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The growth of the spin-glass correlation length has been measured as a function of the waiting
time tw on a single crystal of CuMn (6 at.%), reaching values ξ ∼ 150 nm, larger than any other
glassy correlation-length measured to date. We find an aging rate d ln tw/d ln ξ larger than found
in previous measurements, which evinces a dynamic slowing-down as ξ grows. Our measured aging
rate is compared with simulation results by the Janus collaboration. After critical effects are taken
into account, we find excellent agreement with the Janus data.

I. INTRODUCTION.

The accuracy provided by SQUIDs in measurements
of the response to an externally applied magnetic field
put spin-glasses in a privileged status among glassy sys-
tems1 in at least two respects. First, we know that their
sluggish dynamics originates in a bona fide phase tran-
sition at a critical temperature Tc, separating the para-
magnetic phase from the low-temperature glassy phase2.
Second, the suspected mechanism for the dynamic slow-
down, namely the increasing size of the cooperative re-
gions3, has been confirmed experimentally4. The size of
these cooperative regions, the so called spin-glass corre-
lation length ξ, was found to be as large as ξ ≈ 80 nm
(much larger than found to date in other glassy systems,
glycerol for instance5).

In the typical set-up, the spin glass is rapidly cooled
from high temperatures to a working temperature T <
Tc, where it relaxes for a waiting time tw. In principle,
the growth of the correlation length ξ(tw) is unbounded
in the spin-glass phase (however, finite crystallite sizes
play a role, see below). Much attention has been paid to
the (renormalized) aging-rate

zc(T, ξ) =
T

Tc

d ln tw
d ln ξ

. (1)

The renormalizing factor T/Tc makes zc(T, ξ) ≈ zc(ξ)
6.

Hence, Eq. (1) can be rephrased as teffw ≈ τ0 exp[(∆(ξ)−
Ez(H))/kBT ] where τ0 = ~/(kBTc) is the exchange time,
Ez is the Zeeman energy and ∆(ξ) is a free-energy bar-
rier.

In fact, values of zc have been found to vary from sys-
tem to system. For a bulk, polycrystalline sample, of
CuMn 6 at.%; Joh et al.4 found at a reduced tempera-
ture T/Tc = 0.89, zc = 5.917. For a polycrystalline bulk
thiospinel, Joh et al. found at a reduced temperature of
T/Tc = 0.72, zc = 7.576. There is no way of knowing the
crystallite size in these “bulk" measurements, but they
were certainly larger than the thin film thicknesses of
Zhai et al.7. Zhai et al. found, for CuMn 11.7 at.% thin

films at reduced temperatures of T/Tc = 0.43, 0.59, 0.78,
zc = 9.62. Working at T/Tc = 0.95, Kenning et al.8 ob-
tained zc = 6.80 in a bulk polycrystalline CuMn 5 at.%
sample.

Some hints to classify these apparently conflicting re-
sults can be found in a recent large-scale numerical simu-
lation by the Janus collaboration9 (using the custom built
computer Janus II10). They computed ξ in a time range
10−12 s ≤ tw ≤ 0.1 s for temperatures 0.5 ≤ T/Tc ≤ 1.
In fact, ξ varied by a larger factor in the simulation than
in experiments: close to Tc, from ξ ∼ a0 to ξ ∼ 17 a0
(a0 is the typical distance between magnetic moments).
Yet, the maximum ξ/a0 reached in the simulations was
smaller than experiment by a factor of approximately 10.

The Janus simulation evinced different behaviors at Tc
and at T < Tc

9, according to the value of the crossover
variable:

x(tw, T ) = `J(T )/ξ(tw, T ) , (2)

where `J(T ) is the Josephson length11. For x � 1 we
have T < Tc behavior, while for x � 1 we find critical
scaling. Because `J(T ) diverges at Tc as `J(T ) ∝ 1/(Tc−
T )ν , ν = 2.56(4)12, the ξ(tw) needed to demonstrate
low-temperature behavior, i.e. x� 1, grows enormously
upon approaching Tc. For x � 1, zc grows with ξ, but
it is T -independent9. Furthermore, a mild extrapolation
from zc(ξ = 12 a0) to zc(ξ = 38 a0) 9 is compatible with
the thin-film value zc = 9.627 (the film width was ∼
38 a0). For x � 1, the ξ-independent zc(T = Tc) =
6.69± 0.069 agrees with the CuMn result at T = 0.95Tc,
zc = 6.808.

