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Anderson localization on tree-like graphs such as the Bethe lattice, Cayley tree, or random

regular graphs has attracted attention due to its apparent mathematical tractability, hypothe-

sized connections to many-body localization, and the possibility of non-ergodic extended

regimes. This behavior has been conjectured to also appear in many-body localization as

a “bad metal” phase, and constitutes an intermediate possibility between the extremes of

ergodic quantum chaos and integrable localization. Despite decades of research, a complete

consensus understanding of this model remains elusive. Here, we use cages, maximally

tree-like structures from extremal graph theory, and numerical continuous unitary Wegner

flows of the Anderson Hamiltonian to develop an intuitive picture which, after extrapolating

to the infinite Bethe lattice, appears to capture ergodic, non-ergodic extended, and fully

localized behavior.

I. INTRODUCTION

Localization due to quenched disorder has been a major paradigm in quantum mechanics since

its introduction by Anderson in 1958 [1]. When a wave travels between two distinct media, some

fraction is usually reflected. When the media is disordered, these reflections can destructively

interfere, leading to the observation of Anderson localization.

Disorder is ubiquitous in nature, and the non-ergodic behavior of localized systems has poten-

tially crucial or even practically useful implications for the process of thermalization. For example,

non-thermalizing phenomena could be used to reduce decoherence in a quantum computer [2, 3],

or cause an adiabatic quantum computer to be very slow [4, 5]. Despite the intensive study of
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localization, there are still many cases where “one has to resort to the indignity of numerical

simulations to settle even the simplest questions about it.” [6] The most important known exceptions

to this generalization are settings in which there are no spatial “loops”. For example, single-particle

Anderson localization on an infinite one-dimensional chain can be treated analytically using transfer

matrices.

Another more complicated loopless setting is a single particle on the infinite Bethe lattice tree. [7]

This problem was first “solved” by Abou-Chacra, Anderson, and Thouless (ACAT) in 1973. [8, 9]

They found that for a disorder strength above Wc ≈ 18, all eigenstates are localized. Recently this

model, the focus of this work, has attracted significant attention due to its proposed connections

to many-body localization (MBL) which is discussed in section II. More recent work indicates

that the ACAT solution does not tell the whole story. Many diverse and advanced techniques have

been applied to Anderson localization on the Bethe lattice, suggesting sometimes contradictory

phase diagrams. We seek to further the understanding of this model using the relatively elementary

numerical technique of Wegner–Wilson flows, which provides a particularly intuitive picture of the

localization phenomenon.

The trivalent Bethe lattice, shown in figure 1, can be characterized as the only infinite, connected,

cycle-free, cubic graph. It is the homogeneous infinite tree graph with coordination number three.

The Anderson localization Hamiltonian can be written as

H = ∑
a

εa |a〉〈a|−∑
〈ab〉
|a〉〈b| , (1)

where the ε’s are drawn from the uniform distribution with support [−W/2,W/2], and the second

sum is taken over ordered pairs of connected nodes on our graph. One is generally interested in the

spectrum of this operator as a function of W and the structure of its eigenstates. The structure of

the eigenstates depends on their eigenvalue. For example, a so-called energetic “mobility edge” can

separate localized from extended states.

For the basic Anderson model given in equation (1), on one- and two-dimensional lattices, any

amount of quenched disorder is sufficient to localize a particle. On higher-dimensional lattices, weak

disorder admits extended eigenstates, but for W above some critical Wc, all eigenstates are localized.

When W is exactly tuned to Wc, the eigenstates adopt an intricate multifractal structure. [10–14]

As mentioned above, the literature on the problem of localization on the Bethe lattice has not yet

reached a clear consensus, and our contribution is unlikely to be the final word on the matter. Our

work finds evidence for a particularly common understanding of the phase diagram and we will
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present intuitive arguments in its favor, but the reader should keep in mind that the issue remains

controversial, and our results are by no means conclusive. An incomplete summary of alternative

claims will be presented in section III.

