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A charge current on the surface of a topological insulator (TI) produces a surface spin polarization that can
be measured experimentally using a ferromagnetic (FM) tunnel contact either in a three-terminal or a four-
terminal potentiometric measurement. The potential measured on the FM contact depends on the direction
and the magnitude of the surface charge current, as well as the FM magnetization direction relative to the spin
polarization on the surface of the TI. In such a measurement, the resistance always obeys Onsager reciprocity,
i.e., Rab,cd(+ ~M) = Rcd,ab(− ~M), where Rab,cd is the resistance measured with current injected between
contacts a and b, voltage measured between contacts c and d, and the FM having magnetization ~M . In a two-
terminal measurement in which the current and the voltage contacts are the same, Onsager reciprocity dictates
that the resistance remains the same even after the magnetization of the FM is reversed, i.e., Rab,ab(+ ~M) =

Rab,ab(− ~M). However, previous theories [Phys. Rev. Lett. 105, 066802 (2010), Europhys. Lett. 93, 67004
(2011)] claimed that change of resistance in such two-terminal measurement on the surface of a diffusive TI is
possible upon reversing the FM magnetization direction. Here, we resolve this conflicting issue by showing that
the Onsager reciprocity relation remains valid even in a two-terminal measurement on the surface of a diffusive
TI. We consider the modifications in both the continuity equation of the charge density and the charge current
density on the surface of the TI due to the effect of tunneling of electrons from the FM tunnel contact. We derive
the transport equations on the surface of the TI from full quantum mechanical kinetic equation based on Keldysh
Green’s function, and obtain the resistance measured in a two-terminal or a multi-terminal measurement after
solving the transport equations analytically. We establish the validity of the Onsager reciprocity relation in
both the two-terminal and the multi-terminal measurements, and also show the crucial importance of the tunnel
contact in such spin detection experiments.

I. INTRODUCTION

Topological insulators (TIs) have gained considerable at-
tention in spintronics research due to the non-trivial band
structure of the gapless surface states with spin-momentum
helical locking1. The spin-momentum locking in the two-
dimensional (2D) surface states of a three-dimensional (3D)
TI leads to a non-zero spin polarization within the surface
states when charge current flows on the surface of the TI.
This spin polarization can be detected experimentally using
potentiometric multi-terminal measurement set-ups including
ferromagnetic metal (FM) tunnel contacts2–14. The voltage
detected at the FM contact depends on the magnitude of the
surface charge current and the angle between charge current-
induced spin polarization on the surface of the TI and the mag-
netization direction of the FM7,15–19. The potentiometric mea-
surement opens up the possibility of reading the FM magneti-
zation in TI/FM based memory and logic devices in which the
FM bit is written by the charge current-induced spin polariza-
tion on the TI surface20,21.

Spin detection experiments on the surface of a 3D TI using
FM tunnel contacts have been performed in four-terminal2–12

and three-terminal13,14 potentiometric set-ups in which the
FM tunnel contact can be used as a voltage probe or as a cur-
rent probe. The measurement geometries are shown in Figs.
1(a)-(h). The multi-contact resistance Rab,cd( ~M) = Vcd/Iab
is recorded in the experiments, where Vcd is the voltage drop
measured from contact c to contact d, and Iab is the current
applied from contact a to contact b, and ~M is the magnetiza-
tion of the FM contact. The property of the spin-momentum
locking of the surface states of a TI results in Rab,cd(+ ~M) 6=

Rab,cd(− ~M) and a variation of the multi-contact resistance
with the FM magnetization2–14. However, in a multi-terminal
measurement, Rab,cd(+ ~M) 6= Rab,cd(− ~M) does not vio-
late the Onsager reciprocity relation which says only that
Rab,cd(+ ~M) = Rcd,ab(− ~M), where the voltage and the cur-
rent contacts are interchanged along with the reversal of the
magnetization direction22.

In the case of a two-terminal measurement with a FM and a
nonmagnetic metal (NM) contact shown in Fig. 2(a), the On-
sager reciprocity relation Rab,ab(+ ~M) = Rab,ab(− ~M) dic-
tates that the two-terminal resistance will remain unchanged
even if the magnetization of the FM is reversed, since the
contact pair ab and cd are one and the same. Similarly, in
case of a two-terminal measurement with two FM contacts,
as shown in Fig. 2(b), the Onsager reciprocity relation re-
quires that Rab,ab( ~M1, ~M2) = Rab,ab(− ~M1,− ~M2) , i.e., the
resistance will remain the same if the magnetizations of both
the FMs, ~M1, ~M2, are reversed. However, in the literature,
it had been posited theoretically that two-terminal resistance
between a FM and a NM contact or between two FM con-
tacts on the surface of a TI can change depending on the mag-
netization of the FM, where the transport on the TI surface
was assumed either purely diffusive23–26, or purely ballistic27,
or partly diffusive and partly ballistic28. Such violations of
Onsager reciprocity for two terminal resistance also had been
found experimentally on the surface of TIs26,29–31.

In this paper, we derive the transport equations on the sur-
face of a diffusive TI coupled to a FM tunnel contact, and
then solve the resulting differential equations to obtain the
resistances measured in such spin-detection experiments for
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FIG. 1. Schematics of (a)-(d) four-terminal and (e)-(h) three-terminal
spin-detection experiments on the surface of a diffusive TI.
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FIG. 2. Schematics of two-terminal measurements on the surface of
a diffusive TI with (a) FM and NM contacts, (b) two FM contacts.

four-terminal and three-terminal measurement geometries to
demonstrate the validity of the Onsager reciprocity relation.
Furthermore, we demonstrate the validity of the Onsager reci-
procity relation for the two-terminal resistance between a FM
and a NM contact or between two FM contacts, showing that
the measured resistance is independent of reversal of the mag-
netization of the FM in the former case, or one or both magne-
tizations of the two FMs in the latter case consistent with On-
sager reciprocity15,19,22. The validity of Onsager reciprocity
for two-terminal resistance on the surface of a diffusive TI,
in turn, calls for a re-interpretation of the experimental re-
sults for TIs26,29–31. For the detection of the charge current
induced spin polarization on the surface of a TI with a FM
in a multi-terminal measurement, the requirement of a tun-
nel barrier (TB) was clearly demonstrated in experiments2–14.

Here, we also show the importance of the tunnel contact in
such experiments. We find that the spin detection efficiency,
or the difference of the measured voltage at the FM contact
on reversing the magnetization of the FM, decreases with de-
creasing resistance of the FM tunnel contact.

II. BACKGROUND AND MOTIVATION

We address possible one-dimensional (1D) circuit ge-
ometries that can be used to detect current-induced spin-
polarization on the surface of a TI using four-terminal or
three-terminal measurement set-ups. In a four-terminal set-
up, the FM contact can be used as a voltage probe to measure
the charge current-induced spin polarization on the surface of
the TI, as shown in Figs. 1(a) and 1(c). In these experiments,
the current is passed through two NM contacts and the volt-
age is measured at the FM contact with respect to another NM
contact different from the current injecting contacts. However,
the reciprocal circuits, those obtained by flipping the voltage
and current contacts of Figs. 1(a) and 1(c) are shown in Figs.
1(b) and 1(d), respectively, in which the FM contact will be a
current probe, also can be used. In a three-terminal set-up, the
FM contact can be used as either a voltage probe with the volt-
age measured with respect to that on either one of the current
injecting NM contacts, as shown in Fig. 1(e), or as a current
probe, as shown in Fig. 1(f), which is the reciprocal circuit
of Fig. 1(e), or as both voltage and current probes in which
the current is passed through a FM and a NM contact and the
voltage is measured between the same FM contact and another
NM contact placed on other side of the current injecting NM
contact, as shown in Figs. 1(g) and 1(h). The circuits shown
in Figs. 1(g) and 1(h) are reciprocal circuits of each other. We
show that the Onsager reciprocity relation is satisfied in each
case by analyzing the reciprocal circuit pairs in the mentioned
four-terminal and three-terminal measurement set-ups.

In the literature, Burkov et al.23 and Schwab et al.24 found
theoretically that the two-terminal resistance measured on the
surface (x − y plane) of a diffusive TI between a FM and a
NM contact, as shown in Fig. 2(a), changes if the magnetiza-
tion of the FM, which lies in the plane of the surface and nor-
mal (y axis) to the direction of transport (x axis), is reversed,
which violates the Onsager reciprocity relation. In the the-
ory of Burkov et al.23, the coupled spin and charge diffusion
equations on the surface of a TI were derived from density
matrix response function formalism in a low-frequency long-
wavelength limit, and the spin-charge coupled equations were
solved analytically with current injected from a FM contact to
the TI surface. However, in their work, the coupling of the FM
contact to the TI surface states was not derived inside the theo-
retical framework, but, rather, was inserted by hand as bound-
ary conditions for the charge current density and the spin cur-
rent density in the spin-charge coupled diffusion equation of
the TI surface states. The resulting two-terminal resistance
that was obtained from the solution of the coupled diffusion
equations violates the Onsager reciprocity relation. Although,
Schwab et al.24 had considered the effect of coupling of the
FM contact to the TI surface states through a tunneling self-
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energy in quantum mechanical Keldysh Green’s function ap-
proach to derive a modified continuity equation of the charge
density on the TI surface, the modification of the charge cur-
rent density was not considered.

Following the approach by Burkov et al.23, i.e., using the
same spin-charge coupled diffusion equations on the TI sur-
face and the same boundary conditions for the charge cur-
rent density and the spin current density for the FM contact,
Taguchi et al.25 calculated the two terminal resistance between
two FM contacts on the surface of a diffusive TI, as shown
in Fig. 2(b), and their results also violate the Onsager reci-
procity relation. In a prior work26, we found that the same
spin-charge coupled diffusion equations on the surface of a TI
without any tunneling from the FM also can be obtained in
a different framework based on the quantum kinetic equation
invoking the diffusive approximations used by Burkov et al.23.
However, in all these previous works23,25,26, the same bound-
ary conditions were used to solve the same transport equations
leading to the result of two terminal resistances violating the
Onsager reciprocity relation.

In this work, we show that the coupled diffusion equations
on the surface of a TI are modified due to tunneling of elec-
trons from a FM contact, and the actual effect of the FM con-
tact cannot be taken into account simply by assuming charge
current and spin current injection from the FM as boundary
conditions. However, Schwab et al.24 had only derived a mod-
ification of the continuity equation of the charge density due
to tunneling while keeping the equation for charge current
density unchanged. That is, in their work the charge current
density was given by the gradient of the full non-equilibrium
electrochemical potential − re-expressed in their work and
this work as the effective non-equilibrium charge density −
on the TI surface even after tunneling from the FM. Here, we
show that the charge current density on the TI surface also
will contain an additional contribution due to tunneling from
the FM, along with the gradient of the effective charge density
term but with a modified diffusion constant or a modified con-
ductivity. Considering both the modifications of the charge
current density and the continuity equation of the charge den-
sity due to tunneling from the FM, we demonstrate that the
two-terminal resistances between a FM and a NM contact or
between two FM contacts on the surface of a diffusive TI sat-
isfy the Onsager reciprocity relation. In case of two FM con-
tacts, we show that the resistance remains the same whether
the magnetizations of the two FMs are parallel or anti-parallel,
because the initial spin-polarizations of the electrons that un-
dergo tunneling from either of the FMs to the TI surface are
lost after momentum scattering on the TI surface due to the
spin-momentum locking of the TI surface states.

Finally, we also identify possible reasons behind the theo-
retical results obtained previously23–26 leading to violation of
Onsager reciprocity for the two terminal resistance on the sur-
face of a diffusive TI consisting of FM contacts. We show that
the coupled spin-charge diffusion equations for the TI surface
states obtained by Burkov et al.23 do not satisfy the continu-
ity equation of the charge density, where the charge current
density is derived from the velocity operator obtained from
the Hamiltonian of the TI surface states. However, Burkov et

al. had defined both the charge current density and the spin
current density on the TI surface from the coupled charge and
spin transport equations considering continuity of the charge
density and the spin density. We show that the definition of the
charge current density obtained by them is inconsistent with
the the charge current density obtained from the Hamiltonian
of the TI surface states. Moreover, it was already discussed in
the literature32,33 that the definition of the spin current density
obtained from the continuity equation for the spin density is
not applicable for material with spin-momentum locked band
structure. The physically measurable spin current density,
which was used in the boundary condition for the spin current
injection from the FM to the TI surface in prior works23,25,26,
was defined to be the gradient of the spin density on the TI
surface. However, the spin current density being proportional
to the gradient of the spin density on the TI surface is incon-
sistent with the formal definition of the spin current density
derived from the TI surface state Hamiltonian32,33. In the
work of Schwab et al.24, the modification of the charge current
density on the TI surface due to tunneling from the FM was
not considered, which did lead to the violation of the Onsager
reciprocity relation. Here, we show that considering both the
modifications of the charge current density and the continu-
ity equation of the charge density, indeed, results in the two-
terminal resistance that satisfies Onsager reciprocity.