However, in spite of the just quoted agreement be-
tween experimental results and the Janus simulations,
the reader might worry because CuMn is a Heisenberg
spin-glass, while the Janus collaboration simulates the
Ising-Edwards-Anderson model. In fact, there is theoret-
ical ground for the success of the Ising spin-glass simu-
lations: small anisotropies such as Dzyaloshinsky-Moriya
interactions13 are present in any spin-glass sample. These
interactions, though tiny, extend over dozens of lattice
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spacings, which magnifies their effect. In fact, we know
that Ising is the ruling universality class in the pres-
ence of coupling anisotropies14 (the effect of anisotropies,
even if negligible at small ξ, is strongly enhanced when ξ
grows15), which probably explains why high-quality mea-
surements on GeMn are excellently fit with Ising scaling
laws16.

Here, we report measurements of ξ(tw) on a single crys-
tal of CuMn (6 at.%), at T = 0.886Tc and for times
2× 103 s ≤ tw ≤ 8× 104 s. In the absence of crystallites
limiting ξ to the crystallite size (∼ 80 nm, typically), we
reach ξ ∼ 150 nm, a world record in a glassy phase (and,
certainly, in the low-temperature regime x � 1). Our
measured aging rate zc = 12.37± 1.07 is the largest ever
measured in a spin-glass, in a dramatic demonstration
of the dynamic slowing-down with growth of ξ9. We are
also able to reproduce our experimental results by means
of a simple extrapolation of the Janus simulations9.

The layout of the remaining part of this paper is as
follows. In Sect. II we provide details about our single-
crystal sample. Our experimental protocol is explained in
Sect. III. Our extrapolation from the Janus simulations
is confronted with the experimental results in Sect. IV.
We present our conclusions in Sect. V. The manuscript
ends with a number of appendices were more technical
details are given.

II. SAMPLE PREPARATION.

The Cu94Mn6 sample was prepared using the Bridg-
man method. The Cu and Mn were arc melted several
times in an Argon environment and cast in a copper mold.
The ingot was then processed in a Bridgman furnace.
Both XRF (X-ray fluorescence) and optical observation
showed that the beginning of the growth is a single phase.
More details can be found in Appendix A.

III. EXPERIMENTAL PROTOCOL.

We follow the method introduced by Joh et al.4 for the
extraction of ξ(tw), standard in experimental work (see
e.g.17,18) and studied theoretically19.

Specifically, the CuMn sample was quenched from 70
K to 28 K in zero magnetic field (Tg = 31.5 K as de-
termined from the temperature at which the remanence
disappeared). This measurement temperature was de-
termined by two factors. To have measured at a higher
temperature would have increased the Josephson length,
increasing x(tw, T ) according to Eq. (2). It was impor-
tant to keep x(tw, T ) as small as possible in order to have
T < Tc behavior. In addition, the signal to noise dimin-
ishes as the measuring temperature T increases. The
lower T , the slower the dynamics. The working tempera-
ture T = 28 K was chosen so as to keep the measurements
within laboratory time scales.

TABLE I. Effective waiting time teffw extracted in ZFC (zero
field cooled ) magnetization aging experiments.

tw(s) H = 22 Oe H = 32 Oe H = 47 Oe H = 59 Oe
2 000 1 463 1 161 727a 593
2 750 1 924 1 599 1 009 696
3 420 2 395 1 832 1 069 726
5 848 3 860 2 865 1 615 1 058
10 000 6 038 4 390 2 689 1 395
20 000 11 978 8 073 4 047 2 104
40 000 21 710 14 601 6 838 3 451
80 000 41 748 26 215 11 467 5 266
a measured in 50 Oe

