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We investigate topological features of electronic structures which produce large anomalous Hall
effect in the non-collinear antiferromagnetic metallic states of anti-perovskite manganese nitrides
by first-principles calculations. We first predict the stable magnetic structures of these compounds
to be non-collinear antiferromagnetic structures characterized by either T1g or T2g irreducible rep-
resentation by evaluating the total energy for all of the magnetic structures classified according to
the symmetry and multipole moments. The topology analysis is next performed for the Wannier
tight-binding models obtained from the first-principles band structures. Our results reveal the small
Berry curvature induced through the coupling between occupied and unoccupied states with the
spin-orbit coupling, which is widely spread around the Fermi surface in the Brillouin zone, domi-
nantly contributes after the k-space integration to the anomalous Hall conductivity, while the local
divergent Berry curvature around Weyl points has a rather small contribution to the anomalous
Hall conductivity.

I. INTRODUCTION

Anomalous Hall (AH) effect has been focused on ex-
ploring the relation between the topological feature of
electronic band structures and its emergence as a macro-
scopic phenomenon1. Recently, the large AH effect was
predicted by the first-principles calculations for non-
collinear antiferromagnets with no net magnetization2–5

and was observed experimentally for the antiferromag-
netic (AFM) phases in Mn3Sn and Mn3Ge6–8. The large
AH effect in AFM states has attracted an increasing
amount of attention because of the insensitivity against
an applied magnetic field and no stray fields interfering
with the neighboring cells as well as faster spin dynamics
than ferromagnets5–10. Those findings of the AH effect
in the non-collinear AFM states urge us to get a compre-
hensive understanding of possible AH effect in various
magnetic states.

One of the authors has shown that some antiferro-
magnetic structures can induce the AH effect by break-
ing the magnetic symmetry same as that for the ordi-
nary ferromagnetic order, and introduced cluster mul-
tipoles to identify the order parameters which induce
the AH effect as a natural extension of magnetization in
ferromagnets11,12. In this context, anti-perovskite man-
ganese nitrides can be regarded as a new playground to
explore the AH effect, since Mn3AN (A= Ni, Sn) have
been found to show non-collinear AFM in the triangu-
lar Mn lattice corresponding to irreducible representa-
tions T1g(Γ

+
4 ) and T2g(Γ

+
5 ), respectively

13–15 and there
are many analogues with the replaced nonmagnetic ele-
ments. A recent study on the spin-order dependent AH
effect in the non-collinear AFM Mn3AN (A= Ga, Zn,
Ag, or Ni) also suggested that these compounds are an

excellent AFM platform for realizing novel spintronics
applications16.

The AH effect was suggested mainly arising from
large Berry curvature around the Weyl points in Weyl
semimetals17,18. For metallic ferromagnetic bcc-Fe,
Mart́ınez et al. investigated topological feature related
to the AH effect and found the dominant contribution
from the Berry curvature distribution across the Fermi
sheets with the possible enhanced contribution from the
Fermi sheets having the Weyl points very nearby19. In
this paper, we provide the results of systematic analysis
for the AH effect in anti-perovskite manganese nitrides
Mn3AN (A= Ni, Cu, Zn, Ga, Ge, Pd, In, Sn, Ir, Pt) and
discuss the stability, symmetry, and topology aspects of
the magnetic structures leading to the AH effect. In par-
ticular, we identify important factors for the large AH
effect with the detailed analysis of Weyl points, Berry
curvature, and Fermi surfaces, which characterize the
topological features of the magnetic systems, by means
of first-principles calculations. We find that the AH ef-
fect is dominantly contributed from the Berry curvatures
widely spread around the Fermi surfaces induced with
the band splitting due to the spin-orbit coupling (SOC)
and the contribution from the divergent Berry curvature,
for instance, around Weyl points is rather small.

