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Motivated by recent measurements of strain effects on the transition temperature (Tc) of Sr2RuO4,
we study the strain response of a two-dimensional chiral p-wave supercoductor. We focus on the
effects of inhomgeneous strain fields, which are always present in any such experiment, and which
have been neglected in previous theoretical treatments. We show that the response of Tc of a
chiral superconductor to strain chages from being linear without inhomogeneity, to quadratic in
the presence of inhomogeneity. We discuss our results in the context of the ongoing debate of
superconductivity in Sr2RuO4.

I. INTRODUCTION

Strontium ruthenate (Sr2RuO4) is in many ways an
archetypal unconventional superconductor1–3. The lay-
ered perovskite can be grown to a high degree of perfec-
tion. Normal state properties of the material are known
to unprecented detail4. Importantly, superconductivity
in this material develops out of a Fermi liquid normal
state. One might therefore expect that the superconduct-
ing properties of this system can eventually be explained
from well-controlled theories of unconventional pairing.

Until recently, the consensus based on experimental
observations, was that the superconducting ground state
of Sr2RuO4 has chiral px + ipy symmetry. Such a su-
perconductor has odd parity, and spontaneously breaks
time-reversal symmetry, since the order parameter be-
longs to a doubly degenerate irreducible representation
of the tetragonal point group. A consequence of such a
superconducting state, is that the superconducting tran-
sition must split when the tetragonal symmetry is explic-
itly broken, say by an in-plane magnetic field, or by the
application of uniaxial stress. Gauge invariance requires
that such perturbations couple at lowest order to the
modulus squared of the order parameter; consequently,
Tc, the superconducting transition temperature, is pre-
dicted to vary linearly with strain.

However, neither an in-plane magnetic field5,6 or uni-
axial strain7 split the transition. These findings have cast
some doubt on whether Strontium ruthenate is a chiral
p-wave superconductor. Motivated by the more recent
strain measurements, we revisit the question of uniaxial
strain effects on two dimensional chiral p-wave supercon-
ductors. In particular, we focus on the effect of strain in-
homogeneity, which are always present in any real exper-
iment (see, for instance Ref. 8, which provides quantita-
tive estimates of such strain inhomogeneity). Our key re-
sult is simply that local variations in strain qualitatively
alters the behavior of Tc, causing it to vary quadratically
as a function of weak average strain.

The paper is organized as follows. In section II, using
Ginzburg-Landau theory, we briefly review the effect of
homogeneous strain on a chiral p-wave superconductor
and present the phase diagram in the presence of strain

inhomogeneity. Section III contains a brief discussion
ofthe results within the context of other experiments in
Strontium Ruthenate.

II. GINZBURG-LANDAU DESCRIPTION OF A
px + ipy SUPERCONDUCTOR WITH STRAIN

Consider a two dimensional tetragonal system in the
absence of quenched disorder. In the presence of spin-
orbit coupling, there is a single odd-party superconduct-
ing state, which spontaneously breaks time-reversal: the
so-called chiral px + ipy state, with order parameter

∆σσ′(k) = i~d(k) · (~σσy)σσ′ ·, ~d(k) ∝ (kx ± iky) ẑ, (1)

where ẑ is normal to the plane in which the supercon-
ductor lives, and the ± correspond to the two possible
ground states. Time-reversal symmetry is spontaneously
broken, and one ground state is chosen over the other.
The Ginzburg-Landau (GL) free energy of such a super-
conductor, valid in the vicinity of the phase transition, is
a function of a two-component order parameter, (ηx, ηy),
each of which is a complex function of position and time;
they are related respectively to the kx and ky compo-
nents of the condensate. For simplicity, we neglect the
Cooper pair spin degree of freedom as it will not play an
essential role in what follows. The GL free energy takes
the form

f [η] = f2[η] + f4[η] + fgrad[η]

f2[η] = (a+ ε+ δε)|ηx|2 + (a− ε− δε)|ηy|2

f4[η] = b1(|ηx|2 + |ηy|2)2 +
b2
2

(η∗2x η
2
y + c.c.) + b3|ηx|2|ηy|2

a = a0(T − T (0)
c )

fgrad[η] = K1(|∂xηx|2 + |∂yηy|2) +K2(|∂yηx|2 + |∂xηy|2)

+ [K3(∂xηx)∗(∂yηy) +K4(∂yηx)∗(∂xηy) + c.c.]