The system was aged for a time tw after the temper-
ature has been stabilized, then a magnetic field H was
applied, and 24 s after the field stabilized, the zero-field
magnetization, MZFC(t, T ), was recorded (t is the time
elapsed since the magnetic field was switched on). In this
set of experiments, tw was set as 2 000, 2 750, 3 420, 5
848, 10 000, 20 000, 40 000, and 80 000 seconds, with
magnetic fields of 20, 32, 47, and 59 Oe. The latter are
used for the magnetic field dependence of the effective
waiting time, teffw as determined from the time for the re-
laxation function to reach its maximum as a function of
ln t,

S(t) =
dMZFC(t)

d ln t
. (3)

Note that the effective waiting time teffw where S(t) attains
its maximum depends on the applied magnetic field, be-
cause the Zeeman effect lowers the free energy barrier
heights. This results in a shift of the peak in S(t) (its
maximum teffw ):

∆max −Nc χH2 = kBT ln teffw − kBT ln τ0 , (4)

where Nc is the number of spin glass correlated spins,
χ is the spin glass field-cooled susceptibility per spin
[MFC/(NH), with N the total number of Mn spins
in the sample], and τ0 is an effective exchange time
τ0 ∼ ~/(kBTg). The beauty of this expression is that
Nc can be determined from Eq. (3) from measurement
of the peak position of S(t) as a function of H2, and from
other known values of the parameters. A representative
set of data is exhibited in Fig. 1. Our teffw are in Table I.

Knowing Nc, the correlation length ξ can be generated
from the relationship20,

Nc ≈
(
ξ

a0

)df
, (5)

where df is the fractal dimension equal to df = d − θ/2
(d = 3 is the space dimension, while θ is the so-called
replicon exponent19). Because at the correlation lengths
of interest θ ≈ 0.3, the approximation df ≈ d made in
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FIG. 1. A representative set of data. The three figures are for a waiting time tw = 10 ks. (a) A plot of the measured zero
field susceptibility, MZFC/H, as a function of time. (b) The response function, S(t) = d (MZFC/H)/d (`n t) as a function of
time for varying values of the applied magnetic field H, the peak of which defines teffw . (c) A plot of `n teffw vs H2.
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FIG. 2. ξ(tw, T ) as a function of waiting time, tw at
a measuring temperature T = 28 K (the transition tem-
perature is Tc ≈ 31.5 K). The straight line is a fit to
ln tw = (zcTc/T ) ln ξ + constant, recall Eq. (1), yielding
zc = 12.37± 1.07.

previous work (Ref.4, for instance) does not introduce a
significant error.

In fact, the exponent θ has a small dependency on ξ21.
We have solved this problem by taking the exponent θ(ξ)
from Ref.9 and then solved for ξ in Eq. 5 self-consistently
(see Appendix C). The appropriate value of θ turns out
to be θ ≈ 0.34. The outcome of this analysis is shown in
Fig. 2. The estimated Josephseon length at our working
temperature is `J = 21.82 a0 (a0 = 0.64 nm in our sam-
ple), see Ref.9 and Appendix B. Hence, the crossover vari-
able in our experiment is in the range 0.091 ≤ x ≤ 0.12,
so that we can be reasonably sure to be free from criti-
cal effects. The resulting aging-rate is zc = 12.37± 1.07.
Comparing with previous values of zc, obtained in exper-
iments reaching a smaller ξ(tw, T )4,7,8, this is the largest
aging rate ever measured in a spin glasses, which shows
that the growth of ξ is indeed slowing down with increas-
ing ξ.

8

10

12

0.1 1 10

z c
(ξ
=
23
8.
34
a
0
)

xmin

T = 0.906Tc
T = 0.815Tc
T = 0.725Tc
T = 0.634Tc
T = 0.566Tc
T = 0.498Tc

FIG. 3. The estimates from different temperatures and
minimal correlation lengths for the aging rate at ξtarget =
238.34 a0 (our largest) are a simple function of the crossover
variable xmin = `J(T )/ξmin, see Eq. (7). The central black
line is a fit to Eq. (7) with figure of merit χ2/dof = 24.5/30
[dof = degrees of freedom. The fit generates the exponent
β(ξtarget = 238.34 a0) = 0.41, the dependency on ξtarget of
exponent β turns out to be small]. The upper (lower) black
line is a fit to the data plus (minus) the error bar. The esti-
mates of zc for the different (T, ξmin) were obtained by apply-
ing Eq. (6) to the data in Table III of the SM for Ref.9 (see
Appendix D for details).