This paper is organized as follows. Section II shows
symmetry analysis related to AH effect in Mn3AN. The
method to perform the first-principles calculation is pre-
sented in Sec. III. Then results for electronic and topolog-
ical aspects of the AH conductivity in these compounds
are shown in Sec. IV. We investigate the stable mag-
netic structures in Sec. IV A and the AH conductivity in
Sec. IV B. In Sec. IV C, we showWeyl points can produce
divergent peaks of the Berry curvature when they are lo-
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FIG. 1. Energetically inequivalent magnetic structures of
Mn3AN classified according to the multipole moments follow-
ing Ref. 20. The green, yellow, and blue balls indicate Mn,
A, and N atoms, respectively. Arrows on Mn atoms indicate
the magnetic moments.

cated just around the Fermi level, but the contribution to
the AH effect is nevertheless small. We then discuss the
dominant factor that contributes to the AH conductivity
in Sec. IV D. Finally, Sec. V contains a summary of this
work.

II. SYMMETRY AND ANOMALOUS HALL

EFFECT IN Mn3AN

Manganese nitrides Mn3AN have the anti-perovskite
crystal structure which belongs to the space group
Pm3̄m (O1

h, No. 221). We classify the energetically in-
equivalent magnetic structures with the ordering vector
q = 0, shown in Fig. 1, using the symmetry-adapted
multipole magnetic structure bases generated following
Ref. 20. In Fig. 1, the magnetic (M)-dipole structures
(Mx,My,Mz) = (001), (110), and (111) represent fer-
romagnetic structures oriented along [001], [110], and
[111] directions, respectively. The pure antiferromag-
netic structures are obtained as the magnetic structures
orthogonalized to the M-dipole structures20 and are, in
this compound, obtained as the rank-2 magnetic toroidal

TABLE I. Classification of the magnetic structures with the
ordering vector q=0 in Mn3AN according to the symmetry-
adapted multipole20 as well as the irreducible representation
(IR), magnetic point group (Mag. PG) with its principal axis
(P. axis). The AH conductivity tensors (AHC) that can be
finite under the magnetic point groups are also listed, where
σ110 ≡ 1√

2
(σyz + σzx) and σ111 ≡ 1√

3
(σyz + σzx + σxy).

Oh-IR Multipole Mag. PG P. axis AHC
T1g (Mx,My ,Mz) = (001) 4/mm′m′ [100] σyz

= (010) 4/mm′m′ [010] σzx

= (001) 4/mm′m′ [001] σxy

= (110) m′m′m [110] σ110

= (111) 3̄m′ [111] σ111

T2g (Tyz, Tzx, Txy) = (100) 4′/mm′m [100] None
= (010) 4′/mm′m [010] None
= (001) 4′/mm′m [001] None
= (110) mm′m [110] None
= (111) 3̄m [111] None

T1g (Mα
x ,M

α
y ,Mα

y ) = (100) 4/mm′m′ [100] σyz

= (010) 4/mm′m′ [010] σzx

= (001) 4/mm′m′ [001] σxy

= (110) m′m′m [110] σ110

= (111) 3̄m′ [111] σ111

multipoles (MT-quadrupoles) and rank-3 M-multipoles
(M-octupoles).
Orthogonalized multipoles which belong to T1g and

T2g IRs are listed in Table I together with the non-zero
AH conductivity tensors. As shown in Table I, the M-
octupoles can induce the AH effect since these ordered
states break the magnetic symmetry same as those of the
M-dipoles11. On the other hand, MT-quadrupoles, which
belong to T2g IR, do not induce the AH effect with the
magnetic structures shown in Fig. 1 due to the presence
of the magnetic symmetry which forbids the finite AH
conductivity as we demonstrate in Sec. IV.
As discussed in Ref. 11, co-planar magnetic structures

induce no AH effect in the absence of SOC in general
by the presence of the effective time-reversal symmetry,
which is the symmetry of conjunct operation of the time-
reversal and global spin rotation. The M-dipoles and M-
octupoles in Fig. 1 need SOC to induce the AH effect. In
the following section, we proceed to the quantitative eval-
uation of the AH conductivity for the M-octopole struc-
ture based on the results of first-principles calculations
considering the SOC.