With that caveat, on the Bethe lattice, the W =Wc point of multifractal behavior expands into a

region W ∈ [WE ,Wc]. For W <WE , there is an absolutely continuous spectrum of non-normalizable

states extended over the entire tree. For W > Wc, all states are localized around a central node

and normalizable, per the results of ACAT. Finally, for the intermediate regime WE <W <Wc, the

eigenstates are thought to be extended but non-ergodic. This means that they occupy an infinite

number of sites in a non-normalizable fashion, but extend over an only infinitesimal fraction of

the tree. The spectrum of these states is thought to be still absolutely continuous, but we believe

the eigenstates as a function of their energy are discontinuous over arbitrarily small changes in

eigenvalue in the sense of having very different branching patterns. By “branching pattern”, we are

referring to the subset of occupied sites such as shown in figure 1(b). These critical disorder values,

WE and Wc, are defined for states in the band center, i.e. E ≈ 0, where they are the largest. This

neither localized nor ergodic intermediate behavior is particularly interesting because MBL has

also been suggested to exhibit non-ergodic extended behavior in Fock space over a finite region of

its phase diagram [15–22].

Intuitively, we can think of these three cases as follows: In the ergodic extended regime, particles

which are reflected by the disorder have many options regarding where to propagate next. In

one dimension they can only return to their previous location, but on the tree, their random walk

quickly takes them “very far from home”. One should think of the tree as more akin to an infinite-

dimensional lattice than to a one-dimensional structure. In the localized phase, however, the

reflection is so strong that the particle still never manages to wander far from its starting location.

For non-ergodic extended states, we can think of the success of the particle travelling down a

branch as a probabilistic process. At each new node it encounters two new branches, and while it

doesn’t always propagate through both, it has an expected value of extending through more than

one. This leads to the state occupying infinitely many nodes, a number which grows exponentially

with distance, but an exponentially small fraction of the graph. A caricature of these three phases is

shown in figure 1. While a useful approximation, thinking of a particle’s propagation or reflection as

a binary result does not fully capture the structure of the eigenstates. A more rigorous explanation

of this intuition is presented in section VI.

Numerically, we approached this matrix diagonalization problem using the technique of Wegner
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(a) W < WE (b) WE < W < Wc (c) Wc < W

FIG. 1. Schematic Depiction of the Three Hypothesized Phases:

The focus of this work is quantum mechanical particles hopping on these tree graphs (the Bethe lattice)

with on-site Anderson disorder.

In (a), ergodic states for sufficiently small disorder are shown as extended over the entire tree. On the

Bethe lattice, the resulting dynamical diffusion is ballistic. At the edges of the spectrum, non-ergodic states

are expected to appear, but there may be a level of disorder below which localization never occurs, due to

resonant delocalization [23–25].

In (b), a non-ergodic extended phase is shown. Note that the wavefunction density is highest at the central

node and decays exponentially as one moves away from it regardless of whether the path taken is green or

dark red. However, the exponentially rare, but also exponentially numerous green paths decay slowly enough

that the state can not be normalized. This is discussed in more mathematical detail in section VI.

Finally, in (c), the disorder is sufficiently strong that all states are exponentially localized around a central

site.

flows, the most common type of continuous unitary transformation. While flows are not the most

efficient way to diagonalize a matrix, they provide a pleasing temporal picture of the construction of

the diagonalizing unitary: Hopping bonds joining sites at differing energies appear to decay while

causing those energy levels to further repel and generating new, longer-range bonds. Furthermore,

one can keep track of this level repulsion using the Ξ metric. For more details, see section IV. [26–

29]

Of course, the infinite Bethe lattice can not be simulated on a finite computer. As discussed in

section III, many finite analogs of the Bethe lattice have been used in previous research. In this

work, we will adopt the graph theory concept of “cages” to provide a finite setting which is in some

sense optimally similar to the Bethe lattice. Briefly, cages are degree-regular graphs with a minimal

number of sites given their “girth”. A graph’s girth g is the length of its shortest loop. Thus, a

regular graph always “looks like” the Bethe lattice until one has taken g hops away from any initial

site. [30, 31] We are using the smallest known cubic graph of girth eighteen which was discovered
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by Exoo and has 2560 sites [32]. For more details on cages, see section V.

Finally, we conclude with our numerical results in section VII, and a discussion of further

directions and connections in section VIII.

