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We introduce a variational wavefunction for many-body ground states that involves imaginary
time evolution with two different Hamiltonians in an alternating fashion with variable time intervals.
We successfully apply the ansatz on the one- and two-dimensional transverse-field Ising model and
systematically study its scaling for the one-dimensional model at criticality. We find the total
imaginary time required scales logarithmically with system size, in contrast to the linear scaling
in conventional Quantum Monte Carlo. We suggest this is due to unique dynamics permitted by
alternating imaginary time evolution, including exponential growth of bipartite entanglement. For
generic models, the superior scaling of our ansatz potentially mitigates the negative sign problem
at the expense of having to optimize variational parameters.

Introduction– Imaginary time plays a prominent role in
multiple branches of physics, including cosmology, statis-
tical mechanics and quantum field theory. The seemingly
simple replacement of real time, t, with its imaginary
counterpart, τ = −it, leads to fundamental connections
between quantum theory and statistical mechanics [1].
Such connections enable the efficient simulation of many
quantum systems using quantum Monte Carlo techniques
[2–4]. However, for many physically interesting models,
these methods suffer from the prohibitive ‘negative sign
problem’ [5, 6], which requires an exponential amount
of computational resources to obtain reasonable accu-
racy for quantum many-body systems. Many outstand-
ing problems in condensed matter, such as those involv-
ing high temperature superconductors or topologically
ordered phases, require an understanding of complex in-
teracting models which are unsolved with present tech-
niques.

One class of Monte Carlo methods that can avoid
the sign problem are so-called variational Monte Carlo
(VMC) methods [7–11]. In VMC, one assumes a suffi-
ciently general trial state that depends on adjustable pa-
rameters. These parameters are then chosen to minimize
the energy with respect to the given Hamiltonian. Find-
ing an effective trial state such as Jastrow [11], matrix
product states [12–14], or neural network states [15–18],
can result in efficient simulation of interacting quantum
systems. The key to the success of these techniques is
a well-chosen ansatz that reflects the properties of the
target phase and the existence of a viable optimization
scheme [19, 20].

The recent advent of quantum computers and simula-
tors has motivated the development of new variational
approaches [21]. Such variational quantum algorithms
involve applying a sequence of unitary operators, param-
eterized by several variables onto a easy-to-prepare initial
state. The variables are chosen to optimize a given cost
function involving the resulting wavefunction. For exam-

ple, in the quantum approximate optimization algorithm
(QAOA) [22–26] the cost function is a classical Hamilto-
nian encoding a combinatorial optimization problem, and
the variational wavefunction is prepared by alternating
between evolving with the Hamiltonian and a transverse
field. The evolution times constitute variational param-
eters that are optimized to minimize the Hamiltonian
cost function. This variational approach has been gener-
alized for preparing both strongly correlated and highly-
entangled states on near-term quantum devices [27–29].

Motivated by the success of such variational ap-
proaches, in this Letter we propose a variational ansatz
for ground states of quantum many-body systems which
involves sequentially evolving with different Hamiltoni-
ans in imaginary time. In contrast to real time evolu-
tion with local Hamiltonians, which is limited by Lieb-
Robinson bounds on the growth of correlation func-
tions, imaginary time evolution does not have this con-
straint and can exhibit remarkable efficiency in traversing
Hilbert space.

As proof of concept, we demonstrate the efficiency of
our ansatz in representing the ground state of the trans-
verse field Ising model at criticality. Whereas standard
projector methods require imaginary time scaling with
system size L to reach the critical ground state, we show
numerically that our ansatz requires time scaling loga-
rithmically with L. Furthermore, we analyze how en-
tanglement grows after each imaginary time operation in
our ansatz, and we find an exponential growth that is a
unique feature of imaginary time dynamics. We conclude
by demonstrating that the ansatz continues to perform
well in the presence of integrability-breaking perturba-
tions, and we mention generalizations of our ansatz to
other models, including those with sign problems. We
envision the main purpose of this ansatz to be an effi-
cient trial wavefunction for quantum many-body physics
on (classical) computers, however, it is possible that one
can also implement such imaginary time evolution na-
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tively on a quantum computer [30, 31].
Ansatz– Many Hamiltonians are naturally a linear