III. METHOD

QUANTUM ESPRESSO package21 is used to per-
form first-principles calculations and to evaluate the elec-
tronic and magnetic properties of antiperovskite man-
ganese nitrides. Generalized gradient approximation in
the parametrization of Perdew, Burke, and Ernzerhof22 is
used for the exchange-correlation functional. The pseu-
dopotentials in the projector augmented-wave method23

are generated by PSLIBRARY24. We choose kinetic cut-
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FIG. 2. Energy bands from the first-principles calculations
(red) and from Wannier interpolation (green) of (a) Mn3NiN,
(b) Mn3GeN, and (c) Mn3IrN along high symmetry points in
the first Brillouin zone of a simple cubic shown in Fig. 3.
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FIG. 3. The first Brillouin zone (black) corresponding to the
crystal primitive unit cell with the high symmetry points.The
hexagonal plane (green line) shows minimum periodicity in
the (111) plane for the simple cubic Brillouin zone with the
center point at Γ. The orange rectangular is the region used
to plot the Berry curvature in Fig. 5.

off energies 100 Ry and 800 Ry for the plane wave basis
set and charge density, respectively.
The AH conductivity is calculated by the Brillouin

zone integration of the Berry curvature with summation
of the one-electron bands below the Fermi level25,26:

σαβ = −
e2

~

∫
dk

(2π)3

∑

n

fn(k)Ωn,αβ(k ) (1)

where n is band index, α, β = x, y, z (α 6= β), and
fn(k) = θ(ǫn(k)−µ) is the occupation factor determined
from the eigenvalue of the Bloch states ǫn(k ) and the
Fermi energy µ. The Berry curvature is evaluated fol-
lowing the Kubo formula25,27:

Ωn,αβ(k ) = −2Im
∑

m 6=n

vnm,α(k )vmn,β(k)

[ǫm(k )− ǫn(k )]2
(2)

where the velocity operator is defined in term of the pe-
riodic part unk of the Bloch states:

vnm,α(k) =
1

~

〈
un(k)

∣∣∣∣∣
∂Ĥ(k)

∂kα

∣∣∣∣∣ um(k)

〉
(3)

with Ĥ(k ) = e−ik.rĤeik.r . The AH conductivity is evalu-
ated by using the realistic tight-binding models obtained
from the first-principles band structures25 by Wannier in-
terpolation scheme using Wannier9028. Including s, p, d
orbitals for Mn and A atoms and s, p orbitals for N
atoms, we have obtained the tight-binding models show-
ing almost complete reproducibility of the energy bands
for those obtained from the first-principles calculations
within the energy interval from the lowest energy of the
valence bands to about 4 eV above the Fermi energy
for the Mn3AN series, as shown in Fig. 2 for Mn3GeN,
Mn3PdN, and Mn3IrN. A k-mesh 18×18×18 is utilized
to sample the first Brillouin zone (BZ) with Methfessel-
Paxton smearing width of 0.005 Ry to get the Fermi level.



4

 0

 50

 100

 150

 200

 250

 300

 350

3.68 3.72 3.76 3.80 3.84 3.88 3.92 3.96 4.00 4.04 4.08

T
ot

al
 e

ne
rg

y 
(m

eV
)

Lattice constant (Å)

(Mx,My,Mz)=(001)
(Mx,My,Mz)=(110)
(Mx,My,Mz)=(111)

(Txy,Tyz,Tzx)=(001)

(Mx
α,My

α,Mz
α)=(001)

(Txy,Tyz,Tzx)=(111)

(Mx
α,My

α,Mz
α)=(111)

FIG. 4. Total energy as the function of lattice constants for
different magnetic configurations in Mn3GaN. The equilib-
rium total energy of the (Mα

x ,Mα
y ,M

α
z ) = (111) magnetic

structure is chosen as the origin of total energy. The values
are fitted to Birch-Murnaghan’s equation of state31 by the
least square method.