III. THEORY

A. Derivation of the transport equations

The low-energy effective Hamiltonian of the TI surface
states is given by H(p) = ~vF(p × ẑ) · σσσ, where ~ is the
reduced Planck constant, vF is the Fermi velocity of the TI
surface states, p is the 2D momentum of the surface states,
ẑ is the unit vector along the surface normal direction, and
σσσ = (σx, σy, σz) is the vector consisting of the Pauli spin
matrices. We consider the transport within the TI surface in
the TI/FM contact layer as shown in Fig. 4. The momen-
tum scattering among the TI surface states is considered due
to random spin-independent short-range impurity potentials
on the surface of the TI consistent with both Schwab et al.24

and Burkov et al.23, neglecting phonon at the considered low
temperatures in the experiments. In the work of Schwab et
al.24, the coupling of the TI surface states to the FM con-
tacts are modeled by spin-conserving but momentum random-
izing tunneling, where the work of Burkov et al.23 did not di-
rectly model tunneling. In this work, we mainly focus on the
spin-conserving momentum randomizing tunneling between
the FM and TI surface states to allow for a direct compari-
son to the work of Schwab et al.24. However, we also discuss
the effect of spin-non-conserving but spin-selecting and mo-
mentum randomizing or in-plane momentum conserving tun-
neling on the spin-detection experiments. Both the effects of
tunneling from the FM to the TI surface states and the momen-
tum scattering among the TI surface states are included in the
quantum kinetic equation through self energy contributions.

The quantum kinetic equation can be written in terms of the
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Green’s function g of the TI surface states as (see appendix),

∂tg +
vF

2

{
(ẑ×σσσ) · ∇R, g

}
+ ivFpF[(p̂× ẑ) ·σσσ, g]

= − 1

τp

(
g− 〈g〉

)
+

1

2τp

{
(p̂× ẑ) ·σσσ, 〈g〉

}
− γ
({

(N↑P↑ +N↓P↓), g
}

+N↑P↑g↑ +N↓P↓g↓
)

+
γ

2

{
(p̂× ẑ) ·σσσ, (N↑P↑g↑ +N↓P↓g↓)

}
. (1)

In the above equation, the Green’s function g(R, t; pFp̂, ε) is
expressed in terms of the Wigner coordinates (R, t; pFp̂, ε),
where R is the position on the TI surface, t is time, pF is
the Fermi momentum magnitude of the TI surface states,
p̂ = p/pF is the unit vector, and ε is energy. In Eq. (1), τp
is the scattering time between the Bloch states of the TI (τp
would be the momentum relaxation time on the surface of the
TI in the absence of consideration of the overlap of the ini-
tial and final states of the TI, where the second term on the
second line of Eq. (1) then address this spin overlap between
initial and final states of the TI), γ denotes the strength of tun-
neling between the FM and the TI surface states, 〈...〉 denotes
angular averaging over the Fermi contour of the TI surface
states, P↑,↓ = (σ0 ± m̂ · σσσ)/2 are the projection operators
to the majority and minority spin bands in the FM, σ0 is the
spin-space identity matrix, m̂ = (mx,my,mz) is the mag-
netization direction (a unit vector) of the FM, N↑,↓ are the
corresponding density of states (DOSs) of the majority and
minority spin bands in the FM at the Fermi energy, and g↑,↓
are the non-equilibrium quasi-classical Green’s functions of
the majority and minority electrons in the FM averaged over
the Fermi surface in the FM.

The derivation of Eq. (1) is given in detail in the appendix
following our previous work34. However, in our previous
work, to obtain the continuity equation of the charge density
and the charge current density on the TI surface, we solved the
quasi-classical Green’s function g of the TI surface states as-
suming projection of g on the conduction band of the Hamil-
tonian, i.e., g = g0(p̂, ε)[σ0 + (p̂ × ẑ) · σσσ], and expanding
the angular dependence of g in the zeroth and the first har-
monics, i.e. g0(p̂, ε) = gs(ε) + p̂ · ga(ε). In this work, we
proceed differently to derive the transport equations on the
TI surface, with one aim of this approach being to connect
the work of Burkov et al.23 and that of Schwab et al.24. In
our approach, on one hand, the spin-charge coupled diffusion
equations given by Burkov et al.23 can be derived in the ab-
sence of tunneling26, and it can be shown easily that the spin-
charge coupled diffusion equations given by Burkov et al.23

violates the continuity equation of the charge density on the
TI surface, where the charge current density on the TI surface
is defined using the velocity operator for the surface states
v = (1/~)∂H/∂p = vF(ẑ × σσσ). On the other hand, for the
tunneling of carriers between the FM and the TI surface, the

modification of the continuity equation of the charge density
on the TI surface given by Schwab et al.24 can be obtained,
along with a modification of the charge current density that
was not considered by Schwab et al.24, but that cannot be dis-
regarded in the transport on the surface of a diffusive TI cou-
pled to a FM.

The quasi-classical Green’s function g of the TI surface
states can be written as g = g0σ0 + g · σσσ, where g =
(gx, gy, gz). By Fourier transforming ∂t → −iω and ∇r →
iq = (iqx, iqy), and taking trace of Eq. (1) after multiplying
by identity matrix and each of three Pauli spin matrices, the
resulting four equations can be rewritten in matrix form as

Kg = L(〈g〉+ h), (2)

where g = (g0, gx, gy, gz)
T and h = (h0, hx, hy, hz)T are

4 × 1 column vectors, K and L are 4 × 4 matrices. Here,
h0 = γτp(N↑g↑ + N↓g↓)/2 and (hx, hy, hz) = h is given by
h = γτp(N↑g↑ −N↓g↓)m/2. The matrix L is given by

L =

 1 sin θ − cos θ 0
sin θ 1 0 0
− cos θ 0 1 0

0 0 0 1

 , (3)

where θ is the angle of the p vector lying on the Fermi contour.
The matrix K is given by

K =

 Ω i∆y −i∆x ∆z

i∆y Ω 0 ΩSO cos θ
−i∆x 0 Ω ΩSO sin θ

∆z −ΩSO cos θ −ΩSO sin θ Ω

 ,
(4)

where Ω = 1 + γN+τp − iωτp, ΩSO = 2pFvFτp, ∆x =
qxvFτp + iγN−τpmy , ∆y = qyvFτp − iγN−τpmx, ∆z =
γN−τpmz , and N± = N↑ ± N↓. The matrix K of Eq. (4)
reduces to the one obtained previously in deriving the diffu-
sion equation on the surface of a TI without a FM26,35 after
substituting γ = 0 in the quantities Ω, ∆x, ∆y and ∆z .

To obtain the diffusion equation, one has to solve for 〈g〉
in Eq. (2). Multiplying by K−1 on both sides of Eq. (2) and
averaging over θ, 〈g〉 is obtained from the matrix equation

〈g〉 = D(〈g〉+ h), (5)

where D = 〈K−1L〉 is a 4×4 matrix. Equation (5) is the most
general form of spin-charge coupled transport equation on the
surface of a TI coupled to a FM. However, in our case, the cal-
culation of the matrix elements of D can be further simplified.
As shown in Figs. 1 and 2, we only consider 1D problems
with the FM magnetized in the ±y direction. Therefore, the
charge and spin density will be uniform along the y direction
on the TI surface. Hence, qy = 0 and m = (0,±1, 0), there-
fore, ∆y = ∆z = 0, and K−1 becomes26,35
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K−1 =


Ω(Ω2 + Ω2

SO) −i sin θ cos θ∆xΩ2
SO i∆x(Ω2 + Ω2

SO cos2 θ) −i sin θ∆xΩΩSO
−i sin θ cos θ∆xΩ2

SO Ω(Ω2 + Ω2
SO sin2 θ + ∆2

x) − sin θ cos θΩΩ2
SO − cos θ(Ω2 + ∆2

x)ΩSO
i∆x(Ω2 + Ω2

SO cos2 θ) − sin θ cos θΩΩ2
SO Ω(Ω2 + Ω2

SO cos2 θ) − sin θΩ2ΩSO
i sin θ∆xΩΩSO cos θ(Ω2 + ∆2

x)ΩSO sin θΩ2ΩSO Ω(Ω2 + ∆2
x)


Ω2(Ω2 + Ω2

SO) + ∆2
x(Ω2 + Ω2

SO cos2 θ)
. (6)

The form of the matrix K−1 given in Eq. (6) is the
same as that obtained previously for the transport of the
TI surface states without a FM26,35, the only difference is
the modification of the quantities Ω and ∆x due to tun-
neling from the FM. To obtain D, we need to integrate
over angle θ, while the quantities ΩSO, Ω and ∆x are
constants. Hence, some of the prior results for calcu-
lating the matrix elements of D can be straightforwardly
reused. Mainly, after averaging K−1L over θ, the non-
diagonal terms of the matrix D relating coupled transport
of the g0, gy components with the gx, gz components van-
ish. That is, D0x,Dx0,D0z,Dz0,Dxy,Dyx,Dyz,Dzy are zero
since

∫ 2π

0
dθ sin θF (cos θ) = 0 and

∫ 2π

0
dθ cos θF (sin θ) =

0 for any smooth function F . Therefore, the spin in the x and
z directions of the electrons are decoupled from the charge
flow and y-component of spin. However, the charge flow and
the y-component of spin of the electrons on the TI surface re-
main coupled. So we only work with the 2×2 matrix D2 con-
sisting of D00,D0y,Dy0,Dyy terms, and write the spin-charge
coupled transport equation as

〈g2〉 = D2(〈g2〉+ h2), (7)

where g2 = (g0, gy)T and h2 = (h0, hy)T are 2 × 1 column
vectors, and D2 is a 2× 2 matrix given by

D2 =

[
f1

i
∆x

(1− Ωf1)
i

∆x
(1− Ωf1) Ω

∆2
x

(1− Ωf1)

]
, (8)

where

f1 =

√
Ω2 + Ω2

so√
Ω2 + ∆2

x

√
Ω2 + ∆2

x + Ω2
so

. (9)

B. Definitions of the effective charge densities and the full
electrochemical potentials

The actual non-equilibrium component of the charge den-
sity of the electrons on the TI surface is denoted by nneq,
which is the difference between the actual non-equilibrium
charge density and the actual equilibrium charge density on
the TI surface. Then, nneq is obtained from24

nneq =
eN

2

∫
1

2
Tr[〈g(ε)〉]dε− e2Nφ

=
eN

2

∫
〈g0(ε)〉dε− e2Nφ,

(10)

whereN is the DOS of the TI surface states at the equilibrium
Fermi energy and φ is the electrostatic potential on the TI sur-
face resulting from any electric field. In this work, follow-
ing the notation of Burkov et al.23, the actual non-equilibrium

component of the charge density nneq and the external elec-
trostatic potential φ are subsumed into the definition of the
charge density for convenience. That is, on the surface of the
TI, we define the effective non-equilibrium component of the
charge density n as n ≡ nneq + e2Nφ. Hence, by this defini-
tion, from Eq. (10) we have

n =
eN

2

∫
〈g0(ε)〉dε. (11)

We define the electron-charge-normalized full non-
equilibrium electrochemical potential µ on the TI surface
by the relation n ≡ e2Nµ. In this way, the effective
non-equilibrium component of the charge density n and the
full non-equilibrium electrochemical potential µ relative to
the equilibrium value include variations in the Fermi level
relative to the band edge and variations in the band edge with
the electrostatic potential. So, µ is given by

µ =
1

2e

∫
〈g0(ε)〉dε. (12)

It should be noted that the voltage difference on the TI surface
will be just the difference of the electron-charge-normalized
full non-equilibrium electrochemical potential µ, which is
consistent with Burkov et al23.