II. CONNECTION TO MANY-BODY LOCALIZATION

As mentioned above, any amount of quenched disorder is sufficient to localize a single particle

in one dimension. It was long believed that interactions between multiple particles would cause

them to become delocalized. However, Basko, Aleiner, and Altshuler showed that the behavior

of interacting disordered particles is more complicated. [33, 34] For sufficiently weak disorder,

the interactions do indeed delocalize the particles into an ergodic fluid, but for sufficiently strong

disorder, all of the eigenstates of band-limited systems can in fact be localized. Characterizing this

“many-body localization” transition has been a major goal of condensed matter physics in the past

decade. [2, 3]

It is hoped that progress in this effort would shed light on the fundamental difference between

ergodic quantum chaos and integrable localized behavior. [35–38] The localized phase may be

useful as a persistent quantum memory [2], and its non-thermalizing behavior may have important

thermodynamic implications for nanodevices such as quantum engines [39].

One major difficulty with this goal lies in the lack of experimental and numerical data with

which to compare theoretical results. Experimental realizations of localized systems usually

require extreme isolation from thermal baths, and, at least naı̈vely, numerical simulations require

exponentially large amounts of memory and computational expense as a function of the system

size. Many suspect that the 20–30-site numerical results currently available suffer from finite-size

effects which prevent the true scaling limit of the MBL transition from being observed. [40]

A second difficulty lies in the apparent “fuzziness” of the transition between the ergodic and

localized behavior. Some have assumed that this is a result of the finite-size effects [41, 42], but

others have argued for a more complicated phase diagram with at least one intermediate phase, which

is neither ergodic nor entirely localized [15–17, 19, 21, 22, 43–45]. This non-ergodic extended

phase has been referred to as that of a “bad metal” [46], which allows for some amount of current

to flow, but only through a vanishingly small fraction of Fock space. This three-phase behavior is

shared with our understanding of the disordered Bethe lattice model, where the multifractal nature

of the non-ergodic extended states have a particularly straightforward interpretation. [47–49]
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One can derive the disordered Bethe lattice model from that of MBL through three non-rigorous

logical steps. First, MBL can be represented without any approximation as a single particle hopping

on a disordered N-dimensional Fock space, where N→∞ is the number of particles. [50, 51] The on-

site disorder of the high-dimensional hypercubic lattice is spatially correlated. The first, substantial,

and not rigorously justified, approximation is to assume that this correlation is irrelevant after

sufficient renormalization group flow towards the scaling limit. [15] The upper critical dimension

of Anderson localization has been debated in the literature, but some suggest it to be this infinite-

dimensional limit. [52, 53] On an infinite-dimensional hypercubic lattice, random walkers almost

never return to their initial position, so loops are negligible, and in the second approximation, we can

model the infinite-dimensional hypercubic lattice as a Bethe lattice with infinite coordination number.

One notable difference between these settings is the distance metric. Because the pythagorean

theorem is no longer applicable as on a Euclidean lattice, diffusion on the tree is inherently ballistic.

The final approximation is to reduce the coordination number to the minimal non-linear option of

three. The qualitative results appear to be independent of the finite coordination number so long as

the graph is tree-like, so one can extrapolate from the cubic case to higher-coordination trees. [49]

This, along with replacing the tree with a cage, is done to make the problem numerically tractable,

hopefully without sacrificing the most salient features of MBL.

The Bethe lattice model has the clear advantage of being loopless, allowing for many analytic

approaches to succeed with fewer approximations than the usual toy models of MBL, which have

to contend with complicated many-particle configurations. The exponentially large Hilbert spaces

of many-body states are exchanged for a single particle in an exponentially vast spatial setting.

Additionally, unlike many-body configurations, two sites on the tree have a clear and relevant

definition of distance, and we will utilize this structure in the analysis in section VI.

III. REVIEW OF PREVIOUS RESULTS

Many analytic and numerical techniques have been applied to the model of Anderson localization

on the Bethe lattice. It and other high-dimensional Anderson localization models have been reviewed

in Tarquini’s thesis [54]. While we can not hope to be comprehensive, we will attempt to provide a

succinct summary of the relevant literature.

Analytic approaches include the original self-consistent Green’s function distributions of Abou-

Chacra et al. (although their approach requires numerics to find a value for Wc) [8, 9], dynamical



7

evolution [55], multifractal analysis [47], supersymmetric non-linear σ -models [56–59] (see [60] for

an introduction to the application of supersymmetry to disordered systems), and replica symmetry

breaking [49, 61].