combination of two components H = HA + gHB , where
HA,B are individually tractable to analyze. Examples
include transverse field Ising, Hubbard, and the J1–J2
model. Motivated by the QAOA procedure, we consider
the following variational imaginary time ansatz (VITA)
for the ground state of H:

|ψP (α,β)〉 = N e−βPHBe−αPHA · · · e−β1HBe−α1HA |ψ0〉
(1)

where P is the number of pairs of variational parameters
α = (α1, ..., αP ),β = (β1, ...βP ), |ψ0〉 is an initial state,
and N is a normalization factor. We further define the
total imaginary time τ = 1

2

∑P
p=1(αp + βp). A circuit

representation is shown in Fig. 1. The bang-bang, or
square-pulse, style of the ansatz is optimal for quantum
control in real-time QAOA as per Pontryagin’s principle
[32].

While VITA is applicable to any Hamiltonian, in spe-
cific cases there is explicit physical motivation for con-
sidering such an ansatz. For example, for the fermionic
Hubbard model, the P = 1 ansatz reduces to Otsuka’s
generalization of the Gutzwiller variational wavefunction
[7, 9, 10], which seeks to balance single occupancy per
site with itinerancy. The P ≤ 3 case has been considered
in Ref. [33] for the two-dimensional Hubbard model, but
a systematic analysis of how its performance scales with
system size and P was not carried out. A related vari-
ational approach for the Hubbard model has also been
considered in Ref. [34].

The standard projector method for attaining the
ground state of H involves evaluating e−τH |ψ0〉 for τ >∼
1/∆ where ∆ is the many-body spectral gap. This can
be decomposed via Trotterization into a sequence of the
VITA form, with parameters αp = βp = τ/2P for large
P . This guarantees that VITA can exactly represent the
ground state in the P →∞ limit. However, the projector
method is especially expensive for critical systems where
∆ ∼ 1/L, and hence τ scales polynomially with L. One
can consider Eq. (1) as a non-uniform Trotterization with
large (and variable) times steps. We will show that re-
markably high fidelities can be attained even with τ that
is exponentially smaller compared to the aforementioned
estimate from the standard projector method.

We first present some general considerations of why
such an ansatz may be efficient. It is useful to first
compare with the real-time analogue, which are QAOA-
type circuits involving alternating real-time evolution
between two Hamiltonians. The Lieb-Robinson bound
dictates that real-time evolution with local Hamiltoni-
ans can generate correlations only within a light cone,
and thus there are lower bounds on the time it takes
to prepare highly correlated states starting from unen-
tangled product states. For example, in one dimen-
sion, the total time to prepare the GHZ (“cat”) state

1√
2

(|11 . . . 1〉+ |00 . . . 0〉) scales at least linearly with sys-

tem size L [28, 35]. In contrast, by evolving with the GHZ

parent Hamiltonian HZZ = −∑L
i=1 ZiZi+1 in imaginary

time (Z is the Pauli-Z matrix), the GHZ state can be
prepared with imaginary time scaling as logL [36].
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FIG. 1. Circuit representation of the trial state |ψP (α,β)〉
for P = 1. Each box denotes imaginary time evolution with
the enclosed Hamiltonian.

Application– We test VITA on the transverse-field
Ising model (TFIM)

H = HZZ + hHX ≡ −
N∑
i=1

ZiZi+1 − h
N∑
i=1

Xi (2)

with periodic boundary conditions on a system with N
spins. Z,X are the Pauli matrices, and h is the transverse
field strength. Our ansatz in this case starts from the
paramagnetic ground state of HX , |+〉 and alternates
between HA = HZZ and HB = HX .

The Ising chain can be mapped to free fermions via the
Jordan-Wigner transformation [37] which allows for the
efficient evaluation of Eq. (1). We can thus optimize our
ansatz for very large system sizes and several pulses. This
allows us to properly characterize how efficient the VITA
ansatz is without introducing sampling error. For a fixed
P , optimization involves finding the minima of the energy
cost function EP (α,β) = 〈ψP (α,β)|H|ψP (α,β)〉.