IV. EXTRAPOLATIONS FROM SIMULATIONS.

The main problem to overcome is the crossover be-
tween critical scaling and the T < Tc Physics. Indeed,
the largest correlation length reached in the simulations is
ξ = 17.3 a0 at T = 0.905Tc

9, which results in a very large
cross-over variable x = 1.96. Much smaller values of x
were reached in the simulations, but at lower T 9. There-
fore, we need to consider the full data-set for T < Tc in
Table III of the SM for Ref.9. We shall only outline our
analysis here and refer the reader to Appendix D for full
details. To ease comparison with9 , we give ξ in units of
a0 from now on (recall that a0 = 0.64 nm for our sample).
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We should mention that two possibilities were con-
sidered in Ref.9 for extrapolating the simulation’s zc
to larger values of ξ. One was Saclay’s ansatz for
the crossover to activated dynamics22,23 which, however,
yields too-high a zc9 when applied to the thin-film experi-
ments7. Therefore, we focus on the convergent ansatz for
extrapolating zc to correlation length ξtarget by taking
into account only data with ξ ≥ ξmin (ω̂ = 0.35)9

zc(T, ξtarget, ξmin) =
T

Tc

[
z∞(T, ξmin) +

A(T, ξmin)

ξω̂target

]
. (6)

Now, when applying Eq.(6) to any ξtarget, we end-up with
as many predicted aging-rates as pairs of (T, ξmin) were
considered in the simulations. Fortunately, these many
predictions, see Fig. 3, can be nicely organized as a func-
tion of the crossover variable xmin = `J(T )/ξmin

24:

zc(T, ξtarget, ξmin) = 6.69 +
α(ξtarget)

x
β(ξtarget)
min

. (7)

Thus, our final extrapolation at T = 28 K is

zc(ξtarget) = 6.69 +
α(ξtarget)

x
β(ξtarget)
target

, xtarget =
`J(28K)

ξtarget
, (8)

[α(ξtarget) and β(ξtarget) come from the fit to Eq. (7),
recall Fig. 3]. We obtain in this way

zc(180.26 a0) = 11.94±0.08 , zc(238.34 a0) = 12.76±0.08 .
(9)

Both extrapolations are in excellent agreement with the
experimental result zc = 12.37±1.07 from Fig. 2 (roughly
speaking, zc = 12.37 ± 1.07 is an average of zc(ξ) in the
range 180.26 a0 ≤ ξ ≤ 238.34 a0).

We stress that the extrapolations (9) took no input
from the experiment other than the values of ξtarget.
However, by recalling [see Eq. (1)]

ln tw − ln t∗w =

∫ ln ξ

ln ξ∗
d(ln ξ′)

Tc
T
zc(ξ

′) , (10)

and borrowing the initial condition ξ∗(t∗w = 2750 s) from
the experiment, we obtain a fairly satisfactory compari-
son between our experiment and our extrapolations from
the Janus simulations in Fig. 4. We note as well that the
initial condition ξ∗(tw = 2000 s) from the experiment, af-
flicted by larger errors and short-time systematic effects,
produces similar extrapolated curves.

V. CONCLUSIONS.

We have reported an experimental measurement of the
spin-glass correlation length in a single-crystal sample of
CuMn (6 at.%). Our experiment is free from two sys-
tematic effects encountered in previous work: (i) the
growth of the correlation length is not hampered by

FIG. 4. The experimental correlation length from Fig. 2,
as measured in units of the average distance between mag-
netic moments a0 = 0.64 nm, is shown as a function of the
waiting time. The two continuous lines are obtained from our
extrapolations from the simulations by the Janus collabora-
tion9, recall Eqs. (8,10). The two lines are the two extremal
curves compatible with the initial condition taken from our
experiment, ξ∗(t∗w = 2750 s) = (188.5± 3) a0.

