexagon and Bcc states
given by

Aε

s =±
√

(ǫ− 3ϕ̄2 − 4ε2
11
)/3,

Aε

h =− ϕ̄/5

±
√

15ǫ− 36ϕ̄2 − 15(3(ε2
11

+ ε2
22
)/2− ε11ε22)

/

15

and

Aε

b = −2ϕ̄/15

± 1

15

√

√

√

√5ǫ− 11ϕ̄2 − 5
(

2

3
∑

i=1

ε2ii +

3
∑

i,j=1,i6=j

εiiεjj

)/

3.

Note that here we omit the high order term with respect
to the strain. Correspondingly, by using the above three
equations, we can obtain the first-order derivative of the
stained amplitudes with respect to the stain, i.e.,

∂Aε

♦

∂εii

∣

∣

∣

ε=0

, (A.9)

where ♦ can be ‘s’, ‘h’ or ‘b’ for the stripes, hexagons or
Bcc.

We now compute the pre-existed pressure P0 and the
elastic constant C11, C12. To this end, by the definition
of the pressure, i.e., equation (19), and (A.4), we have

P0 = −
(

∂ det[I + ε]

∂εii
fε + det[I + ε]

∂fε
∂εii

)

∣

∣

∣

ε=0

= −
(

fε +
∂fε
∂Aε

∂Aε

∂εii
+

∂fε
∂ϕ̄ε

∂ϕ̄ε

∂εii

)

∣

∣

∣

ε=0

,

where fε is given by (A.5) and Aε can be Aε
s , A

ε

h or Aε

b .
Since Aε is a minimum of fε, we then have

∂fε
∂Aε

= 0. (A.10)

Using the above two equations gives

P0 = −
(

fε +
∂fε
∂ϕ̄ε

∂ϕ̄ε

∂εii

)

∣

∣

∣

ε=0

. (A.11)

Thus, by using the above equation and (A.2), and equa-
tions (A.6)-(A.8), we can obtain the pre-existed pressures
for stripes, and hexagons and Bcc, i.e., equations (24),
(27) and (30).
For the elastic constants C11, we have from (18), (20),

(A.1) and (A.4) that

C11 :=C1111 =
∂2 (det[I + ε]fε + P0|Ωε|/|Ω0|)

∂ε2
11

∣

∣

∣

ε=0

=
(∂2 det[I + ε]

∂ε2
11

fε + 2
∂ det[I + ε]

∂ε11

∂fε
∂ε11

+ det[I + ε]
∂2fε
∂ε2

11

)∣

∣

∣

ε=0

.

Using (A.1) again, we have that as ε → 0,

C11 = 2
∂fε
∂ε11

+
∂2fε
∂ε2

11

= 2
∂fε
∂ϕ̄ε

∂ϕ̄ε

∂ε11
+

∂2f0
ε

∂ε2
11

+
∂2f1

ε

∂ε2
11

.

(A.12)
Using the chain rule and equation (A.10), we have

∂2f0
ε

∂ε2
11

=
∂Aε

∂ε11

(

∂2f0
ε

∂(Aε)2
∂Aε

∂ε11
+

∂2f0
ε

∂Aε∂ϕ̄ε

∂ϕ̄ε

∂ε11

)

+
∂ϕ̄ε

∂ε11

(

∂2f0
ε

∂ϕ̄ε∂Aε

∂Aε

∂ε11
+

∂2f0
ε

∂(ϕ̄ε)2
∂ϕ̄ε

∂ε11

)

+
∂f0

ε

∂ϕ̄ε

∂2ϕ̄ε

∂ε2
11

(A.13)
as ε → 0. We now show that the first parentheses of the
right hand side of the above equation vanishes as ε → 0.
We only show the case of Bcc, for the cases of stripe
and hexagon, the arguments are similar. To this end, by
equation (A.10), we have

ǫ − 3ϕ̄2

ε − 12ϕ̄εA
ε

b − 45(Aε

b )
2 +

1

Aε

b

∂f1
ε

∂Aε

b

= 0,

where f1
ε is given in (A.8). By differentiating the above

equation with respect to ε11 and taking the limit as ε →
0, we have

(2ϕ̄ε +15Aε

b)
∂Aε

b

∂ε11

∣

∣

∣

ε=0

= −(ϕ̄ε +2Aε

b)
∂ϕ̄ε

∂ε11

∣

∣

∣

ε=0

. (A.14)
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By the virtue of the above two equations and (A.8), we
have that

(

∂2f0
ε

∂(Aε)2
∂Aε

∂ε11
+

∂2f0
ε

∂Aε∂ϕ̄ε

∂ϕ̄ε

∂ε11

)

∣

∣

∣

ε=0

= 0.