The AH conductivity was evaluated with the uniform k-
point mesh of 200×200×200 with the adaptive k-mesh
refinement29,30 of 5×5×5 for the absolute values of Berry
curvature larger than 100Å2.

IV. RESULTS

A. Stability of magnetic structure in Mn3AN

We first consider the stability of magnetic structures
in Mn3AN by comparing total energies calculated by the
first-principles approach. The optimization of lattice con-
stants for each magnetic structure in Mn3AN are per-
formed by calculating lattice constant dependence of the
total energy as shown for Mn3GaN in Fig. 4. The opti-
mized lattice constants agree with previous experimental
values32,33. It is shown that either (Tyz, Tzx, Txy)= (111)
or (Mα

x , M
α
y , M

α
z )= (111) is obtained as the stable mag-

netic structure in Mn3AN. We hereafter focus on these
(111) non-collinear AFM structures, MTQ and MO and
refer the magnetic structures of (Tyz, Tzx, Txy)= (111)
and of (Mα

x , M
α
y , M

α
z )= (111) as MT-quadrupole (MTQ)

and M-octupole (MO), respectively, following the multi-
pole characterization of the magnetic structure proposed
in Ref. 20. The total energies for ferromagnetic, MTQ,
and MO magnetic structures are listed in Table II with
the relative energy from the MO magnetic structure, i.e.
∆E = E − EMO, for the series of Mn3AN.
Table II shows that Mn3AN with A = Ni, In, Sn

prefer the MO configuration, and those with the other
A atoms prefer the MTQ configuration, having the
MO magnetic structure as the secondary stable solu-
tion. The energy differences between the MO and MTQ
magnetic structures are small for most of the Mn3AN
compounds. Mn3NiN shows only tiny energy differ-
ence of 0.04 meV/f.u., which explain the experimen-

(a) (b) MOMTQ

FIG. 5. The [111] Berry curvature component after tak-
ing band summation, Ω111

sum(Å2)≡ 1√
3
(Ωyz,sum + Ωzx,sum +

Ωxy,sum), on (111) plane centered at Γ, shown in Fig. 3, for
Mn3GeN with (a) the MTQ and (b) the MO configuration,
respectively.

tally reported possible coexistence of the MO and MTO
phases15. On the other hand, we may expect that
Mn3InN and Mn3SnN are stabilized to the MO phase
with ∆E(MTQ − MO) ∼ 74.6 and 215.6 meV/f.u. and
active for the AH effect. The presence of weak ferromag-
netism in AFM states observed for Mn3InN

35 implies
that the observed AFM structure is the MO structure
since the MO and ferromagnetic structures belong to the
same magnetic symmetry and can coexist in the mag-
netic phase. In the followings, we will focus on the AH
effect in the MO magnetic structure, which is the first
or secondary stable solution for all of Mn3AN and can
induce the AH effect.

B. Anomalous Hall conductivity

We have calculated the AH conductivity, σ111 ≡
1√
3
(σyz + σzx + σxy), for the magnetic structures shown

in Fig. 1 and listed the values in Table III. Note that the
conductivity (σyz , σzx, σzy) has the transformation prop-
erty for the magnetic point group same as that for the
magnetization (Mx, My, Mz)