The non-equilibrium spin density s (in the unit of electron
charge) on the TI surface is given by24

s =
eN

4

∫
1

2
Tr[〈σσσg(ε)〉]dε =

eN

4

∫
〈g(ε)〉dε. (13)

Here s = (sx, sy, sz), and, sx, sy , sz are the x-, y-, z-
components of the spin density on the TI surface, respectively.
The 2D charge current density j on the TI surface is given by24

j =
eN

2

∫
1

2
Tr[〈vg(ε)〉]dε, (14)

where v = vF(ẑ × σσσ) is the velocity operator. Here, j =
(jx, jy), and jx and jy are the x- and y- components of the
2D charge current density, respectively. Because of the spin-
momentum locking of the TI surface states, the 2D charge cur-
rent density j is related to the non-equilibrium spin density s
by j = 2vF(ẑ× s). Hence, the charge current density jx on the
TI surface along the x-direction is related to the y-component
of the spin density sy on the TI surface by

jx = −2vFsy. (15)

In the FM contact, the actual non-equilibrium components
nneq;↑,↓ of the charge densities of the majority and minority
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spin electrons are obtained from, much as of Eq. (10),

nneq;↑,↓ =
eN↑,↓

2

∫
1

2
Tr[P↑,↓g↑,↓(ε)]dε− e2N↑,↓φc

=
eN↑,↓

4

∫
g↑,↓(ε)dε− e2N↑,↓φc,

(16)

where φc is the electrostatic potential within the FM result-
ing from any electric field. We define the effective non-
equilibrium components of the majority and minority electron
charge densities n↑,↓ by n↑,↓ ≡ nneq;↑,↓ + e2N↑,↓φc. Hence,
by these definitions, from Eq. (16) we obtain

n↑,↓ =
eN↑,↓

4

∫
dε g↑,↓(ε). (17)

We define the electron-charge-normalized full non-
equilibrium electrochemical potentials µ↑,↓ of the majority
and minority spin electrons in the FM relating to the effective
non-equilibrium components of the majority and minority
electron charge densities n↑,↓ by n↑,↓ ≡ e2N↑,↓µ↑,↓. So, we
have

µ↑,↓ =
1

4e

∫
dε g↑,↓(ε). (18)

The definitions of µ and µ↑,↓ match with those by Schwab
et al24. The meaning of electron-charge-normalized full non-
equilibrium electrochemical potentials µ↑,↓ is up/down spin-
voltages in the FM as mentioned by Schwab et al24.

IV. RESULTS AND DISCUSSIONS

A. Transport on TI surface and conservation of charge

To obtain the transport equations, we multiply both sides of
Eq. (7) by D−1

2 to obtain the new matrix equation

[D−1
2 − I2]〈g2〉 = h2, (19)

where D−1
2 is given by

D−1
2 =

[
Ω −i∆x

−i∆x f2

]
, (20)

and,

f2 =
∆2
x

Ω

( 1

f1Ω
− 1
)−1

. (21)

In the case of zero tunneling, γ = 0, hence, h2 = 0, Ω =
1− iωτp and ∆x = qxvFτp in Eqs. (19), (20), (21). After the
ε integration of Eq. (19) and using Eq. (20), we obtain,[

Ω− 1 −i∆x

−i∆x f2 − 1

] [
n

2sy

]
= 0. (22)

The first row of the matrix equation Eq. (22) gives

(Ω− 1)n− 2i∆xsy = 0. (23)

To obtain the second equation from the second row of the ma-
trix equation Eq. (22), the function f2 in Eq. (21) is approx-
imated by series expansions in powers of ∆x and Ω under
the low-frequency, long-wavelength diffusive limit approxi-
mations, ωτp � 1, qxlp � 1, and assuming that the Fermi
energy lies well above the Dirac point, pFlp � 1, where
lp = vFτp is the mean free path on the TI surface. These
approximations imply |∆x| � |Ω| � 1� Ωso, hence, f2 can
be approximated as f2 ≈ 2Ω, i.e., f2 ≈ 2− 2iωτp. Then, the
second row of the matrix equation Eq. (22) gives

−i∆xn+ (2Ω− 1)2sy = 0. (24)

Inverse Fourier transforming Eqs. (23) and (24), we obtain

∂tn− 2vF∂xsy = 0, (25a)

∂tsy +
sy
2τp
− vF

4
∂xn = 0. (25b)

Equations (25a) and (25b) describe the coupled nature of
the charge and spin degrees of freedom of the TI surface
states. From Eq. (25a), after using the relation between the
charge current density jx and the spin density sy on the TI
surface, i.e., jx = −2vFsy as given in Eq. (15), we obtain the
continuity equation of the charge density on the TI surface,

∂tn+ ∂xjx = 0. (26)

The continuity equation of the charge density, i.e., Eq. (26) is
obtained from the first row of the matrix equation Eq. (22),
and the continuity equation remains true irrespective of the
approximation for the function f2 that is used to derive Eq.
(25b). Equation (25b) indicates that the spin relaxation time τs
satisfies τs = 2τp, which is a property of the spin-momentum
locked TI surface states24,35. In steady state, from Eq. (25b)
we obtain sy = 1

2vFτp∂xn, and using jx = −2vFsy [Eq.
(15)], we obtain the charge current density on the TI surface,

jx = −v2
Fτp∂xn. (27)

Equation (27) captures the charge current due to both drift and
diffusion since the effective non-equilibrium component of
the charge density n contains both the actual non-equilibrium
component nneq of the charge density of the electrons and
any electrostatic field φ. Explicitly, after substituting n =
nneq + e2Nφ in Eq. (27), we obtain jx = −D∂xnneq−σ∂xφ,
where D = v2

Fτp is the diffusion constant on the TI surface
and σ = e2ND is the associated conductivity via the Einstein
relation for this degenerate system. It can be recognized that
the diffusion constant D = v2

Fτp = v2
Fτtr/2, where we ob-

tain the momentum relaxation time τtr to be τtr = 2τp because
of the spin-momentum locking of the TI surface states24,34,36

(note that τs = 2τp = τtr). We refer to τtr as “the transport re-
laxation time” consistent with Schwab et al24. In steady state,
from Eqs. (26) and (27) we obtain

dxjx(x) = 0, (28a)
jx(x) = −σdxµ(x), (28b)

on the TI surface without any tunneling from the FM. Here
and in what follows, we consider the full derivative dx instead
of the partial derivative ∂x of preceding equations as we now
have only an x dependence.
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B. Modified transport on TI surface due to tunneling from FM

In the case of nonzero tunneling from the FM to the TI
surface, we plug in Ω = 1 + γN+τp − iωτp and ∆x =
qxvFτp + iγN−τpmy in Eqs. (20) and (21). After performing
the ε integration of Eq. (19) and substituting Eq. (20), we
obtain[

Ω− 1 −i∆x

−i∆x f2 − 1

] [
n

2sy

]
=

[
γNτpn+

γNτpmyn−

]
, (29)

where n± = n↑±n↓. We define the dimensionless parameter
ξ = γN+τtr = 2γN+τp, which is the normalized tunneling
rate with respect to the momentum scattering rate on the TI
surface,36 and ξ is proportional to the tunnel conductance. In
case of weak tunneling, ξ � 1, the conditions |∆x| � |Ω| �
1 � Ωso remains valid, and f2 given in Eq. (21) can be ap-
proximated as f2 ≈ 2Ω, i.e., f2 ≈ 2 + 2γN+τp − 2iωτp.
After inverse Fourier transforming the first row of the matrix
equation in Eq. (29) to real space, in steady state we obtain

dxjx = −γN+n+ γNn+ +
γN−my

vF
jx, (30)

which is the modified continuity equation of the charge den-
sity on the TI surface due to tunneling from the FM to the TI.
Similarly, after inverse Fourier transforming the second row
of the matrix equation in Eq. (29) to real space and using
jx = −2vFsy , in steady state we obtain

jx =
1

(1 + ξ)

[
−v2

Fτp∂xn+γvFτpmy

(
N−n−Nn−

)]
, (31)

which is the diffusion equation for the current density on the
surface of the TI including modifications due to tunneling
from the FM to the TI. These two equations, Eqs. (30) and 31,
are consistent with those we obtained in 2D transport in our
previous work34 and what was obtained from a semi-classical
drift-diffusion model on the TI surface with tunneling calcu-
lated from the Golden Rule of scattering between the FM ma-
jority/minority electrons and the TI surface states16.

Following the literature16,24, we define the charge electro-
chemical potential µc in the FM as µc ≡ (µ↑ + µ↓)/2 and the
spin electrochemical potential µs in the FM as µs ≡ (µ↑−µ↓).
Under the charge neutrality condition in the FM contact,
nneq;↑ + nneq;↓ = 0, and we obtain φc = µc + ηµs/2, where
η = N−/N+ is the DOS polarization in the FM. In this
work, following Schwab et al.24, we assume µs = 0, i.e.,
µ↑ = µ↓ = µc, and we have µc = φc, which can be identified
with the voltage in the FM37. Equation (30) then becomes

dxjx =
2ξσ

l2tr
(µc − µ) +

ξηmy

ltr
jx, (32)

and Eq. (31) becomes

jx = − σ

(1 + ξ)

[
dxµ+

ξηmy

ltr
(µc − µ)

]
, (33)

where, ltr = vFτtr = 2vFτp is the transport relaxation length
on the TI surface. The right hand side of Eq. (32) can be in-
terpreted as the current injected from the FM to the TI surface

through the interface due to tunneling of electrons between
the FM and the TI surface. The first term in the right hand
side of Eq. (32) results from the difference of the electro-
chemical potential between the FM and the TI surface, and the
tunnel conductance of the interface is proportional to 2ξσ/l2tr.
The second term in the right hand side of Eq. (32) results
from the spin-momentum locking of the TI surface states and
spin split bands of the FM. The first term in the right hand
side of Eq. (33) is the diffusion term with the modified con-
ductivity, σ′ = σ/(1 + ξ), because tunneling back and forth
across the interface serves as a momentum randomizing scat-
tering process for the TI surface states. The second term in
the right hand side of Eq. (33) also arises because of the spin-
momentum locking of the TI surface states and the spin split
bands of the FM. The modification of the charge current den-
sity on the TI surface due to tunneling from the FM, given
in Eq. (33)), was not considered by Schwab et al.24. Al-
though we have derived Eqs. (32) and (33) considering spin-
conserving momentum-randomizing tunneling, the forms of
(32) and (33) remain the same with a redefined ξ and η even if
we consider spin-non-conserving but spin-selecting momen-
tum randomizing/in-plane momentum conserving tunneling
(see appendix). If the strength of tunneling between the TI
surface states and the majority/minority bands of the FM are
γ↑,↓ which also depends on the nature of the interface (mo-
mentum randomization happens for a rough interface and in-
plane momentum conservation holds for a smooth interface),
then ξ and η should be redefined as ξ = (γ↑N↑ + γ↓N↓)τtr
and η = (γ↑N↑ − γ↓N↓)/(γ↑N↑ + γ↓N↓).

C. Consideration of FM line contact

We begin our consideration of results for specific geome-
tries by considering only line contacts in this section, which
allows for more ready comparison to prior work by Schwab et
al24. In a subsequent section we extend our results to consider
contacts of nonzero length. In deriving the two terminal re-
sistance between a FM and a point on the TI surface, Schwab
et al.24 had considered a FM line contact lying transverse to
the transport direction and of infinitesimally small dimension
along the transport direction, as shown in Fig. 3, with tun-
neling described by a delta function. We consider 1D trans-
port along the x direction, the FM contact to be of length L
along the transport direction located between region x = 0
and x = L (we will take limit L → 0) and of width W along
the transport-normal direction y. The tunneling from the FM
contact to the TI surface is modeled by replacing the tunneling
strength γ by γLfL(x), i.e., replacing ξ by ξLfL(x), where
fL(x) is a rectangular function with value 1/L in the region
x = 0 to x = L and zero otherwise. (Note that fL(x)→ δ(x)
in the limit L → 0). Following Schwab et al.24, after replac-
ing ξ by ξLfL(x) we integrate Eq. (32) in a region (−ε, L+ε)
close to the FM contact, and let ε→ 0 and L→ 0, to obtain

j+
x − j−x =

2ξσL

l2tr

(
µ0

c −
µ+ + µ−

2

)
+
ξηmyL

ltr

j+
x + j−x

2
.