the sample geometry (neither crystallites4 or the film-
thickness7) and (ii) our results are representative of the
low-temperature phase (i.e. they are not contaminated
by critical scaling), as shown by the small value of the
cross-over variable we reach [recall Eq. (2)]. We report
the largest spin-glass correlation length ever measured
in a glassy phase. Our aging rate is also the largest to
date (at least as measured in a spin-glass). We thus con-
firm the slowing down as ξ grows that was suggested
by the simulations of the Janus collaboration9. Further-
more, we have been able to reproduce our experimental
results by means of a simple extrapolation of the Janus
results. We believe this relation between simulations and
experiment opens new opportunities in condensed matter
physics. The complementary contributions allow explo-
ration of phenomena, especially in complex systems, with
the particular insights of each partner fueling the inter-
pretation and development of the other. This paper is
the beginning of this new research relationship.
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Appendix A: Sample Preparation

Crystal growth and sample preparation was carried out
by the Materials Preparation Center (MPC) of the Ames
Laboratory, USDOE. Cu from Luvata Special Products
(99.99 wt % with respect to specified elements) and dis-
tilled Mn from the MPC (99.93 wt% with respect to all
elements) was arc melted several times under Ar and then
drop cast in a water chilled copper mold. The resulting
ingot was placed in a Bridgman style alumina crucible
and heated under vacuum in a resistance Bridgman fur-
nace to 10500C, just above the melting point. The cham-
ber was then backfilled to a pressure of 60 psi with high
purity argon to minimize the vaporization of the Mn dur-
ing the growth. The ingot was then further heated to
13000C and held for one hour to ensure complete melt-
ing and time for the heat zone to reach a stable state.
The ingot was withdrawn from the heat zone at a rate
of 3mm/hr. About 1/3 of the crucible stuck to the alloy.
The ingot was finally freed after alternating between hit-
ting with a small punch and hammer and submerging in
liquid nitrogen.

Cross-sections 1-2mm thick were taken from near the
start of the crystal growth and from the end for charac-
terization. One side of each was polished and looked at
optically and with x-ray fluorescence (XRF). From the
XRF measurements, the sample was found to be single
phase and the end of the growth to be Mn rich. The
samples were then etched in a 25% by volume solution of
nitric acid in water. Optically, the start of the growth is
a single phase, single crystal while the end of the growth
has large grains with 2nd phase along the grain bound-
aries. Small pits were seen both optically and by XRF.
The pits could be minimized by varying polishing tech-
niques, but not gotten rid of. Fig. 5 displays the as-grown
crystal.

Only the body portion of the crystal growth were used
for the experiments. The ends of the growth were looked
at as part of the characterization, but were not used be-
cause the end of the growth contained multiple grains and
a second phase. An additional examination of the body
waws done to ensure that enough of the bodyt had been
cut away as to remove those unwanted elements. The
small shallow grains that remained on one end of the
body were avoided when cutting the sample to be mea-
sured. As mentioned above, the XRF showed the body
of the crystal growthy to be single phase. The compo-
sition gradient is gradual and smooth, and there was no
evidence of a Mn inhomogeneity seen in either the XRF
or optical characterization.

Further investigation was done by polishing the cut
ends of the ingot body followed by etching. No evidence
of 2nd phase was seen and only occasional small, shallow
secondary grains were found. In the Bridgman method,
it is not unusual for the very end of the growth to be
different because of accumulation of rejected elements
and impurities ahead of the growth front. This would
account for the change in growth habit (increased num-

FIG. 5. The as-grown crystal with part of the alumina cru-
cible still attached. A small secondary grain is outlined with
a marker. Later, acid etching of the ingot reduced the size
and number of the secondary grains indicating that they are
shallow.

ber of grains), presence of 2nd phase and overall Mn-rich
composition seen at the end of the growth but not in
the body. Laue x-ray diffraction along the length of the
body, Fig. 6, confirms that the majority of the body is
one single grain.

FIG. 6. Laue x-ray diffraction pattern of the sample confirms
it is a single crystal, the Cu94Mn6 cube sample was etched in
15% nitric acid. The 6 at.% Mn concentration was estimated
from scaling using the observed temperature (Tg = 31.5 K)
at which the remanence disappeared.
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Appendix B: The parameters for computing the
Josephson length

We follow here Ref.9. The first step is converting the
temperature to Janus units

T (J) =
T

Tc
T (J)
c T (J)

c = 1.102 . (B1)

Therefore, our working temperature T = 28K translates
to T (J) = 0.98.