11, and the time-reversal
counterparts of the magnetic structures hold the oppo-
site sign to the AH conductivity. Some of Mn3AN materi-
als show the large AH conductivities in the non-collinear
AFM magnetic structure as the same order of the AH
conductivity calculated for the ferromagnetic states such
as Fe (750 S/cm)25,29 and Co (480 S/cm)37. The AH
conductivity values for the non-collinear antiferromagnet
Mn3Ir, which shows the same magnetic alignment on Mn
atoms in Mn3AN, is also evaluated in this work as 233.8
S/cm and in good agreement with the previous work (218
S/cm)2. Some of the AH conductivities theoretically pre-
dicted in these compounds are the same order in this
work as listed in Table III. The difference in its value
may come from the details of first-principles calculations
such as adopting of lattice constants from experiments or
from optimization procedures. The AH conductivity was
recently reported for thin films of Mn3NiN as |σxy| = 15
S/cm at 150K under no external magnetic field38, which
is one order smaller than the theoretical prediction. The
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TABLE II. Equilibrium lattice constants a0(Å), local magnetic moments |mlocal|(µB), and the difference of total energy ∆E
(meV/f.u.) between (111) magnetic orderings and the M-octupole (Mα

x , M
α
y Mα

z )= (111) (MO) configurations. The bold
values indicate the lowest ∆E. The M-dipole (Mx,My ,Mz)= (111) and M-T quadrupole (Tyz, Tzx, Txy)= (111) are referred as
the FM [111] and the MTQ configuration, respectively.

This work Experiments

A Config. a0(Å) |mlocal|
(µB)

|mtotal|
(µB)

∆E
(meV/f.u.)

Magnetic configurations (temperature)

FM [111] 3.827 3.12 9.35 345.5 • MO + MTQ (10K < T < 250K)15

Ni MTQ 3.832 2.99 0.0 0.04 • MO + MTQ (160K < T < 266K)13

MO 3.832 2.99 0.0 0

FM [111] 3.851 2.74 8.23 257.8
Cu MTQ 3.853 2.87 0.0 -7.5 • Ferromagnetic in tetragonal (T < 150K)34

MO 3.853 2.97 0.10 0

FM [111] 3.781 1.510 4.53 190.8 • AFM but not MTQ (T < 80K)35

Zn MTQ 3.866 2.74 0.0 -0.4 • MTQ (80K < T < 170K)13,35

MO 3.866 2.74 8.23 0
FM [111] 3.757 1.07 3.23 124.8

Ga MTQ 3.865 2.61 0.00 -0.4 • MTQ (T < 298K)13

MO 3.865 2.61 0.08 0
FM [111] 3.756 0.91 2.73 146.3

Ge MTQ 3.858 2.49 0.0 -8.6 -
MO 3.858 2.49 0.0 0

FM [111] 3.949 3.21 9.66 474.6
Pd MTQ 3.927 3.36 0.0 -9.5 -

MO 3.927 3.34 -0.01 0

FM [111] 3.910 1.56 4.68 329.3 • Weak FM+ AFM (T < 175K)35

In MTQ 3.989 2.61 0.0 74.6 • AFM (175K < T < 300K)35

MO 3.989 2.91 0.05 0

FM [111] 3.882 1.193 3.58 236.7 • Complex magnetic ordering (T < 237K)36

Sn MTQ 3.851 2.01 0.0 215.6 • MO and MTQ (237K < T < 357K)13,36

MO 3.982 2.75 0.0 0

FM [111] 3.870 2.94 8.81 807.8
Ir MTQ 3.863 2.77 0.00 -3.0 -

MO 3.863 2.77 0.06 0.0
FM [111] 3.949 3.25 9.66 483.0

Pt MTQ 3.927 3.23 0.0 -6.7 -
MO 3.927 3.23 - 0.05 0

large difference with the experiment and theoretical pre-
diction can be addressed to the possible mixing of the
MO and the MTQ magnetic structures as discussed in
Ref. 38.

Figure 5 shows distribution of the Berry cur-
vature component after taking band summation,
Ω111

sum(k) ≡ 1√
3
(Ωyz,sum(k) + Ωzx,sum(k) + Ωxy,sum(k))

with Ωαβ,sum(k) =
∑

n fn(k)Ωn,αβ(k), on the (111)
plane shown in Fig. 3 for the MO and MTQ magnetic
structures. The MO and MTQ magnetic structures be-
long to the magnetic point groups 3̄m′ and 3̄m, respec-
tively, and the Berry curvature distribution keeps the
three-fold rotation symmetry on the (111) plane. In con-
trast to the MO magnetic structure, the MTQ magnetic
structure cancels out the Berry curvature on the (111)
plane with BZ integration due to the mirror symmetry
with the vertical mirror planes and leads to no AH con-
ductivity for the magnetic structure.