We first focus on approximating the critical ground
state of H at h = 1. Figure 2a shows the relative error in
energy εrel = |(EP (α,β) − Eexact)/Eexact| where Eexact

is the exact ground state energy at the critical point,
for various P . Evidently, increasing P dramatically im-
proves the accuracy in the energy, even for large system
sizes. Optimized parameters for various P are provided
in supplementary material.

Since the exact ground state for the TFIM is known,
we also compare the fidelity, f , of the optimized trial
state with the target state. The error in fidelity, 1− f ≡
1− |〈ψexact|ψP (α,β)〉〉|2, is shown in Fig. 2b for various
P,L. The efficiency is quite remarkable; for example, for
L = 64, P = 2 is already sufficient to approximate the
critical state to within around 10−4 in relative energy and
10−2 in fidelity. Recall that the error in fidelity provides
an upper-bound for the error in any observable [38].
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FIG. 2. (a) Relative error in energy, εrel between the exact
ground state energy, Eexact, and the energy of the optimized
trial wavefunction EP (α,β). (b) Number of pulses P needed
to obtain a desired accuracy in the fidelity, f , for a given
system size, L. The white region was not computed in the
present study.

Entanglement dynamics– While there is no Lieb-
Robinson bound limiting the rate for generating long-
range correlations in our ansatz, entanglement considera-
tions provide lower bounds on the iterations P required to
prepare the critical state. Ignoring normalization, imag-
inary time evolution with a local Hamiltonian can be
represented by a (non-unitary) quantum circuit; each it-
eration of our ansatz corresponds to three layers shown
in Fig. 1. After P pulses, the bipartite entanglement en-
tropy between the left and right halves the system, here-
after abbreviated EE, can be attained by bisecting the
circuit through P bonds. Hence, EE after P iterations is
at most P logD, where D is the Schmidt rank (number
of singular values) upon decomposing a single two-qubit
imaginary time operator.

In order to generate the EE of the critical state, which
scales as S ∝ logL, we need the number of pulses scaling
at least as P ∝ logL. We observe that Fig. 2b is con-
sistent with this scaling form. For example, for a target
fidelity error of 10−10, each additional P in the ansatz
can represent a system approximately twice as large.
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FIG. 3. (a) Entanglement entropy of half partition grows
exponentially with imaginary time τ , in the optimal P = 5
ansatz for the critical state. (b) Mutual information between
two spins at positions A and B respectively as a function
of their distance ∆x, for intermediate steps p in the P = 5
protocol with L = 64.

The entanglement dynamics in imaginary time evolu-
tion can be considerably different from its real time coun-

terpart. For real time evolution, EE across a bipartition
can increase only by acting with an operator supported
on both sides of the partition. If the circuit in Fig. 1
were unitary, any increase in EE from one layer to the
next would be bounded by a constant depending on the
two-qubit unitary but not on the state being acted on
(see the “small incremental entangling theorem” [39]).
In contrast, even imaginary time operators acting on one
side of the bipartition can generate entanglement across
the cut. As a very simple example involving two spins,
the action of e−βZ1 on η+|11〉 + η−|00〉 can increase EE
as long as |η+| > |η−| > 0. This illustrates that the more
entangled the initial state, the more imaginary time evo-
lution can change the entanglement. The change is not
simply bounded by a state-independent constant. This
allows in principle an exponential growth of EE, as long
as the total EE after P steps lies below P logD.

Our ansatz exhibits such dynamics. We take the P = 5
ansatz and analyze the EE of the states at intermediate
steps, p, of our protocol using the technique of [40, 41].
We find that the EE increases exponentially with imag-
inary time (Fig. 3a). Moreover, for every intermediate
state, we plot the mutual information (SA + SB − SAB)
between two spins A,B as a function of their separation
(Fig. 3b). The power law decay for every step is in stark
contrast to any local real time evolution and illustrates
the ability of imaginary time evolution to generate long-
range correlations [42]. We find that under imaginary-
time evolution, entanglement starts to grow immediately
following a local quench, in contrast to real-time evolu-
tion [43] where it takes a time proportional to ` before
growing, ` being the distance between the location of the
local quench and the entanglement cut.