Next, we need to recall that the only thing we know
for sure about this length scale is how it scales:

`J(T (J)) =
b0 + b1(T

(J)
c − T (J))ν + b2(T

(J)
c − T (J))ων

(T
(J)
c − T (J))−ν

(B2)
where we include analytic (b1) and confluent (b2) scal-
ing corrections with ω = 1.12(10), ν = 2.56(4) and
T

(J)
c = 1.102(3)12. Now, although there is no unique way

of fixing the overall scale b0 (only the quotients b1/b0 and
b2/b0 can be fixed in an unique way), we shall adhere to
the normalization of Ref.9, so that we can compare to
their data in a direct way:

b0 = 0.101507196509469 , (B3)
b1 = 0.372545152960033 , (B4)
b2 = 0.199692833647175 . (B5)

With this convention for b0, at the working temperature
T = 0.98 we have `J(0.98) = 21.82 a0.

Appendix C: The replicon exponent and the
self-consistent computation of ξ

Let us recall from the main text, the relation linking
the number of correlated spins Nc with the correlation
length ξ:

Nc ≈
(
ξ

a0

)df
, (C1)

where df is the fractal dimension equal to df = d − θ/2
(d = 3 is the space dimension, while θ is the so-called
replicon exponent19). The quantity directly measured in
the experiment is Nc, and our goal is to convert it into
a length by using the fractal dimension.

Now, the problem with Eq. (C1) is that the replicon
exponent, and hence df , depends on both the tempera-
ture and ξ through the crossover variable (for the reader’s
convenience, we repeat here thee definitions given in the
main text):

x =
`J(T )

ξ(tw, T )
. (C2)

The data for θ(x(ξ, T )), as well as a discussion of the
asymptotic behavior for small x, are given in Sect. C

0.3

0.4

0.5

0.1 1 10

θ(
x
)

x

Interpolation
T = 0.498Tc
T = 0.566Tc
T = 0.634Tc
T = 0.725Tc
T = 0.815Tc
T = 0.906Tc

FIG. 7. Data for the replicon exponent, taken from Fig. 5
in the Supplemental Material for Ref.9, as a function of the
crossover variable x defined in Eq. (C2). The black line is
the RSB-inspired interpolation in Eq. (C3). The wiggles are
due to the extreme data-correlation (see, e.g, the discussion
of Fig. 1 in Ref.25).

of the Supplemental Material (SM) for9. Here, we only
observe that the numerical data for θ(x(ξ, T )) are well
interpolated as (see Fig. 7)

θ(x) = θ0 +d1

( x

1 + e1x

)2−θ0
+d2

( x

1 + e2x

)3−θ0
, (C3)

with numerical coefficients

θ0 = 0.303980 , (C4)
e1 = 1.38179 , (C5)
d1 = 2.72489 , (C6)
e2 = 2.12634 , (C7)
d2 = −9.98359 . (C8)

Let us emphasize that the interpolation C3 is consistent
with the Replica Symmetry Breaking (RSB) asymptotic
analysis (for small x) presented in the SM for9. Yet,
Eq. (C3) can be applied as well for larger x if needed.

Now, a droplets model supporter will object that θ0
should be zero (according to their theory). However, the
RSB/droplets controversy is immaterial here: data can
be fitted as well to the droplet model (see9), but the
droplets fit start to depart significantly from the RSB
interpolation in Eq. (C3) only for x < 0.065. Because we
aim to use the interpolation in the range x ≥ 0.0915, we
do not need to care about the RSB/droplets controversy.

After these preliminaries, the self-consistent computa-
tion is straightforward. In order to obtain θ as a function
of the measured number of correlated spinsNc, see Fig. 8,
we just need to vary ξ parametrically and compute both
θ(x = `J(T = 28K)/ξ) from Eq. (C3) and Nc from

Nc = (ξ/a0)df (x=`J(28K)/ξ) , df (x) = 3− θ(x)

2
. (C9)
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Appendix D: Details on the extrapolation of the
aging rate

Our basic quantity will be the (bare) aging-rate

z(T, ξ) =
d ln tw
d ln ξ

(D1)

(the renormalized aging-rate considered in the main text
is just zc = zT/Tc).