C. Topology analysis

In Weyl semimetal, it has been often suggested that the
Berry curvature around the Weyl points dominantly con-
tribute to the AH effect in the local k-space regions17,18.
For metallic magnets, Mart́ınez et al. suggested that
the Fermi sheets with Weyl points very nearby tend
to contribute more to the AH conductivity than other
Fermi sheets farther from Weyl points by investigating
ferromagnetic bcc Fe19. In this section, we investigate
the Berry curvature, Weyl points which characterize the
topological aspects of the magnetic structures, and their
roles in the resultant AH effect for the AFM states in
Mn3AN.

We determined Weyl points by examining chirality for
possible energy crossing points. The converged number
of Weyl points in the BZ is obtained by increasing k-
point mesh in the first BZ to search the crossing points,
and the chirality is calculated from the Berry flux com-
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TABLE III. Calculated AH conductivity, σ111, for the MO
magnetic configuration in Mn3AN compounds.

Mn3AN This work References
-30116∗

Mn3NiN 375.7 -294.5 (σxy =-170)38∗

225.2 (σxy = 130)39∗∗

Mn3CuN -287.7 -
σ111 Mn3ZnN 350.5 -23216∗

Mn3GaN 96.3 -9916∗

(S/cm) 69.3 (σxy=40)39∗∗

Mn3GeN -624.5 -
Mn3PdN 252.6 -
Mn3InN 34.6 -
Mn3SnN -128.0 230.4 (σxy = 133)39∗∗

Mn3IrN -575.3 -
Mn3PtN 799.9 -

∗
Magnetic moments assumed to calculate the AH conductivity

are opposite to those of this work.
∗∗

The sign of the AH conductivity listed in Ref. 39 is uncertain.

ing out of a small sphere S surrounding each Weyl point,
i.e.

1
2π

∮
S
dSn̂.Ωn(k)

19. Figure 6 shows the number of
Weyl points around the Fermi level, which are presented
in the BZ with the calculated AH conductivity for the
series of Mn3AN. It is shown that there are several Weyl
points within the energy range -1.0 eV < E < 1.0 eV in
all of the investigated compounds, but only Mn3SnN and
Mn3PdN have the Weyl points within ±30 meV around
the Fermi level. Figure 7 shows the band structures of
Mn3GeN, which shows the maximum number of Weyl
points in the energy range -1.0 eV < E < 1.0 eV among
the compounds calculated in Fig. 6, and Mn3PtN, which
shows the minimum number of Weyl points, along high
symmetry lines. The difference in the number of Weyl
points appears qualitatively as the difference in the com-
plexity of the energy bands around the Fermi level. Fig-
ure 6 displays no strong correlation between the number
of Weyl points and the size of the AH conductivity. For
instance, Mn3PtN shows the largest AH conductivity for

(a)

(b) Mn3PtN

Mn3GeN

FIG. 7. Band structure in (a) Mn3GeN and (b) Mn3PtN along
high symmetry lines in the first Brillouin zone of a simple
cubic shown in Fig. 3.

the smallest number of Weyl points around the Fermi
level among these compounds.