(34)
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Here, we denote µ0
c to be the electrochemical potential on

the FM line contact, µ+ = µ(0+) to be the electrochem-
ical potential on the TI surface to the right of the FM line
contact and µ− = µ(0−) to be the electrochemical potential
on the TI surface to the left of the FM line contact. Simi-
larly, we denote j+

x = jx(0+) to be the charge current den-
sity on the TI surface to the right of the FM line contact and
j−x = jx(0−) to be the charge current density on the TI sur-
face to the left of the FM line contact. To obtain Eq. (34),
we have used

∫ L+ε

−ε dx dxjx = jx(L + ε) − jx(−ε), and,
in the limits ε → 0 and L → 0, jx(L + ε) = jx(0+) and
jx(−ε) = jx(0−). Also in the limit ε → 0 and L → 0,
we have used

∫ L+ε

−ε dxfL(x)µ ≈ 1
2 [µ(0+) + µ(0−)] and∫ L+ε

−ε dxfL(x)jx ≈ 1
2 [jx(0+) + jx(0−)] consistent with the

approximations of Schwab et al.24. It should be noted that
the electrochemical potential µ as well as the charge current
density jx on the TI surface will be continuous functions for
L 6= 0, but the value of the function may be different to
the right and left of the contact, i.e., µ(L+) 6= µ(0−) and
jx(L+) 6= jx(0−) in general. In the limit L → 0 for a line
contact, there will be a change in the electrochemical potential
on the TI surface across the FM line contact. This change in
the electrochemical potential, which will be determined from
Eqs. (32)- (33), was not considered by Schwab et al.24.

Next, we consider Eq. (33)), multiply both sides of Eq. (33)
by (1 + ξ), replace ξ by ξLfL(x), perform the integration of
the resulting equation in a small region (−ε, L + ε) with the
limits ε→ 0 and L→ 0, and divide the result by ξL, to obtain

j+
x + j−x

2
= − σ

ξL

[(
µ+ − µ−

)
+
ξηmyL

ltr

(
µ0

c −
µ+ + µ−

2

)]
.

(35)

To obtain Eq. (35), we have used
∫ L+ε

−ε dx dxµ = µ(L+ ε)−
µ(−ε), and, in the limits ε→ 0 and L→ 0, µ(L+ε) = µ(0+)

and µ(−ε) = µ(0−). Also, we have used
∫ L+ε

−ε dx jx = 0 in
the limits ε → 0 and L → 0. The electrochemical potential
µ+ and µ− on the TI surface with respect to the electrochem-
ical potential µ0

c on the FM will be determined in terms of the
current density on the TI surface after solving Eqs. (34) and
(35) with relevant boundary conditions on j±x .

In the measurement set-ups shown in Figs. 3(a), 3(c) and
3(e), a current I is injected from the FM contact to the TI
surface to the right of the FM contact, so j+

x = I/W and
j−x = 0. Solving Eqs. 34 and 35, we obtain µ+ and µ− to be

µ+ = µ0
c −

(
1−

η2m2
y

2

)
ξIL

4σW
− l2tr

2ξσ

I

WL
, (36a)

µ− = µ0
c +

(
1−

η2m2
y

2

)
ξIL

4σW
− l2tr

2ξσ

I

WL
+
ηmyltr

2σ

I

W
.

(36b)

The second term on the right side of both Eqs. (36a) and (36b)
is the resistive potential drop due to the charge current flowing
on the surface of the TI under the FM contact, where σW/L
is the conductance of the TI surface over length L. The third

term on the right side of both Eqs. (36a) and (36b) is the re-
sistive potential drops across the interface due to the charge
current flowing from the FM to the TI surface through the in-
terface, where the interface conductance is (2ξσ/l2tr)WL, and
WL is the area of the interface. (Note that 2ξσ/l2tr is the co-
efficient of the first term in Eq. (32)). From Eq. (36a), the
potential drop ∆µ(my) = (µ0

c − µ+) is indeed the same for
my = ±1, and, hence, the two terminal resistance measured
between the FM and the TI surface, as shown in Fig. 3(a),
is independent of the magnetization direction of the FM sat-
isfying the Onsager reciprocity relation. However, the last
term in µ− is non-trivial due to the spin-momentum lock-
ing of the TI surface states. From Eq. (36b), the potential
drop ∆µ(my) = (µ− − µ0

c ), as shown in Fig. 3(c), de-
pends on the sign of my . Similarly, from both Eqs. (36a) and
(36b), the potential drop ∆µ(my) = (µ− − µ+), as shown
in Fig. 3(e), also depends on the sign of my . So, the mea-
sured three terminal resistances, as shown in Figs. 3(c) and
3(e), will depend on the magnetization direction of the FM.
Such measurement set-ups were used to detect the current-
induced spin polarization on the TI surface13,14. We define
the spin-detection voltage δµ as the change of the potential
drop upon reversing the magnetization direction of the FM,
i.e., δµ = [∆µ(my = +1) −∆µ(my = −1)]. In both cases
shown in Figs. 3(c) and 3(d), δµ = ηltrI/σW .

In the measurement set-ups shown in Figs. 3(b), 3(d) and
3(f), a current I is extracted out of the FM contact from the
TI surface to the left of the FM contact, such that j+

x = 0 and
j−x = I/W . Then, we obtain µ+ and µ− to be

µ+ = µ0
c −

(
1−

η2m2
y

2

)
ξIL

4σW
+

l2tr
2ξσ

I

WL
+
ηmyltr

2σ

I

W
,

(37a)

µ− = µ0
c +

(
1−

η2m2
y

2

)
ξIL

4σW
+

l2tr
2ξσ

I

WL
. (37b)

The measurement set-up pair shown in Figs. 3(a) and 3(b)
(and, similarly, the pair Figs. 3(c) and 3(d) and the pair Figs.
3(e) and 3(f)) are identical after an 1800 rotation in the plane.
Hence, the solution for the electrochemical potential on the
TI surface given in Eqs. (37a) and (37b) are related to that
given in Eqs. (36a) and (36b), after a change of sign of both
I and my and the interchange of µ+ and µ−. The 1800 rota-
tion symmetry is also present in Eqs. (34) and (35), which
remain unchanged after letting j+

x → −j−x , j−x → −j+
x ,

my → −my , µ+ → µ− and µ− → µ+. It is seen From Eqs.
(37b) that the potential drop ∆µ(my) = (µ− − µ0

c ) is the
same for my = ±1, and, hence, the two terminal resistance
measured between the FM and the TI surface, as shown in
Fig. 3(b), remains the same irrespective of the magnetization
direction of the FM, satisfying Onsager reciprocity. From Eq.
(37a), we find that the potential drop ∆µ(my) = (µ0

c − µ+),
as shown in Fig. 3(d), depends on the sign of my . Simi-
larly, from Eqs. 37a) and (37b), we find that the potential
drop ∆µ(my) = (µ− − µ+), as shown in Fig. 3(f), depends
on the sign ofmy . So, the three terminal resistances, as shown
in Figs. 3(e) and 3(f), will depend on the magnetization direc-
tion of the FM contact, and δµ = ηltrI/σW for both cases.
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FIG. 3. Schematics of 1D measurement geometries on the surface of
a diffusive TI with a line FM contact indicated by an arrow.

In the measurement set-ups shown in Figs. 3(g)-(h), a cur-
rent I is passed on the TI surface from the left of the FM
contact to the right of the FM contact, and no current is in-
jected/extracted through the FM contact, hence, j+

x = j−x =
I/W . Then, we find the solution for µ+ and µ− to be

µ+ = µ0
c −

(
1−

η2m2
y

2

)
ξIL

2σW
+
ηmyltr

2σ

I

W
, (38a)

µ− = µ0
c +

(
1−

η2m2
y

2

)
ξIL

2σW
+
ηmyltr

2σ

I

W
. (38b)

The measurement set-up shown in Figs. 3(g) and 3(h) are
identical after an 1800 rotation in the plane, so, the solution
for the electrochemical potential on the TI surface given in
Eqs. (38a) and (38b) (which is same as interchanging µ+ and
µ−) are related after a change of sign of both I and my . The
second term in both Eqs. (38a) and (38b) is the resistive po-
tential drops along the surface of the TI under the FM con-
tact, and the third term in both Eqs. (38a) and (38b) is non-
trivial and because of the spin-momentum locking of the TI
surface states. For the geometry of Fig. 3(g), we obtain the
potential drop ∆µ(my) = (µ0

c − µ+) from Eq. (38a), and
for the geometry of Fig. 3(h), we obtain the potential drop
∆µ(my) = (µ− − µ0

c ) from Eq. (38b), both of which depend
on the sign of my . Therefore, the three terminal resistances
for the geometries of Figs. 3(g) and 3(h) will depend on the
magnetization direction of the FM contact, and could be used
for spin-detection with δµ = ηltrI/σW for both cases.

Our results for δµ for three terminal measurement geome-
tries of Figs. 3(g) and 3(h) match with that of Hong et al.
calculated in the limit of small tunneling for a FM point con-
tact as a voltage probe on the TI surface15, as well as that of
Yokoyama et al. obtained after a perturbative solution of the
coupled transport equations of the TI/FM bilayer with tunnel-
ing treated as perturbation16. From Eqs. (38a) and (38b), we
also find that the potential drop ∆µ(my) = (µ−−µ+) across
the TI surface is independent of the sign of my , which also
is consistent with the result by Yokoyama et al.16. The cir-
cuit pair shown in Figs. 3(c) and 3(d), the pair shown in Figs.
3(e) and 3(g), and the pair shown in Figs. 3(f) and 3(h) are
reciprocal pairs. The resistance of each of these circuits can
be calculated from Eqs. (36)-(38). For each reciprocal circuit
pair, the Onsager reciprocity relation R1(+my) = R2(−my)
is satisfied, whereR1 andR2 aremy dependent resistances of
reciprocal circuits in each pair.

D. Consideration of nonzero length FM contact and
importance of the tunnel barrier

We started with the quantum kinetic equation given in
Eq. (1) which is derived under the gradient expansion as-
suming that the r and t dependence of the Green’s function
g(r, t; pFp̂, ε) is smooth in the Fermi scale, i.e., qx � pF and
ωτp � pFlp. Furthermore, Eqs. (30) and (31) are derived from
the matrix equation Eq. (29) after approximating f2 ≈ 2Ω
under low-frequency long-wavelength diffusive limit assump-
tion, ωτp � 1 and qxlp � 1. The assumptions in the gradient
expansion and diffusive limit imply that the charge electro-
chemical potential µ on the TI surface varies smoothly on the
scale of momentum relaxation length on the TI surface. In the
solution of Eqs. (34) and (35), which are derived assuming
delta function tunneling, µ has a discontinuity. However, the
solution of µ in Eqs. (36)-(38) must be treated as the solution
in the limiting case of the length of the FM contact becoming
zero. Also, in experiment, the size of the contact is nonzero
and at least an order of magnitude larger than the momentum
relaxation length on the TI surface. Hence, the coupled trans-
port equations, Eqs. (32) and (33), which are derived consid-
ering diffusive transport on the TI surface under the FM con-
tact region, need to be resolved for a nonzero contact length.
However, and as we will show do, these results for nonzero
contact length continue to follow the Onsager reciprocity re-
lation, and converge back to the corresponding line contact
result, δµ = ηltrI/σW in the limit of L → 0. However, it is
only beyond the line contact limit that we capture the impor-
tance of the tunnel contact in such spin-detection experiments.

The second order differential equation for the electrochem-
ical potential µ on the TI surface under the FM contact is ob-
tained by substituting Eq. (33) into Eq. (32). Since the FM
contact is metallic with a conductivity much higher than the
conductivity of the TI surface, the electrochemical potential
of the FM µc(x) can be taken to be constant within the FM
contact, i.e., dxµc(x) = 0 and µc(x) = µ0

c
37. We define

µ′ = µ−µ0
c to be the electrochemical potential on the TI sur-

face with respect to the FM contact. Then, the equations for
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FIG. 4. Schematics of the cross-sectional view of 1D measurement
geometries on the surface of a diffusive TI in the vicinity of the FM
in the circuits of Fig. 1.