Our starting point will be Table III in the Supplemen-
tal Material for Ref.9. In this table, we find the extrapo-
lated bare aging-rates for ξtarget = 38 a0, 76 a0 and ∞, as
computed from the convergent ansatz:

z(T, ξtarget, ξmin) = z∞(T, ξmin) +
A(T, ξmin)

ξω̂target
. (D2)

In the above expression, ω̂ = 0.35 and ξmin is the minimal
correlation-length considered in their fit. It varies from
varies from ξmin = 3.5 a0 to ξmin = 9 a0 (or less than 9 a0
at the lowest temperatures).

Our first step was getting the slopes A(T, ξmin) from
the tabulated values for ξtarget = 38 a0 and 76 a0 (instead,
z∞(T, ξmin) is directly tabulated). With this information
in our hands, we may compute z(T, ξtarget, ξmin) for any
value of ξtarget we wish. As for the error estimate, it is
only slightly more complicated:

∆2z(T, ξtarget, ξmin) = E
(T,ξmin)
11 + E

(T,ξmin)
22

1

ξ2ω̂target

+ E
(T,ξmin)
12

1

ξω̂target
. (D3)

Now, for every T and ξmin, we find error estimates for
ξtarget = ∞, 76 a0 and 38 a0 in the table by the Janus

FIG. 8. Self consistent computation of the replicon exponent
θ. By varying ξ, we obtain a parametric plot of θ = θ(x =
`J(T = 28K)/ξ), Eq. (C3), as a function of the measured
number of correlated spins Nc, see Eq. (C9). The dots are
the appropriate values of θ for our measured Nc. Note that θ
is essentially constant in the experimentally relevant range of
Nc.
Collaboration, which allows us to obtain the constants
E

(T,ξmin)
11 , E(T,ξmin)

22 . Once we have in our hands the coef-
ficients E(T,ξmin)

22 , E(T,ξmin)
11 and E(T,ξ,ξmin)

12 we may com-
pute errors for whatever value of ξtarget we need by using
Eq (D3).

Our next step was obtaining z(T, ξtarget, ξmin) for a grid
of values 180.26 a0 ≤ ξtarget ≤ 238.34 a0. We computed
z(T, ξtarget, ξmin) for all the values of (T, ξmin) in their Ta-
ble III. We only neglected the few entries where the error
for z(T, ξtarget =∞, ξmin) was well above 10%. Then, the
estimates for the different (T, ξmin) but the same ξtarget
were combined as explained, in the main text (recall that
the renormalized aging rate is zc = Tz/Tc) by means to
a fit to:

zc(T, ξtarget, ξmin) = 6.69 +
α(ξtarget)

x
β(ξtarget)
min

, (D4)

where xmin = `J(T )/ξmin. Our final extrapolation was

zc(ξtarget) = 6.69+
α(ξtarget)

x
β(ξtarget)
target

, xtarget =
`J(28K)

ξtarget
. (D5)

The only tricky point needing further discussion regards
the computation of errors in zc(ξtarget). It is clear that
the different data in the fit are extremely correlated (at
least those at the same temperature: in Table III of
the SM for Ref.9 the Janus collaboration was simply us-
ing the same set of ξ(tw, T ) and discarding those with
ξ(tw, T ) < ξmin). Under such conditions, the fit’s stan-
dard errors are not reliable. Hence, in order to estimate
errors, we simply repeated the fit for zc(T, ξtarget, ξmin)
plus (or minus) the error. In other words, we assumed co-
herent fluctuations for all the data set. The errors quoted
in the main text are the halved difference between the fit
with data plus error and data minus error. A second, far
more conservative error estimate, would be just taking
the error from the data point at the lowest value of xmin
included in the fit to Eq. (D4). The conservative error es-
timate is larger than the error from the halved-difference
by a factor 3.75.
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