To investigate the contribution of the Berry curvature
around Weyl points to the AH conductivity, we pick up
the some Weyl points around the Fermi level in Mn3SnN,
which has the maximum number of Weyl points in the
energy range -0.03 eV < E < 0.03 eV, and show the band
structures around the Weyl points (Fig. 8 (a)) with the
resulting Berry curvature after taking the band summa-
tion (Fig. 8 (b)). Figure 8 shows that the Berry cur-
vature around Weyl points contributes to producing the
sharp peaks of the band summation of the Berry curva-
ture when the Weyl points are located near the Fermi
level within the energy range of 1 meV while the Weyl
points located at the energy more than 1 meV below
the Fermi energy do not produce finite contribution of
the Berry curvature after taking band summation since
the crossing bands are both occupied. The Ωsum(k) en-
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(��

FIG. 8. (a) Band structure and (b) Berry curvature along the

[111] direction, ~k111, having Weyl points near Fermi energy
that produce the positive Berry curvature after taking band
summation in Mn3SnN. Each panel shows an interval 0.109

(Å−1) along ~k111 with Weyl point at the middle of the line.
The relative energies with respect to the Weyl points are writ-
ten in red, the blue number +1 and -1 indicate the chiralities
of the Weyl points. The value “−0 meV” indicates the Weyl
point within the energy range of -1 meV < E < 0 meV. The
coordinates of these Weyl points in the reciprocal space from
left to right are W1 = (-0.06, -0.34, -0.34), W2 = (-0.04, 0.34,
0.34), W3 = (-0.05, 0.44, -0.16), W4 = (-0.05, -0.16, 0.44),
W5 = (-0.16, -0.05, 0.44), W6 = (-0.34, -0.34, 0.03) and W7

= (-0.15, 0.47, 0.05), respectively.

hanced around the Weyl points close to the Fermi level
is consistent with the large contributions to the AH con-
ductivity of the Fermi sheets with the Weyl points very
nearby as discussed in Ref. 19. The detailed analysis for
the contribution of Fermi surfaces to the AH conductivity
in Mn3AN is left for future work.

Figure 9 shows the contribution of the Berry curvature,
classified according to its value of | Ω111

n (k) | in the first
BZ, where Ω111

n (k) ≡ 1√
3
(Ωyz,n(k)+Ωzx,n(k)+Ωxy,n(k))

is the [111] Berry curvature component of band n at each
k point, to the resultant AH conductivity, σ111. Figure 9
shows the Berry curvature with small value dominantly
contribute to the AH conductivity and the contribution
rapidly decreases as the value becomes larger. The plot
clearly shows that the contribution of the divergent Berry
curvature to the AH conductivity is quite small in these
AFM states even for the compounds with several Weyl
points around the Fermi level leading to the divergent
Berry curvature summation at the local k-region.

We further evaluate the contribution of the divergent
Berry curvature around the Weyl points to the AH con-
ductivity for Mn3SnN, which has many Weyl points close

(A2)
o

(A2)
o

FIG. 9. The bar chart showing contribution of the Berry cur-
vature to the resultant AH conductivity of Mn3AN with the
A elements having (a) small and (b) large SOC. The horizon-
tal axis is the absolute intensity of the Berry curvature. The
contribution is also shown for Mn3Ir, which shows the same
magnetic alignment on Mn atoms in Mn3AN.

to the Fermi level as shown in Fig. 6, by calculating the
k-integral in Eq. (1) within the cubes set around each
Weyl point in BZ. Decreasing the size of the cubes, we
obtain the converged values of the contribution to the
AH conductivity in Mn3SnN around seven percent. The
small contribution of the local divergent Berry curvature
to the resultant AH conductivity can be understood from
the divergent Ω111

sum(k) region too small to produce a large
contribution to the AH conductivity or, otherwise, from
canceling it out with the other contribution that has the
opposite sign of the Berry curvature at different k points
in BZ.