µ′ and the current density jx on the TI surface become,

d2
xµ
′ − 2bmydxµ

′ +
(
b2m2

y − c2
)
µ′ = 0, (39a)

jx = −σ′[dxµ′ − bmyµ
′], (39b)

where b = ξη/ltr and c =
√

2ξ(1 + ξ)/ltr. From Eq. 39,
if µ′(j) is a solution given a current density j on the TI sur-
face, then µ′(αj) = αµ′(j) is also a solution. So, the po-
tential difference (µ1 − µ2) = (µ′1 − µ′2) between any two
points 1 and 2 on the TI surface, or the potential difference
(µ − µ0

c ) = µ′ between any point on the TI surface and the
FM, will be directly proportional to the current density, im-
plying a linear current-voltage relationship. Also, from Eq.
(39), after letting x→ −x and my → −my , either jx → −jx
or µ′ → −µ′ indicting a symmetry of the problem under an
1800 rotation in the plane. However, to check for Onsager
reciprocity, we must solve Eq. (39) given specific boundary
conditions associated with the reciprocal circuit pairs. The
solution of µ′ in Eq. (39a) is given by µ′ = A1e

r1x +A2e
r2x,

where r1,2 = bmy±c, and the unknown constantsA1,2 will be
determined from the boundary conditions on jx, which can be
written as jx = −σ′c(A1e

r1x − A2e
r2x) from Eq. (39b). To

keep the notation consistent with that of a line contact in the
limit L → 0, we denote the electrochemical potentials on the
TI surface to the left of the FM contact to be µ− = µ(x = 0)
and the electrochemical potentials on the TI surface to the
right of the FM contact to be µ+ = µ(x = L). In the fol-
lowing, we find the solutions for µ+ and µ− for specific ge-
ometries and discuss the linear current-voltage characteristic,
the symmetry under an 1800 rotation in the plane, the spin-
detection voltage on the TI surface, the validity of the Onsager
reciprocity relation and the importance of the tunnel barrier in
such spin-detection experiments.

We first consider the case in which a current I is injected
from the FM to the TI and extracted from one end or the other
of the TI surface, as shown in Figs. 4(a)-(f). In the case in

which the current is extracted from the right end on the TI
surface as shown in Figs. 4(a), 4(c) and 4(e), the boundary
conditions become jx(x = 0) = 0 and jx(x = L) = I/W .
Then, we obtain the solution for µ+ and µ− to be

µ+ = µ0
c −

I coth(cL)

σ′cW
, (40a)

µ− = µ0
c −

I csch(cL)

σ′cW
e−bmyL. (40b)

From Eq. (40a), the potential difference ∆µ = (µ0
c − µ+)

does not depend on the magnetization direction of the FM. As
a result, the two terminal resistance measured between a FM
and a NM contact of Fig. 4(a) will remain the same even after
reversing the magnetization of the FM, satisfying the Onsager
reciprocity relation. However, in the three-terminal measure-
ment of Fig. 4(c) in which the potential at the leftmost point
on the TI surface is measured with respect to the FM, the po-
tential difference ∆µ(my) = (µ−−µ0

c ), which is found from
Eq. (40b), depends on the magnetization direction of the FM.
Similarly, in the three terminal measurement of Fig. 4(e) in
which the potential difference on the TI surface at the two
ends is measured, ∆µ(my) = (µ− − µ+) from Eqs. (40a)
and (40b), depends on the magnetization direction of the FM.

If a current I is injected on the TI surface from the left end
and extracted through the FM contact of Figs. 4(b), 4(d) and
4(f), the boundary conditions will be jx(x = 0) = I/W and
jx(x = L) = 0. Then, we obtain µ+ and µ− to be

µ+ = µ0
c +

I csch(cL)

σ′cW
ebmyL, (41a)

µ− = µ0
c +

I coth(cL)

σ′cW
. (41b)

Equation (41) can be obtained from Eq. (40) after reversing
the direction of the injected current I and the magnetization
direction my of the FM, and interchanging the rightmost and
the leftmost potentials µ+ and µ−, which reflects the 1800

rotation symmetry in the plane of the device. In the two-
terminal case as shown in Fig. 4(b), the potential difference
∆µ = (µ− − µ0

c ) from Eq. (41b) is independent of the FM
magnetization, so the two-terminal resistance will remain the
same even after reversal of the magnetization direction of the
FM. In the three terminal case as shown in Fig. 4(d), the po-
tential difference ∆µ(my) = (µ0

c − µ+) from Eq. (41a) de-
pends on the magnetization direction of the FM. Similarly, in
the three-terminal case as shown in Fig. 4(f), the potential
difference ∆µ(my) = (µ− − µ+), which is obtained from
Eqs. (41a) and (41b), also depends on the magnetization di-
rection of the FM. Hence, in the three-terminal geometries of
Figs. 4(c)-(f), there will be a change of resistance under the
magnetization reversal of the FM, which can be used for spin
detection on the surface of a TI.

In the circuit geometries shown in Figs. 4(g)-(h), the same
current I is injected in and out of the two ends of the TI sur-
face, and the boundary conditions are jx(x = 0) = jx(x =
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L) = I/W . Then, µ+ and µ− are given by

µ+ = µ0
c −

I csch(cL)

σ′cW

(
cosh(cL)− ebmyL

)
, (42a)

µ− = µ0
c +

I csch(cL)

σ′cW

(
cosh(cL)− e−bmyL

)
. (42b)

From Eq. (42), under the reversal (change of sign) of both
the direction of the injected current I and the FM magneti-
zation direction my , the potentials on the rightmost and the
leftmost points, µ+ and µ−, are interchanged, which again is
due to the 1800 rotation symmetry in the plane of the device.
In the geometries of Figs. 4(g) and 4(h), the potential dif-
ference ∆µ(my) = (µ0

c − µ+) and ∆µ(my) = (µ− − µ0
c ),

respectively, can be obtained from Eqs. (42a) and (42b). In
both these cases, ∆µ(my) depends on the magnetization di-
rection of the FM and will change upon reversing the FM
magnetization direction. However, the potential difference
∆µ(my) = (µ− − µ+) is independent of the magnetization
direction of the FM, which is consistent with the Onsager reci-
procity relation, and the result by Yokoyama et al.16.

All the potential differences, ∆µ = (µ0
c − µ+), ∆µ =

(µ− − µ0
c ), and ∆µ = (µ− − µ+), given by Eqs. (40)-(42),

are proportional to the current I , implying a linear regime of
the transport. The circuit geometries shown in Figs. 4(c) and
4(d), Figs. 4(e) and 4(g), and Figs. 4(f) and 4(h) are reciprocal
pairs with the voltage and the current terminals interchanged.
In all these reciprocal circuit pairs, the resistance can be cal-
culated using Eqs. (40)-(42), and in all the cases the Onsager
reciprocity relationR1(+my) = R2(−my) is satisfied, where
R1 and R2 are the my dependent resistances of reciprocal cir-
cuits in each pair. In all the cases shown in Figs. 4(c)-(h)
using Eqs. (40)-(42), we find that the spin-detection voltage,
δµ = [∆µ(my = +1)−∆µ(my = −1)], is given by

δµ =
2I

σ′cW
sinh(bL) csch(cL). (43)

From Eq. (43), in the limit L → 0, we find that δµ =
ηIltr/σW , which is the same as that obtained assuming tun-
neling from a delta function for the FM line contact, and that
δµ is, indeed, independent of the conductance of the FM tun-
nel contact. Only for nonzero length FM contact, does δµ
depend on the tunneling conductance of the FM contact. For
small tunnel conductance, the Taylor series expansion of δµ
for small values of ξ gives δµ = (ηIltr/σW )[1− ξ(L2/3l2tr)].
So, in the limit ξ → 0, we also obtain δµ = ηIltr/σW , which
is independent of the length of the FM contact. We define the
efficiency χ of the tunnel barrier as χ = δµ(ξ)

δµ(ξ→0) . There-
fore, the spin-detection voltage can be written as δµ(ξ) =
χηIltr/σW . In the limit L → 0 or ξ → 0, we have χ → 1.
Figure 5 shows how χ changes with ξ for different values of
L/ltr = 10, 20, 50 and η = 0.5. We have observed that the de-
pendence of χ on η is negligible in the range of interest of the
ξ andL/ltr values, so the variation of χwith ξ for only η = 0.5
is shown. From Fig. 5 we can see that the spin-detection ef-
ficiency of the tunnel contact decreases as the conductivity of
the FM contact increases. Also, the spin-detection efficiency
of the FM contact decreases as the length of the FM contact

FIG. 5. Variation of the spin-detection efficiency χ with the nor-
malized conductivity ξ of the FM tunnel contact on the surface of a
diffusive TI for different values of the FM contact length L relative
to the transport relaxation length ltr on the TI surface.

increases. So, the ideal contact for spin-detection would be a
FM line contact. However, in experiments, the FM contact has
a nonzero and often substantial length compared to the trans-
port relaxation length ltr on the TI surface, and a tunnel barrier
is needed to increase the spin-detection efficiency of the con-
tact, which has been demonstrated in the experiments2–14.

E. Consideration of NM contacts

The analysis of the circuit geometries shown in Figs. 1 and
2 with nonzero size contacts of length L can be performed
using the circuit diagrams of Fig. 4 and with the help of
Eqs. (40)-(42). However, to calculate the resistances for
these circuit geometries, the potential drops due to both the
FM and the NM contacts and the potential drop on the TI
surface between the contacts must be considered. The po-
tential drop on the TI surface between two contacts can be
found by solving Eq. (28). From Eq. (28). If a constant
current I flows on the surface of the TI from point 1 to point
2, the potential drop between the two points, 1 and 2, will
be ∆µ = (µ1 − µ2) = IL12/σW , where L12 is the length
between points 1 and 2. The potential drop due to the NM
contact can be calculated considering the transport on the TI
surface under the NM contact. Previously36, we calculated
the modified transport equations on the TI surface due to tun-
neling from the NM contact. In the 1D case, considering the
transport on the TI surface along the x-direction, the modified
continuity equation of the TI surface states due to tunneling to
and from the NM is given by36

dxjx = 2γNm(e2Nµc − n), (44)

where, Nm is the per spin DOS of the NM at the Fermi en-
ergy, and µc is the charge electrochemical potential in the NM.
In our previous work36, we defined the interface transmission
time τt by 1/τt = γNm. The modified diffusion equation for
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the charge current density on the TI surface due to tunneling
from the NM is given by36

jx =
1

(1 + 4γNmτp)

[
− v2

Fτp∂xn− γNmNvFτpµ
y
s

]
, (45)

where, µys is the y-component of the spin electrochemical po-
tential in the NM38. From Eq. (44), we obtain the following
modified continuity equation of the charge density on the TI
surface under the NM,

dxjx =
2ξσ

l2tr
(µc − µ). (46)

For µys = 0, from Eq. (45), we obtain the following modified
diffusion equation for the current density on the surface of the
TI under the NM,

jx = − σ

(1 + ξ)
dxµ. (47)

In case of the NM, we have N↑ = N↓ = Nm, and, thus,
N− = 0, N+ = 2Nm; therefore, η = 0 and ξ = 4γNmτp.
Equations (46) and (47) also can be obtained from Eqs. (32)
and (33), respectively, after letting η = 0 for the NM. So, to
calculate the potential drops due to the nonzero length NM
contact in Figs. 1 and 2, Eqs. (40)-(42) can be used after
substituting η = 0.

The resistive potential drop on the TI surface and the resis-
tive drop due to the NM contacts are independent of magne-
tization direction of the FM contact, and satisfy the Onsager
reciprocity relation independently. Therefore, it is sufficient to
consider the potential drop due to the FM contacts, as shown
in Fig. 4, to check the validity of the Onsager reciprocity re-
lation in multi-terminal measurements as shown in Fig. 1 and
the two-terminal measurements as shown in Fig. 2. Consid-
ering the transport on the TI surface under the nonzero length
FM contact, we have shown that the Onsager reciprocity re-
lation is satisfied in spin-detection experiments on the surface
of a TI, and how the conductivity of the FM tunnel contact
affects the efficiency of the spin-detection. Our conclusions
remain valid even after considering detailed calculation of the
potential drops due to all the other NM contacts and the drops
on the TI surface between the contacts.

To illustrate how to include the potential drops consider-
ing the NM contacts of Figs. 1 and 2, we calculate the two-
terminal resistances in the circuit geometries shown in Fig. 2
using the results obtained for the transport on the TI surface
under the FM and the NM contact and the region in between
the contacts. For the circuit geometries shown in Figs. 2(a)
and 2(b), if the same current is flowed on the TI surface be-
tween the two contacts, the potential difference on the two
contacts will be the sum of the potential drop due to the left
contact, the potential drop on the TI surface in between the
contacts, and the potential drop due to the right contact. The
potential drop due to the left FM contact will be obtained from
Eq. (40a), the potential drop due to the right NM cotact of Fig.
2(a) or the right FM contact of Fig. 2(b) will be obtained from
Eq. (41b), and the potential drop on TI surface in between the
contacts will be given by ∆µ = IL12/σW . For both cases

(a)

(c)

(e) (f)

(d)

(b)

V

I

I

V

V

I

I

V

VI V I

FIG. 6. Schematics of spin-valve like measurement geometries with
two FM contacts on the surface of a diffusive TI.

shown in Figs. 2(a) and 2(b), the two-terminal resistances are
the same and given by

R2t =
coth(c1L1)

σ′1c1W
+
IL12

σW
+

coth(c2L2)

σ′2c2W
. (48)

Here, ci =
√

2ξi(1 + ξi)/ltr and σ′i = σ/(1 + ξi), where ξi
is proportional to the conductance of the tunnel barrier for the
ith contact, Li is the length of the ith contact (i = 1, 2), and
L12 is the length between the contacts. The resistance given
by Eq. 48 is independent of the magnetization direction of
the FM contact of Fig. 2(a) or the magnetization direction of
either of the FM contacts of Fig. 2(b). Hence, R2t satisfies
the Onsager reciprocity relation. The calculation for all the
circuits shown in Fig. 1 can be performed in a similar way.