(2)

The quantity ε is the average uniaxial strain taken for
simplicity to be in the B1g(i.e., “x

2 − y2”) channel, and

T
(0)
c is the mean field critical temperature in the absence



of strain. We allow for local variation of strain δε, which
is taken to be a quenched random variable sampled from
a gaussian distribution having zero mean and variance σ:

δε(r) = 0, δε(r)δε(r′) = σ2δ(r − r′), (3)

where the overline denotes averaging with respect to dis-
order.

The quartic couplings determine whether the chiral p-
wave state at zero strain is favored over a time-reversal
invariant triplet superconductor. In what follows, we set
b2 > 0 and 4b1−b2+b3 > 0, which ensures that the chiral
p-wave state, ηy = ±iηx is the favored broken symmetry
state for T < T 0

c (see, for instance Ref. 9).

A. σ = 0

We begin by reviewing the phase diagram in the pres-
ence of uniform strain (σ = 0). In mean-field theory,
when the gradient terms in Eq. 2 are neglected, the pre-
diction is that strain splits the superconducting transi-
tion into two transitions: a normal-superconductor tran-

sition at temperature T
(1)
c , and a second transition, T

(2)
c

where time-reversal symmetry is spontaneously broken:

T (1)
c = T (0)

c + | ε
a0
|

T (2)
c = T (0)

c − | ε
a0
|4b1 − b2 + b3

b2 − b3

(4)

The corresponding mean field phase diagram is shown in
Fig.1 (see also Ref. 9). The phase boundary between the
normal and superconducting states is linear in |ε|, and
has a discontinuous first derivative at ε = 0.
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FIG. 1. Mean-field phase diagram in the absence of disorder.
The condition b2 > 0 and 4b1− b2 + b3 > 0 is taken such that
chiral p-wave state is preferred for T < T

(2)
c . Linear phase

boundaries are obtained by minimizing the effective energy
density Eq. 2. The mean field solution predicts a kink in the
phase boundary at ε = 0.

For completeness, we list the mean field solution of
|ηx|2 and |ηy|2 as a function of the average strain ε and

temperature T

T > T (1)
c : |ηx|2 = |ηy|2 = 0

px phase : |ηx|2 =
−ε− a(T )

2b1
, |ηy|2 = 0

py phase : |ηy|2 =
ε− a(T )

2b1
, |ηx|2 = 0

T < T (2)
c : ηx ± iηy phase, |ηx|2 =

−a(T )

4b1 − b2 + b3
− ε

b2 − b3
,

|ηy|2 =
−a(T )

4b1 − b2 + b3
+

ε

b2 − b3
(5)

B. Numerical results for σ 6= 0

Next, we consider effects of strain inhomogeneity (σ 6=
0). Instead of disorder averaging using the replica trick,
we obtain the phase diagram from a direct classical
Monte Carlo sampling of Eq.2. Working on a 40 by
40 square lattice with periodic boundary conditions, we
employ a Metropolis algorithm, with an equilibration of
400000 steps, and the last 80000 steps are taken for mea-
surement. For each average strain ε, and temperature
T , we obtain results by averaging over 14 strain config-
urations. For our choice of parameters, we take Tc = 1,
b1 = 1.5, b2 = 2/3 and b3 = −2/3. We further con-
sider K1/Tc = 10000 � 1, K2 = K3 = K4 = K1/3, and
K5 = K1/100. In this limit, thermal fluctuations can
be neglected. To avoid unnecessary finite size effects,
the lattice constant needs to be rescaled with respect to√
K1.
In our simulation, we measured the following quanti-

ties,

Cαα ≡
1

N

∑
i

|〈η∗α(i)ηα(i′)〉|, α = x, y. (6)

Here, i and i′ denote the sites on the lattice, and N is
the total number of sites. 〈...〉 denotes a thermal average
from Monte Carlo simulation. i′ is chosen for each i, such
that the displacement between them is maximized (call
it Rmax). In a Lx by Ly system with periodic bound-

ary condition, Rmax is equal to
√
L2
x + L2

y/2. Thus,

〈η∗α(i)ηα(i′)〉 is the correlation function of ηα with the
distance Rmax. Cxx and Cyy are then the average mag-
nitude of correlation function for ηx and ηy at Rmax, re-
spectively. They measure the long-range ordering of the
order parameters ηx and ηy. The phase boundary be-

tween the normal state and superconducting state (T
(1)
c )

is located at C = Cxx + Cyy = ε = 0.01. That is to say,
the correlation length of the system becomes equal to
Rmax/ log(1/ε). In addition, we have also studied the de-
pendence of the correlation functions above as a function
of relative position Ri,i′ = |i − i′| and have verified that
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the function varies exponentially with Ri,i′ for T > T
(1)
c ,

and is a constant for T < T
(1)
c .