D. Berry curvature and spin-orbit coupling effect

We here investigate the electronic structure, Berry cur-
vature, and AH conductivity in the Mn3AN with A = Ni,
Pd, and Pt which belong to the same group in the peri-
odic table and are expected to have similar electronic va-
lence states except for the effect of SOC coupling for the
purpose to discuss the topological feature which enhance
the AH conductivity. Figure 10 shows the Berry curva-
ture integrated on the hexagonal plane with the minimum
periodicity in the (111) plane, as shown in Fig. 3, mov-
ing the center point of the hexagonal plane from Γ to R
for the three compounds. As shown in Fig. 11, the inte-
grated Berry curvature shows similar dependency for the
(111) plane, starting from the almost zero value for the
plane including Γ to the negative finite values for the one
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FIG. 10. The Berry curvature integrated on the (111) hexag-
onal area as shown in Fig. 3 with its center changing from Γ
to R for Mn3AN (A= Ni, Pd, Pt).

including R, for these compounds. The Berry curvature
after taking band sum is shown for the (111) plane in-
cluding R point in the upper panel of Fig. 11, exhibiting
the region with sizable Berry curvature spread around
the Fermi surfaces, which we hereinafter call active area
of the Berry curvature.
Mn3NiN and Mn3PdN show similar values of the AH

conductivity through all of the different (111) planes in
Fig. 10. This reflects the similarity of the band struc-
tures as shown in Fig. 11 (d) and (e), which result in the
similar Fermi surfaces and Berry curvature distribution
shown in Fig. 11 (a) and (b). On the other hand, the
small difference of the electronic structure can modify
the local structure of the Berry curvature distribution as
shown in Fig. 10 (g) and (h). As shown in Fig. 11 (d) and
(g), two sharp negative peaks of the Berry curvature in
Mn3NiN come from the two small gaps around the Fermi
level. The SOC of Pd, relatively larger than that of Ni,
increases those gaps and lower the top peaks for Mn3PdN
compared to those for Mn3NiN through the denominator
of Eq. (2), making the possible contribution to the AH
conductivity smaller than that for Mn3NiN. Meanwhile,
Mn3PtN exhibits larger active area of the Berry curva-
ture than those for Mn3NiN and Mn3PdN in its absolute
value as shown in Fig. 11 (c). The enhancement of the
Berry curvature over BZ for Mn3PtN, which can be seen
in Fig. 10, is thus associated with the enlarged active area
of the Berry curvature through the large SOC of Pt in
Mn3PtN and leads to the largest AH conductivity in the
calculations among the three compounds. The enhance-
ments in the cross term of the velocity matrix in Eq. (2)
through SOC for the states around the Fermi surface take
place in a broad region of BZ, possibly contributing to
the obtained large AH conductivity in the AFM Mn3AN
compounds.

V. CONCLUSIONS

In summary, we have investigated the stable magnetic
structures, the AH effect, and the topology related to the
AH effect in anti-perovskite manganese nitrides Mn3AN.

Their MO non-collinear AFM states, which are the most
or second stable magnetic structures whose magnetic
symmetry allows to induce the AH effect, exhibit the
AH conductivities comparable to those in ferromagnetic
states of Fe and Co in size. We have shown that the
Berry curvature spread around the Fermi surfaces in the
broad BZ region, coming from the band splitting due
to the SOC dominantly contribute to the AH conduc-
tivity, while the locally divergent Berry curvature pro-
duces only a small contribution to the AH conductivity
after considering the band summation and BZ integral in
Eq. (1). It opens a viewpoint for a relation between topol-
ogy and macroscopic phenomena in non-collinear AFM.
Our study might also motivate and guide further vari-
ous exciting researches in associating with topology and
AFM spintronic applications.
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(a) (b) (c)Mn3NiN Mn3PdN Mn3PtN

(d) (e) (f)

(g) (h) (i)

FIG. 11. (a, b, c) Distribution of the Berry curvature after taking band summation, Ω111
sum, and Fermi surfaces on the BZ plane

as shown in Fig. 3 with its center point of R. (d, e, f) The band structure around Fermi energy and (g, h, i) Berry curvature
Ω111

sum on the G1-G2 line shown in (a, b, c), respectively.
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3 J. Kübler and C. Felser, Europhys. Lett. 108, 67001
(2014).

4 Y. Zhang, Y. Sun, H. Yang, J. Želežny, S. P. P. Parkin, C.
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