F. Consideration of spin-valve-like geometries

We also consider spin-valve-like four-terminal measure-
ment geometries with two adjacent FM and two non-adjacent
NM contacts on the surface of a diffusive TI. Among all
the possible circuit geometries with such contact configura-
tions, two of them being the voltage probes and other two be-
ing the current probes, we find four possible contact geome-
tries (two sets of reciprocal circuit pairs), as shown in Figs.
6(a)-(d), that manifest the effects of magnetic orientations of
both the FMs on the four-terminal resistance. We also note
that, if the two FM and the two NM contacts are identical
in the devices shown in Figs. 6(a)-(d), there will be a rota-
tional symmetry axis normal to the plane of the devices. In
case of identical contacts in the devices shown in Figs. 6(a)-
(b), from the calculations based on Eqs. (40)-(42) we ob-
tain the relationship, R4t(+ ~M1,+ ~M2) = R4t(− ~M1,− ~M2),
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where this relationship satisfies the symmetry under an 1800

rotation in the plane of the devices. However, we obtain
R4t(+ ~M1,− ~M2) 6= R4t(− ~M1,+ ~M2) consistent with the
equality being not guaranteed by any symmetry or the On-
sager reciprocity relation. Similarly, in case of identical con-
tacts in the circuits shown in Figs. 6(c)-(d), the four point
resistances obtained from our calculations using Eqs. 40-42
satisfy R4t(+ ~M1,+ ~M2) = R4t(− ~M1,− ~M2), but we also
obtain R4t(+ ~M1,− ~M2) = R4t(− ~M1,+ ~M2) consistent with
the Onsager relation since the two symmetric reciprocal de-
vice structures are related by an 1800 rotation in the plane.
Other terminal connection possibilities are shown in Figs.
6(e)-(f), which are reciprocal circuit pairs. We find from the
calculations using the Eqs. (40)-(42) that the four-terminal
resistances will not depend on either of the magnetizations
of the FM contacts. This behavior also has been verified
experimentally4,14 and was attributed to very short spin relax-
ation time, which is same as the momentum relaxation time
on the surface of the TI due to spin-momentum helical lock-
ing. We could, in principle, extend our calculations to derive
the multi-terminal resistance for any number of contacts.

V. COMPARISON TO RESULTS IN THE LITERATURE

In this section, we first derive the spin-charge coupled trans-
port equations of Burkov et al.23, which was derived on the TI
surface without any tunneling from the FM. Then, we show
that the spin-charge coupled diffusion equations of Burkov et
al. do not satisfy the continuity equation of the charge den-
sity, i.e., Eq. (26) in which the charge current density on the
TI surface is given by Eq. (15).

To derive the transport on the TI surface in the case of no
tunneling from the FM, we have γ = 0, hence, h2 = 0, Ω =
1−iωτp and ∆x = qxvFτp in Eqs. (7), (8) and (9). Performing
the ε integration of Eq. (7), we obtain

[I2 − D2]ρ2 = 0, (49)

where I2 is the 2× 2 identity matrix and ρ2 = (n, 2sy)T . The
matrix D2 contains full information about the coupled spin
and charge transport on the TI surface. However, the matrix
elements of D2 are complicated functions of ∆x, Ω and Ωso
as given in Eq. (8). Instead, to obtain the transport equa-
tions on the TI surface, we have multiplied Eq. (8) by D−1

2

to obtain the matrix equation Eq. (19), which gives Eq. (22)
in case of no tunneling, and the matrix elements of D−1

2 are
simple functions as given in Eq. (20). Moreover, as we have
shown, the continuity equation of the charge density obtained
from the matrix equation Eq. (22) remains true irrespective
of the approximation made to obtain the second equation of
the two coupled transport equations. The spin-charge cou-
pled transport equations of Burkov et al.23 can be obtained by
approximating the matrix elements of D2 by invoking the dif-
fusive approximations. The matrix equation Eq. (49) with the
full matrix D2 satisfy the continuity equation of the charge
density as we show below. However, we also show that, it
is quite non-trivial to approximate the matrix elements of D2

to get the spin-charge coupled diffusion equations from Eq.
(49) such that the continuity equation of the charge density is
satisfied even after the approximations.

First, we show that the spin-charge coupled diffusion equa-
tions on the TI surface without any tunneling from the FM
satisfies the continuity equation of the charge density given
the full matrix D2 in Eq. (8). Substituting D2 from Eq. (8) in
Eq. (49) with Ω = 1− iωτp and ∆x = qxvFτp, we obtain[

1− f1 − i
∆x

(1− Ωf1)

− i
∆x

(1− Ωf1) 1− Ω
∆2

x
(1− Ωf1)

] [
n

2sy

]
= 0. (50)

Multiplying Eq. (50) by the row vector v2 = (Ω,−i∆x) from
left gives Eq. (23), which is the continuity equation of the
charge density expressed in the Fourier space. We observe
that the equation v2[I2 − D2]ρ2 = 0 gives Eq. (23) if the full
matrix D2 in Eq. (8) is used. Hence, we can obtain a constrain
on how to expand the matrix elements of D2 such that the
equation v2[I2 − D2]ρ2 = 0 continues to give Eq. (23), and
thus the coupled spin-charge transport equations will satisfy
the continuity equation for the charge density.

The matrix elements of D2 are expanded in series as,

D00 =
1

Ω
− ∆2

x

2Ω3
+

3∆4
x

8Ω5
+ · · · ,

D0y = Dy0 =
i∆x

2Ω2
− 3i∆3

x

8Ω4
+ · · · ,

Dyy =
1

2Ω
− 3∆2

x

8Ω3
+ · · · .

(51)

However, the approximations of the matrix elements of D2

have to be such that the equation v2[I2 − D2]ρ2 = 0 still give
Eq. (23), which forces expanding each matrix element with
different powers of ∆x (or Ω) given by the following rule at
each order of approximation: In the nth order, the rule is to
keep the first (n + 1) terms of D00 and the first n terms in
each of D0y,Dy0,Dyy in Eq. (51). Hence, to the lowest order,
one has to keep the first two terms of D00 and only the first
term in each of D0y,Dy0,Dyy in Eq. (51). For the next higher
order, one has to keep the first three terms of D00 and the first
two terms in each of D0y,Dy0,Dyy in Eq. (51).

Previously26, we had shown that the coupled spin-charge
transport equations obtained by Burkov et al.23 can be derived
from Eq. (7) under the diffusive approximations. Here, we
precisely show that the transport equations of Burkov et al.
are obtained after keeping the first two terms in both D00 and
Dyy and the first term in both D0y and Dy0 in Eq. (51), which
do not satisfy the above rules. However, we obtain

D00 = (1− iωτp)−1 − ∆2
x

2
(1− iωτp)−3

≈ 1 + iωτp −
q2
xv

2
Fτ

2
p

2
,

D0y = Dy0 =
i∆x

2
(1− iωτp)−2 ≈

iqxvFτp

2
,

Dyy =
1

2
(1− iωτp)−1 − 3∆2

x

8
(1− iωτp)−3

≈ 1

2
(1 + iωτp)−

3q2
xv

2
Fτ

2
p

8
.

(52)
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In deriving the approximate values of the matrix elements, we
have neglected terms of order ω2τ2

p , ωτpqxlp and higher. Sub-
stituting the values from Eq. (52) into Eq. (49), we obtain,

[
−iωτp + 1

2 q2
xv

2
Fτ

2
p − 1

2 iqxvFτp

− 1
2 iqxvFτp

1
2 −

1
2 iωτp + 3

8 q2
xv

2
Fτ

2
p

] [
n

2sy

]
= 0.

(53)

Equation (53) is exactly what we derived in our prior
work26. After inverse Fourier transforming Eq. (53) to real
space, the following coupled spin-charge transport equations
of Burkov et al.23 are obtained,

∂tn = D0∂
2
xn+ 2Γ∂xsy, (54a)

∂tsy =
3D0

2
∂2
xsy −

sy
τp

+ Γ∂xn, (54b)

whereD0 = v2
Fτp/2 was the diffusion constant, and Γ = vF/2

was the spin-charge coupling constant. It should be noted that
diffusion constant D0 = v2

Fτp/2 indicates that the momentum
relaxation time is τp instead of 2τp. Similarly, Eq. (54b) in-
dicates that the spin relaxation time is also τp instead of 2τp.
The mismatch of a factor of 2 in both the the momentum relax-
ation time and the spin relaxation time from the actual values
is an indication of the inaccuracy of the coupled spin-charge
transport equations of Burkov et al.

Since, the matrix elements of D2 given in Eq. (52) were not
derived according to the above rules for order of approxima-
tion, the transport equation Eq. (54a) is inconsistent with the
continuity equation of the charge density given in Eq. (26), if
the actual charge current density given in in Eq. (15), i.e.,
jx = −2vFsy , is considered. Alternatively, if the charge
current density is defined from the transport equation, Eq.
(54a), after considering Eq. (54a) as the continuity equa-
tion of the charge density, as what was done by Burkov et
al.23, the resulting new definition of the charge current den-
sity, jx = −D∂xn − 2Γsy , becomes inconsistent with the
actual charge current density given in Eq. (15). However,
if the second order ∂2

xsy term in Eq. (54b) is neglected, as
described by the above rules, sy = Γτp∂xn is obtained in
steady state. Substituting sy = Γτp∂xn in Eq. (54a) results
in ∂tn − 2vF∂xsy = 0, and we recover the charge continuity
equation ∂tn+ ∂xjx = 0 with jx = −2vFsy .

Here, based on a derivation from the quantum kinetic equa-
tion, we show that the spin-charge coupled transport equa-
tions for the TI surface states obtained by Burkov et al.23 are
inconsistent with the continuity equation of the charge den-
sity. Burkov et al.23 derived the spin-charge coupled trans-
port equation from the density response function formalism
using standard perturbation theory. It can be shown similarly,
though it is beyond the scope of this paper, that the expansion
in terms of the small parameters ωτp, qxlp, in that formalism
too has to be such that the resulting transport equations are
consistent with the continuity equation of the charge density,
for the charge conservation to hold, even after making stan-
dard current conserving approximations for the Green’s func-
tion and the self-energy in perturbation theory.

Schwab et al. had calculated the resistance between a FM
line contact and a point on the TI surface using Eq. (32) and
ignoring Eq. (33), and the result did violate Onsager reci-
procity. We have shown that considering both Eqs. (32) and
(33), indeed, results in the two-terminal resistance that satis-
fies Onsager reciprocity, even in the case of FM line contact.
However, ignoring Eq. (33), as Schwab et al.24 did, does lead
to the violation of the Onsager reciprocity relation.