Similarly, we define the following correlation function
to characterize the breaking of time-reversal symmetry:

Cxy ≡
1

N

∑
i

Re[i〈η∗x(i)ηy(i′)〉], (7)

which we use to locate the second phase boundary T
(2)
c .

To do so, we add a weak symmetry breaking term
h(iη∗xηy + c.c.) with h = −0.01 to the free energy (note
that h corresponds simply to an orbital Zeeman field).

The numerical results are summarized in Fig. 2. In
the absence of strain inhomogeneity, the linear phase
boundary is verified. Under strain inhomogeneity, the
phase boundary becomes quadratic for small ε. For large
enough ε, the phase boundary stays linear. The crossover
from quadratic to linear behavior as a function of ε occurs
roughly at εc ∼ σ. The reason for the quadratic response
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FIG. 2. Numerical results for the phase diagrams for (Top)
σ = 0 and (Bottom) σ = 0.2, for weak thermal fluctuation.

Phase boundaries T
(1)
c and T

(2)
c are located for 7 different

average strain ε, using C = Cxx + Cyy = ε = 0.01, and
Cxy = ε/2 = 0.005, respectively. Solid lines are the fitted
phase boundary.

at low values of strain can be understood as follows. Let
us consider the normal-superconducting transition. In
the case of homogeneous strain, the system is sensitive to
the sign of ε, since the macroscopic configuration changes
from a px to a py superconductor below the transition
when the sign of ε changes. However, with strain inho-
mogeneities, there will always be local patches hosting

both types of superconductivity. Until the magnitude of
ε exceeds the rms strain set by the inhomogeneities, the
macroscopic ground states are insensitive to the sign of
ε.

III. DISCUSSION

In our Monte Carlo simulation, the length scale of in-
homogeneity is chosen to be the lattice constant, which
is much smaller than the correlation length. We focused
on the correlation function at Rmax, corresponding to a
measurement with resolution length Rmax, which is also
much longer than the inhomogeneity length. Our key re-
sult presented above is that local variations of strain have
a qualitative effect on the phase diagram of a chiral p-
wave superconductor. Instead of a cusp like behavior that
indicates a split transition, the transition temperature
varies quadratically with strain due to such inhomogene-
ity. Experimental observations of local strain variations
have been reported recently in Ref. 8, and constrain the-
ories of unconventional superconductivity in this system.

Next, we briefly comment on previous theoretical treat-
ments. Our study most closely resembles that of Ref. 9,
where thermal fluctuations led to a quadratic variation in
Tc as a function of strain. However, strain inhomogene-
ity was not considered, and a consequence of the theory
of Ref. 9, is that at zero strain, the superconducting
transition is first order. While weakly first order tran-
sitions have been reported in an in-plane field, to our
knowledge, such behavior is absent at zero field. Fur-
thermore, the large heat capacity jump at the transition
seems to indicate to us that thermal fluctuations are rel-
atively unimportant, and that a mean-field analysis of
the superconducting transition ought to suffice. It is pre-
cisely within such a framework that we find a quadratic
variation in Tc as a function of weak strain.

A. Relevance to the phenomenology of Sr2RuO4

While we have shown that a chiral p-wave supercon-
ductor can exhibit a quadratic Tc(ε), it remains un-
clear whether Sr2RuO4 is indeed such a superconduc-
tor. The only experiment that directly points towards a
spin-triplet (or more generally, an odd parity) supercon-
ductor is the measurement of the NMR Knight shift10,11.
Other experiments, such as the Kerr effect12 and muon
spin resonance13, require broken time-reversal symmetry,
which can also arise from spin-singlet superconductivity.
These experiments therefore provide only circumstantial
evidence for chiral p-wave pairing. In addition, there are
several expeimental observations that seem directly in
contradiction with a simple chiral p-wave state14–16. On-
going NMR studies in the presence of strain (e.g. Ref.
17) are likely to shed significant light on these issues.
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