Scaling– To compare directly with the projector
method, we also investigate the total imaginary time τ ≡
1
2

∑P
p=1(αp+βp) required to achieve a target fidelity. Mo-

tivated by the P ∝ logL scaling for achieving a target fi-
delity, we propose a scaling form of 1−f = G(τ(logL)−ν)
for some exponent ν. We perform a scaling collapse for
L ∈ [4, 6, . . . , 1024], and P ∈ [1, . . . , 7] and find the opti-
mal exponent ν = 2.3 ± 0.1. This logarithmic scaling is
an exponential speedup compared to the linear scaling of
the projector method, 1− f = F (τL−1) [44].

Monte Carlo approach– While the TFIM model admits
a dual representation as free fermions, for a general model
sampling methods are crucial for estimating the energy
cost function. As a proof of concept, we also use Monte
Carlo sampling for stochastically optimizing VITA.

The quantum-classical correspondence maps quantum
observables to dual classical observables of a classical
anisotropic Ising model on an L × (2P + 1) lattice. We
denote the classical spin configurations by {s} and the
spatial and imaginary time by (i, p), respectively [45].
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with ν = 2.3. The fit is a power law log(1− f) = 175x1.85

with x = τ
(logL)ν

.

The expectation value of a quantum observable O is

〈ψP (α,β)|O|ψP (α,β)〉 =
∑
{s}

Õ(s) pα,β(s) (3)

where Õ are dual classical observables, and pα,β(s) is the
Boltzmann weight corresponding to the Ising model with
couplings Jx(p) = αp, Jτ (p) = 1

2 ln cothβp between near-
est neighbors in space and imaginary time, respectively.
The couplings vary with imaginary time, p, but are uni-
form in space. In this way, the energy of the trial wave-
function can be sampled efficiently with Monte Carlo.

We use this scheme with P = 1, 2 to target the
ground states for various values of the transverse field h
in both the (integrable) one-dimensional and the (non-
integrable) two-dimensional TFIM. We use stochastic
natural gradient descent (stochastic reconfiguration) to
optimize the parameters [20]. We find rapid convergence
for P = 1, while higher-P becomes more difficult, espe-
cially for with a noisy objective function.

The relative error in energy achieved is shown in Fig. 5,
with the free fermion results for comparison. For P = 1
the VMC achieves the same accuracy as the free fermion
method. However, for P = 2 away from the critical point
h = 1, the VMC performance is limited by sampling error
[46].

Discussion– We have introduced a variational tech-
nique that is motivated by both projector methods and
recently developed quantum algorithms. It provides sub-
stantial shortcuts to the usual Trotterization of imagi-
nary time evolution, at the expense of making the pro-
cedure variational. Using TFIM as a first testbed, we
have demonstrated that this ansatz is viable for sampling
methods and highly efficient. In particular, the number
of variational parameters required to represent the TFIM
critical state scales as ∼ logL, in contrast to other vari-
ational methods such as density matrix renormalization
group (DMRG), which in this critical case requires bond
dimension scaling with L and thus number of parame-
ters scaling with L2. One reason for this efficiency is the
fact that imaginary time evolution is not subject to many
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FIG. 5. Relative error in energy, εrel for VMC using our
ansatz on the TFIM: (a) 1d model with L = 64 spins. Solid
lines denotes the results from the free fermion approach, (b)
2d model on a 10× 10 square lattice. Energies are compared
with those from zero-temperature stochastic series expansion
[47].

bounds for real time evolution; despite being generated
by local Hamiltonians, our ansatz exhibits an exponen-
tial growth of entanglement entropy and rapid generation
of long-range correlations, features unique to imaginary
time evolution.

Our variational approach is potentially useful in the
many situations where imaginary time Trotterization in-
volves a prohibitively large number of steps. For exam-
ple, in models with a sign problem, the computational
cost scales exponentially with space and imaginary time
O(τLd). Our ansatz provides a variational shortcut that
significantly reduces τ (from τ ∼ L to τ ∼ (logL)2.3 in
the critical 1d TFIM) which could enable the study of
larger systems even with a sign problem. For few vari-
ational parameters (P = 1, 2), the optimization may be
feasible, and we leave these investigations to future work.
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