Previously, Sayed et al.19 had addressed the issue of On-
sager reciprocity in multi-terminal spin-valve-like measure-
ments on the surface of a diffusive TI by deriving the
resistance from the solution of a phenomenological one-
dimensional diffusion equation in terms of electrochemical
potentials of four propagating channels on the surface of the
TI, where each channel corresponds to a specific combina-
tion of spin orientation (up and down) and direction of prop-
agation (right and left moving), and modeling the FM and
NM contacts on the TI surface as line contacts18,19. How-
ever, Sayed et al.19 only considered specific cases as those
of Figs. 1(a)-(b), Fig. 2(b) and Figs. 6(a)-(b). Our finding
matches with the ones obtained by Sayed et al.19 in the case
of Figs. 1(a)-(b) and Figs. 6(a)-(b) with both the FM con-
tacts being considered identical. However, in the case of two-
terminal resistance between the two FM contacts as shown in
Fig. 2(b), the result of Sayed et al.19 obeyed the Onsager reci-
procity relation, i.e., R2t(+ ~M1,+ ~M2) = R2t(− ~M1,− ~M2)

and R2t(+ ~M1,− ~M2) = R2t(− ~M1,+ ~M2), but with the re-
lation R2t(+ ~M1,+ ~M2) 6= R2t(+ ~M1,− ~M2) instead of R2t

being independent of both the magnetization directions of the
FM contacts that we have derived in Eq. (48). In our model,
the TI is purely diffusive and all the spin information is lost af-
ter a few momentum scattering events on the TI surface. The
loss of information of the spin of electrons (or the information
of the magnetizations of the FM contacts) from the two inject-
ing FM contacts is due to the spin-momentum helical locking
of the TI surface states, where each momentum scattering also
randomizes the spin which is locked to the momentum of the
TI surface states. Hence, we find that the two-terminal re-
sistance R2t given in Eq. (48) does not depend on either of
the FM magnetization directions. It might be the case that
the result obtained by Sayed et al.19 is an outcome of their
model not being purely diffusive, but only based on a phe-
nomenological diffusion equation of individual spin up and
spin down propagation modes, where the spin information is
not completely lost even after a significant number of momen-
tum scattering events (although they had to introduce spin-flip
scattering artificially to account for that). By contrast, in our
theory, the transport equations on the surface of a TI are de-
rived starting from the quantum kinetic equation under dif-
fusive approximations. We believe that the two-terminal re-
sistance between two FM on the surface of a TI in ballistic
transport regime will satisfy relations, R2t(+ ~M1,+ ~M2) =

R2t(− ~M1,− ~M2), R2t(+ ~M1,− ~M2) = R2t(− ~M1,+ ~M2),
but R2t(+ ~M1,+ ~M2) 6= R2t(+ ~M1,− ~M2), resembling that
of Sayed et al.19.

The two-terminal resistance between a FM and a NM con-
tact on the surface of a ballistic TI was calculated theoretically
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by Gotte et al.27, but the calculated theoretical result appar-
ently violates the Onsager reciprocity relation. In the ballis-
tic transport regime, the probability conservation law, i.e., the
conservation of charge density, along with the time reversal
symmetry, which is achieved by reversing the magnetization
direction of the FM, ensures a symmetry of the conductance
matrix such that the Onsager reciprocity relation is satisfied in
the linear response regime. The calculation for the pure ballis-
tic case to establish the validity of the Onsager reciprocity re-
lation is beyond the scope of this current work. Nevertheless,
Semenov et al.28 had understood that the Onsager reciprocity
will be satisfied in both the ballistic and the diffusive case,
and, hence, they proposed a phenomenological model for the
quasi-ballistic mesoscopic regime in which they showed that
the reciprocity and even the linear current-voltage relation-
ship around the zero bias are violated. However, a detailed
formal derivation based on transmission matrix method simi-
lar to that of Buttiker22, or a calculation based on the quantum
kinetic equation, is needed to test such violation of Onsager
reciprocity in the mesoscopic regime of transport.

In the experiment, the transport regime is mostly diffu-
sive, hence the observation of different two-terminal resis-
tance with reversal of FM magnetization direction still needs
to be explained. Very recently, Tian et al.39 observed spin
memory effect in three-terminal spin detection experiments
on the surface of a TI and postulated that one possible rea-
son for the observed spin memory effect might be the hyper-
fine interaction between the nuclear spin in the atom and the
conduction electron spin, in which atomic nuclear spin has
a much larger lifetime giving rise to a memory effect. In
case of two-terminal magneto-resistance experiment involv-
ing FM contacts on the surface of a TI, such hyperfine inter-
action could similarly give rise to change of resistance upon
magnetic field reversal. Since the nuclear spin in the atom
does not relax to become reversed with the reversal of the FM
magnetization, the Onsager reciprocity relation could not be
applied, since application of the Onsager reciprocity relation
requires time reversal invariance, which is achieved by revers-
ing all the internal magnetic moments and the external mag-
netic fields in the system. In this work, we have shown that
in the purely diffusive regime of transport, the Onsager reci-
procity relation is maintained, which contrasts to prior results
that also assumed diffusive transport but found violations of
Onsager reciprocity for reasons detailed before. This work,
therefore, suggests that the apparent violations of the Onsager
reciprocity relation in the experiments must have a different
source.

VI. CONCLUSION

In summary and conclusion, starting from the quantum ki-
netic equation, we have derived the diffusive transport equa-
tions on the surface of a TI coupled to a FM to explain two-
terminal and multi-terminal spin detection measurements on
the TI surface. In the kinetic equation, the effect of the FM
tunnel contact on the transport has been considered by taking
into account a self-energy due to tunneling across the TI/FM

interface that acts as a source term in the charge transport
equations of the carriers on the surface of the TI under the
FM tunnel contact. The diffusion equations are solved ana-
lytically to calculate the change in chemical potential in the
TI and the FM due to the charge current on the TI surface
for different measurement geometries. Based on our analyt-
ical model, we define a spin-detection voltage as the change
in voltage measured on the FM contact on reversing the FM
magnetization direction. We find that the spin-detection volt-
age depends on the DOS polarization of the FM, the amount
of charge current on the TI surface and the conductivity of
the tunnel contact. We show that the spin-detection voltage
decreases with increasing tunnel conductivity of the tunnel
barrier. We also show that the Onsager reciprocity relation
is satisfied in both the two-terminal and multi-terminal spin-
detection experiments on the surface of a diffusive TI, which
resolves conflicting issues in prior literature, as well as ex-
plains the results of multi-terminal spin-detection experiments
on the surface of a diffusive TI. Our results suggest that the
experimental findings of two-terminal resistance that depends
on the FM magnetization direction need further interpretation.

This work is supported by NASCENT ERC and NSF under
the grant NNCI ECCS-1542159.

Appendix A: Derivation of the quantum kinetic equation

To derive the quantum kinetic equation describing transport
on the TI surface coupled to the FM, we follow our previous
papers34,36. We consider the following total Hamiltonian for
the TI-FM heterostructure of Fig. 4,

Htot = HTI +Hdis +HFM +Htun. (A1)

Here, HTI is the low energy effective Hamiltonian for the TI
surface states in second-quantized form, which is given by

HTI = λ

∫
d2R

∑
α,β

c†α(R)
[
εTI(R)− εFσ0 − eφσ0

]
αβ
cβ(R),

(A2)
where εTI(R) = −i~vF[(∇R × ẑ) · σσσ], vF is the Fermi ve-
locity of the Dirac surface states, εF is the Fermi energy, φ is
the electrostatic potential of any electric field (E = − ∇Rφ)
on the TI surface, and R is the 2D position vector on the TI
surface. The creation and annihilation operators of the TI sur-
face states are c†α(R), cβ(R) (where (α, β) are the spin in-
dices) which satisfy the equal-time anti-commutator relation
{cα(R), c†β(R′)} = λ−1δ(R−R′)δαβ normalized to the thick-
ness λ of the TI surface states. The disorder Hamiltonian Hdis
representing the impurities on the TI surface is given by

Hdis = λ

∫
d2R

∑
α

c†α(R)Vdis(R)cα(R), (A3)

where Vdis(R) = VdadΣNI
j=1δ(R − RI

j) is spin-independent
short-ranged impurity potential, Vd is the average impurity po-
tential for impurities on and close to the interface, RI

j’s are the
locations of the randomly distributed impurities, and and ad is
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a normalization constant with unit of area for the normaliza-
tion of the delta function.

We consider the FM Hamiltonian HFM, which is given by

HFM =

∫
d3r
∑
α,β

d†α(r)
[
εFM(r)− εFσ0 − eφcσ0

]
αβ
dβ(r).

(A4)
Here, εFM(r) = [− ~2

2mc
∇2

r + εb]σ0 − ∆exm · σσσ describes the
two spin-splitted bands in the FM, r is the 3D position vector
in the metal, mc is the effective mass for both the conduction
bands in the FM, εb is the band offset relative to the Dirac
point of the TI surface states, ∆ex is the effective strength of
exchange interaction between the itinerant s-electrons and the
localized d-electrons in the FM, m is the unit vector along
the direction of magnetization in the FM and φc is the elec-
trostatic potential of any electric field in the FM. The two
bands of the FM will be spin splitted with an splitting en-
ergy of 2∆ex. The creation and annihilation operators in the
metal are d†α(r) and dβ(r), which satisfy the equal-time anti-
commutator {dα(r), d†β(r′)} = δ(r−r′)δαβ . The creation and
the annihilation operators in the metal and on the TI surface
anti-commutes, i.e., {cα(R), d†β(r′)} = 0.

The coupling of the TI surface states to the FM is described
by a tunneling Hamiltonian Htun, which represents the trans-
mission of the electron in and out of the TI surface states from
and to the FM, given by

Htun = λ

∫
d2R

∫
d3r
∑
α,β

[
d†α(r)Tαβ(r,R)cβ(R) + h.c.].

(A5)

We consider a site-to-site (local) instantaneous tunneling
at the interface, and the tunneling matrix has the form
Tαβ(r,R) = tαβf(R)δ(r‖ − R)δ(z), where tαβf(R) de-
scribes the nature of the tunneling. The dependence of tαβ on
the spin indices (αβ) describes whether the tunneling is spin-
conserving or spin-selective but spin-non-conserving, and the
dependence of f(R) on R describes whether the tunneling is
momentum randomizing or in-plane momentum conserving.
In case of a rough interface, the tunneling will be momentum
randomizing, and the tunneling is modeled by randomly dis-
tributed tunneling centers with f(R) = atΣ

NS
i=1δ(R − RS

i ),
where RS

i ’s are the positions of the tunneling centers, and
at is a normalization constant with unit of area for the nor-
malization of the delta function. In case of a smooth inter-
face, the tunneling will be in-plane momentum conserving,
and the tunneling is modeled by a position-independent func-
tion f(R) (we take f(R) = 1). For spin-conserving tunnel-
ing, the tunneling can be modeled by tαβ = t0δαβ , where
the tunneling from both the bands in the FM to the TI surface
states (and vice versa) have the same tunneling strength t0.
For spin-selective but spin-non-conserving tunneling, the tun-
neling from the two bands in the FM to the TI surface states
(and vice versa) will have a different strength, and the tun-
neling can be modeled by tαβ = (t↑P↑ + t↓P↓)αβ . Here,
P↑,↓ = (σ0 + m ·σσσ)/2 are the projection operators to the two
spin spliited bands in the FM, and t↑,↓ are the corresponding

tunneling strength. If t↑ 6= t↓, the tunneling will be spin-
non-conserving, and the spin-conserving tunneling is a special
case when t↑ = t↓ = t0.

The quantum kinetic equation obtained from the Keldysh
component of the Wigner transformed left-right subtracted
Dyson equation after gradient expansion is given by40

∂tG
K − e ∂tφ ∂εG

K +
1

2

{
v · ∇R, G

K}+ e∇Rφ · ∇pG
K

+
i

~

[
εTI(p), GK

]
= −i

(
ΣRGK −GKΣA

)
+ i
(
GRΣK − ΣKGA

)
.

(A6)

Here, εTI(p) = ~vF(p × ẑ) · σσσ, v = vF (ẑ × σσσ), GR,A,K and
ΣR,A,K are the the retarded(R), advanced(A) and Keldysh(K)
component of the Wigner transformed Green’s functions(G)
for the TI surface states and the self energies(Σ) in terms of
the variable (R, t; p, ε). Here, (R, t) are the center-of-mass po-
sition and time co-ordinates and (p, ε) are the Fourier trans-
formed momentum and energy of the relative position and
time co-ordinates. The self energy has contributions from
both disorder and tunneling Hamiltonian, i.e. Σ = Σdis +Σtun,
where Σdis is the self-energy due to disorder impurity poten-
tial and Σtun is the self-energy due to tunneling from the FM
to the TI surface states. We consider time-independent elec-
tric fields on the TI surface, hence, the electrostatic potential
will be time-independent, i.e., ∂tφ = 0.