Thus, as ε → 0, the equation (A.13) becomes

∂2f0
ε

∂ε2
11

=
∂ϕ̄ε

∂ε11

(

∂2f0
ε

∂ϕ̄ε∂Aε

∂Aε

∂ε11
+

∂2f0
ε

∂(ϕ̄ε)2
∂ϕ̄ε

∂ε11

)

+
∂f0

ε

∂ϕ̄ε

∂2ϕ̄ε

∂ε2
11

.

(A.15)

Furthermore, we have from equations (A.2) and (A.3)
that

(

∂f0
ε

∂ϕ̄ε

∂2ϕ̄ε

∂ε2
11

+ 2
∂fε
∂ϕ̄ε

∂ϕ̄ε

∂ε11

)

∣

∣

∣

ε=0

= 0. (A.16)

Using equations (A.12), (A.15) and (A.16), we have that
as ε → 0,

C11 =
∂ϕ̄ε

∂ε11

(

∂2f0
ε

∂ϕ̄ε∂Aε

∂Aε

∂ε11
+

∂2f0
ε

∂(ϕ̄ε)2
∂ϕ̄ε

∂ε11

)

+
∂2f1

ε

∂ε2
11

.

(A.17)
Then, we can obtain the elastic constants C11 for stripes,
hexagons and Bcc, i.e., (25), (28) and (31), by the above
equation and equations (A.2), (A.3), (A.6)-(A.8).

Similarly, we can obtain the elastic constant

C12 =
(

fε +
∂fε
∂ϕ̄ε

∑

i=1,2

∂ϕ̄ε

∂εii
+

∂2(f0
ε + f1

ε )

∂ε11∂ε22

)∣

∣

∣

ε=0

+ P0

with

∂2f0
ε

∂ε11∂ε22
=
∂ϕ̄ε

∂ε11

(

∂2f0
ε

∂ϕ̄ε∂Aε

∂Aε

∂ε22
+

∂2f0
ε

∂(ϕ̄ε)2
∂ϕ̄ε

∂ε22

)

+
∂f0

ε

∂ϕ̄ε

∂2ϕ̄ε

∂ε11∂ε22
.

Moreover, we have

(

∂f0
ε

∂ϕ̄ε

∂2ϕ̄ε

∂ε11∂ε22
+

∂fε
∂ϕ̄ε

∂ϕ̄ε

∂ε22

)

∣

∣

∣

ε=0

= 0.

Using the above three equations and (A.11) gives that as
ε → 0,

C12 =
∂ϕ̄ε

∂ε11

(

∂2f0
ε

∂ϕ̄ε∂Aε

∂Aε

∂ε22
+

∂2f0
ε

∂(ϕ̄ε)2
∂ϕ̄ε

∂ε22

)

+
∂2f1

ε

∂ε11∂ε22
.

(A.18)
Then we obtain the elastic constants C12 for hexagons
and Bcc, i.e., (29) and (32), by the above equation and
(A.2), (A.3), (A.6)-(A.8).
The elastic constant C44 := C2323 can be obtained by

using a similar argument as that for C11 and C12. To this
end, we let all components of the strain ε be zero except
ε23 and ε32. The resulting expression for the elastic con-
stant C44 is given by

C44 =
∂2f1

ε

∂ε2
23

, (A.19)

where f1
ε
in this case is given by

f1

ε
=

{

O(ε4), for stripes or hexagons,
2(ε23 + ε32)

2(Aε

b )
2 +O(ε4), for Bcc

with

Aε

b = − 2

15
ϕ̄± 1

15

√

5ǫ− 11ϕ̄2 − (ε23 + ε32)2

3
.

Thus, C44 for stripes or hexagons vanishes whilst C44 for
Bcc is given by (33).
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