After impurity averaging, the self energy for disorder is
given by

ΣR,A,K
dis (R, t; p, ε) =

λa2
dV

2
d ni

~

∫
d2p′

(2π)2
GR,A,K(R, t; p′, ε),

(A7)
where ni is the impurity concentration per unit area on the TI
surface. We introduce the quasi-classical Green’s function of
the TI surface states,

gR,A,K(R, t; pFp̂, ε) =
iλ

π

∫
dξp G

R,A,K(R, t; p, ε), (A8)

where pF is the Fermi momentum of the TI surface states, p̂ is
the unit vector along p, and ξp = ~vF|p| − εF. In Eq. (A8),
the integration is performed near the Fermi energy and we
assume that the Fermi energy is in the conduction band of
the TI. Hence, only the projection of the Green’s function of
the TI surface states to the conduction band is relevant to the
transport, which is

GR,A(p, ε) =
1

2λ

σ0 + (p̂× ẑ) ·σσσ
ε− ξp ± i0+

. (A9)

So, the quasi-classical Green’s functions and the disorder self
energies are give by

gR,A = ±1

2
[σ0 + (p̂× ẑ) ·σσσ],

ΣR,A
dis = ∓ i

2τp
σ0,

(A10)

where τp is the scattering time between the Bloch states in
the TI and is defined by 1/τp = πa2

dV
2

d niN/~, and N is the
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DOS of the TI surface states at the Fermi energy. Since the
quasi-classical Green’s function of the TI surface states will
be peaked at the Fermi energy, we have

GK(R, t; p, ε) = − iπ
λ
gK(R, t; pFp̂, ε)δ(ξp), (A11)

and, the Keldysh component of Σdis is given by

ΣK
dis(R, t; p, ε) = − i

τp
〈gK(R, t; pFp̂, ε)〉, (A12)

where 〈...〉 denotes angular averaging over the Fermi contour
of the TI surface states.

In case of a rough interface, the retarded, advanced and
Keldysh components of the tunneling self energy ΣR,A,K

tun =
ΣR,A,K

tun (R, t; p, ε) are obtained after averaging over the random
distribution of the tunneling centers, and momentum random-
ization happens in the tunneling process. As a result, the tun-
neling self energy is given by

ΣR,A,K
tun =

λa2
t ns

~

∫
d3k′

(2π)3
t†GR,A,K

FM t, (A13)

where ns is the density of the tunneling centers per unit area,
GR,A,K

FM = GR,A,K
FM (R, z = 0, t; k′, ε) are the retarded, advanced

and Keldysh components of the Green’s function of the FM
at the interface z = 0 with k′ being the 3D momentum in the
FM, and t = (t↑P↑ + t↓P↓) is the spin-dependent part of the
tunneling (note that t is hermitian, i.e., t† = t).

The retarded and advanced Green’s functions of the FM are,

GR,A
FM (k, ε) = P↑

1

ε− ξk↑ ± i0+
+ P↓

1

ε− ξk↓ ± i0+
. (A14)

where ξk↑,↓ = ~2

2mc
k2
↑,↓+εb∓∆ex−εF. Considering incoherent

superposition of up and down electrons in the FM, the Keldysh
component of the Green’s function of the FM, which will be
peaked at the Fermi energy, can be written as

GK
FM = −iπ

[
P↑g̃K
↑ (kF↑k̂↑, ε)δ(ξk↑) + P↓g̃K

↓ (kF↓k̂↓, ε)δ(ξk↓)
]
,

(A15)

where g̃K
↑,↓ are the Keldysh components of the quasi-classical

Green’s functions for the up and down electrons in the FM,
kF↑,↓ are the Fermi momentum of the up and down electrons
in the FM, and in Eq. (A15) the position and time dependence
of the Keldysh components of the Green’s functions are im-
plicit. It should also be noted that, the Keldysh component of
the tunneling self-energy is given by the Keldysh component
of the Green’s function of the FM evaluated at the interface.
However, the assumption of a constant Keldysh component of
the Green’s function of the FM with position inside the FM
will be self-consistent (because, the thickness of the FM is
considered to be small and the conductivity of the FM is much
higher than the conductivity of the TI, and, after considering
transport inside the FM it can be shown that the variation of
the non-equilibrium up/down electrochemical potential of the
FM with position inside the FM will be negligible37).

The retarded, advanced and Keldysh components of the
tunneling self energy become

ΣR,A
tun = ∓i

(
γ↑N↑P↑ + γ↓N↓P↓

)
,

ΣK
tun = −i

(
γ↑N↑P↑g↑ + γ↓N↓P↓g↓

)
,

(A16)

where γ↑,↓ = πλa2
t t

2
↑,↓ns/~ are the strengths of tunneling be-

tween the up/down spin electrons in the FM and the TI surface
states, N↑,↓ are the DOS of the up and down electrons in the
FM at the Fermi energy, and g↑,↓ = 〈g̃K

↑,↓〉 denotes the value
of the Keldysh component of the quasi-classical Green’s func-
tion for the up/down electrons in the FM after averaging over
the solid angle of the respective Fermi surfaces of each spin
bands in the FM.

In case of a smooth interface, in-plane momentum conser-
vation happens in the tunneling process, and the tunneling self
energy is given by

ΣR,A,K
tun =

λa2
t ns

~

∫
d3k′

(2π)3
t†GR,A,K

FM t δ(k′‖ − p)

=
λa2

t ns

~

∫
dk′z
2π

t†GR,A,K
FM (R, z = 0, t; k′‖, k

′
z, ε)t.

(A17)

For diffusive transport in the FM, the the Keldysh components
of the quasi-classical Green’s functions g̃K

↑,↓ for the up and
down electrons in the FM ca be expanded with an isotropic
and an anisotropic component (with respect to the momentum
direction k̂↑,↓). In the diffusive limit, the isotropic component
will be proportional to the up/down electrochemical poten-
tial in the FM, while the anisotropic component will be deter-
mined by the spatial variation (gradient) of the isotropic com-
ponent. Since the variation of the up/down electrochemical
potential in the FM will be negligible37, the anisotropic com-
ponent of the quasi-classical Green’s functions g̃K

↑,↓ of the FM
can be neglected. So, if the quasi-classical Green’s functions
g̃K
↑,↓ are isotropic in k↑,↓ space, from Eq. (A17) we obtain

that the retarded, advanced and Keldysh components of the
tunneling self energy are given by the same relation as that of
Eq. (A16) with γ↑,↓ = πλt2↑,↓/~ and N↑,↓ will be the corre-
sponding 1D DOSs calculated with the constraint of in-plane
momentum conservation.

The quantum kinetic equation in terms of the quasi-
classical Green’s function gK of the TI surface state is ob-
tained after performing ξp integration of Eq. (A6), which is

∂tg
K +

vF

2

{
ẑ×σσσ · ∇R, g

K}+ ivFpF[(p̂× ẑ) ·σσσ, gK]

= −g
K

τp
+
〈gK〉
τp

+
1

2τp

{
(p̂× ẑ) ·σσσ, 〈gK〉

}
−
{

(γ↑N↑P↑ + γ↓N↓P↓), gK}+
(
γ↑N↑P↑g↑ + γ↓N↓P↓g↓

)
+

1

2

{
(p̂× ẑ) ·σσσ, (γ↑N↑P↑g↑ + γ↓N↓P↓g↓)

}
.

(A18)

For spin conserving tunneling, t↑ = t↓ = t0, and γ↑ = γ↓ =
γ = πλt20/~, and we obtain Eq. (1) in the main text with the
identification g = gK and g↑,↓ = g↑,↓. However, to recover
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Eq. (A18) from Eq. (1), the replacement γN↑ → γ↑N↑ and
γN↓ → γ↓N↓ should be performed.

The term F · ∂f∂p in the classical Boltzmann equation which
is the term −eE · ∇pG

K in the quantum kinetic equation, Eq.
(A6), drops out of the quantum kinetic equation, Eq. (A18),
written for the Wigner transformed quasiclassical Green’s
function gK(r, pFp̂, t, ε) after ξp integration, because of the
assumption that the Fermi energy is the largest energy scale
in the problem40. The substitution ∇ → ∇ + eE∂ε that ap-
pears in the quantum kinetic equation for the gauge invariant
Wigner-transformed Green’s function g̃K(r,p, t, ε) as done in
Ref. [33], cancels out in the quantum kinetic equation, Eq.
(A6), written for normal (not gauge invariant) Wigner trans-
formed quasiclassical Green’s function gK (that we use in this
work)40, giving rise to a term proportional to ∂tφ which is
zero in case of time-independent external electrostatic poten-
tial. However, the external electrostatic potential φ appears in
the expression for the actual non-equilibrium charge density
of the electrons nneq and can therefore be subsumed by defin-
ing an effective non-equilibrium charge density n, as men-
tioned in the main text.

In the most general case of spin-selective but spin-non-
conserving tunneling, Eqs. (29)-(31) in the main text also
will be modified and can be obtained by the replacement
γN↑ → γ↑N↑ and γN↓ → γ↓N↓. Equation (29) will become[

Ω− 1 −i∆x

−i∆x f2 − 1

] [
n

2sy

]
=

[
e2Nτp(γ↑N↑µ↑ + γ↓N↓µ↓)

e2Nτpmy(γ↑N↑µ↑ − γ↓N↓µ↓)

]
,

(A19)

where, we have Ω = 1 + (γ↑N↑+ γ↓N↓)τp− iωτp and ∆x =
qxvFτp+i(γ↑N↑−γ↓N↓)τpmy . Then, the modified continuity
equation of the charge density on the TI surface, i.e., Eq. (30),
becomes

dxjx = γ↑N↑(e
2Nµ↑ − n) + γ↓N↓(e

2Nµ↓ − n)

+my(γ↑N↑ − γ↓N↓)
jx
vF
.

(A20)

The modified diffusion equation for the charge current density
on the TI surface, i.e., Eq. (31), becomes

jx =
1

(1 + ξ)

[
− v2

Fτp∂xn− vFτpmy

{
γ↑N↑(e

2Nµ↑ − n)

−γ↓N↓(e2Nµ↓ − n)
}]
,

(A21)

where, the new ξ will be redefined by ξ = (γ↑N↑ + γ↓N↓)τtr.
However, for µ↑ = µ↓ = µc, the forms of Eqs. (32) and (33)
remain the same with the above-mentioned redefined ξ and a
redefined η given by η = (γ↑N↑ − γ↓N↓)/(γ↑N↑ + γ↓N↓).

Appendix B: Solution of the transport equations

In this section, we provide the solution of the electrochem-
ical potential µ on the TI surface underneath the FM for dif-
ferent boundary conditions corresponding to different circuit

geometries as shown in Fig 4. From Eq. (39a), the general
solution of µ′ = (µ− µ0

c ) is given by µ′ = A1e
r1x +A2e

r2x,
where r1,2 = bmy ± c, b = ξη/ltr and c =

√
2ξ(1 + ξ)/ltr.

Then from Eq. (39b), the current density jx on the TI sur-
face can be written as jx = −σ′c(A1e

r1x − A2e
r2x), and the

unknown constants A1,2 are determined from the boundary
conditions on jx.

For the circuit geometries of Figs. 4(a), 4(c) and 4(e), the
boundary conditions are jx(x = 0) = 0 and jx(x = L) =
I/W . Hence, µ and jx are given by

µ = µ0
c −

I csch(cL)

σ′cW
e−bmyL

(
er1x + er2x

2

)
, (B1a)

jx =
I csch(cL)

W
e−bmyL

(
er1x − er2x

2

)
. (B1b)

For the circuit geometries of Figs. 4(b), 4(d) and 4(f), the
boundary conditions are jx(x = 0) = I/W and jx(x = L) =
0. Hence, µ and jx are given by

µ = µ0
c +

I csch(cL)

σ′cW

(
er1x−cL + er2x+cL

2

)
, (B2a)

jx = −I csch(cL)

W

(
er1x−cL − er2x+cL

2

)
. (B2b)

For the circuit geometries of Figs. 4(g) and 4(h), the boundary
conditions are jx(x = 0) = jx(x = L) = I/W . Hence, µ
and jx are given by

µ = µ0
c −

I

σ′cW

[
(1− er2L)er1x + (1− er1L)er2x

(er1L − er2L)

]
,

(B3a)

jx =
I

W

[
(1− er2L)er1x − (1− er1L)er2x

(er1L − er2L)

]
. (B3b)

Equations (40), (41) and (42) are obtained from Eq. (B1a),
(B2a) and (B3a), respectively.

The tunneling current density jtun flowing from the FM to
the TI surface through the interface is given by the right hand
side of the modified continuity equation for transport on the
TI surface, i.e., Eq. (32). So, we have,

jtun =
2ξσ

l2tr
(µ0

c − µ) +
ξηmy

ltr
jx, (B4)

and, the modified continuity equation for transport on the TI
surface now can be written as

dxjx = jtun. (B5)

After integrating the above equation, i.e., Eq. (B5), from 0 to
L, and using the fat that

∫ L
0

dx dxjx = jx(L) − jx(0), we
obtain the total tunneling current density jtot

tun to be

jtot
tun =

∫ L

0

dx jtun = jx(L)− jx(0). (B6)

The above equation, i.e., Eq. (B6), implies current conserva-
tion. In all the cases considered above, using Eqs. (B1)-(B3) it
is straightforward to check that the current conservation holds.
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