Many numerical methods have also been applied to this model. One common option is the

spectral level spacing statistic, or r-parameter [62, 63], and the level compressibility has also been

probed [64]. The (multi)fractal nature of the non-ergodic eigenstates has quantified using the

inverse participation ratio and its generalizations. [48, 62] Other numerical diagnostics include the

return probability [65], transmission through branching wires [66], imbalance, and the two-point

equilibrium dynamical correlation function [67].

In the non-spatial Rosenzweig–Porter random matrix model [68], which has also been suggested

to be connected to many-body localization [69], the non-ergodic extended states [70–73] have

Wigner–Dyson level spacings and Gaussian ensemble r-parameter values in the large-N scaling

limit. This is because, while the Thouless energy does decay to zero with increasing N, the mean

level density increases at an asymptotically higher rate. [70]1 It is important to note that, contrary

to the Rosenzweig–Porter random matrix case, two non-ergodic extended states on the Bethe lattice

are expected to have negligible overlap, and should therefore exhibit Poissonian level statistics and

r-parameter. [62] Another non-spatial model with apparent non-ergodic extended states at small

length scales are random Lévy matrices. [74]

Spatial systems thought to also exhibit non-ergodic extended behavior include disordered

Josephson junction chains [46, 75] and the Aubry–André model [76].

Numerical approaches must choose a finite version of the Bethe lattice, and this can be a source

of subtle discrepancies. [77] Simple truncation [48, 78] suffers from having a large fraction of the

sites near the leaves of the tree. [79, 80] Random regular graphs have been proposed as a good

alternative [47, 49, 59, 62–65, 67, 81–85], as they are expected to look locally tree-like. However,

for numerically realistic sizes, small loops are inevitable and represent a source of additional,

topological disorder. [49] Furthermore, the expected global girth actually converges to a finite

value and even triangles occur with finite probability. [86, 87] While these small loops are almost

certainly irrelevant in the scaling limit, they are not necessary and can cause subtle difficulties when

trying to define the distance between two sites of a random regular graph. Cages seem to represent

an optimal solution to this problem, as sites at a distance d � g/2 always have a clear integer

1 It is interesting to note that, independent of the value of W > 0, scrambling the off-diagonal elements of the

Bethe lattice’s Anderson localization Hamiltonian while keeping their Frobenius norm constant gives the γ = 1

ergodic–non-ergodic extended transition point of Rosenzweig–Porter random matrix model.
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distance given by the length of the only short path that connects them. Finally, the interpretation

of data from finite systems is complicated by the possibility of crossover effects at very large

sizes. [59, 63, 64, 67, 79, 80, 85]

Other related geometries that have been studied include a truncated Bethe lattice with random

links connecting the leaves [78], an incoming wire branching into a binary tree, i.e. the Miller–

Derrida scattering geometry [66], a one-dimensional chain with random shortcuts [82], and metric

trees [88, 89].

Using early numerics, ACAT estimated the critical disorder strength above which all states are

localized, Wc, to be about 18. [8, 9]. Subsequent values that have been suggested, using methods

with variable degrees of approximation, include 16.99–17.32 [90], 17±1 [66], 17.4 [91], 18.00–

18.61 [92], 18.1±0.5 [81], 17.65 or 18.6±0.3 [49], 18.11±0.02 [93], and 18.17±0.01 [85]. We

find Wc values which are slightly below these, but do not expect our approach to be quantitatively

precise.

The critical disorder strength above which all states are non-ergodic, WE , is more difficult to

estimate. It has been suggested to be approximately 10 [81], 5.74 [49], and bounded between 0.4Wc

and 0.7Wc [65]. By isolating the data coming from the center of the spectral band, we find a small

but positive WE ≈ 2.1 which we interpret as confirming the existence of a fully ergodic phase with

sufficiently weak disorder.

Given the wide variety of analytical and numerical techniques and graph settings, it can be

difficult to ascertain the literature consensus. In some cases the results appear to be contradictory,

and it is not immediately obvious whether this is due to finite-size effects, details of the setting, or a

mathematically difficult but invalid approach. Many potential phase diagrams have been proposed,

including options which deny the existence of ergodic states at positive disorder. Additionally, the

intermediate non-ergodic extended phase was not originally anticipated by ACAT, [8, 9] and this

has led to some confusion.

Many authors believe that the intermediate non-ergodic extended phase eventually crosses over

to ergodic behavior at large length scales. [59, 63, 64, 67, 79, 80, 85] This may be a consequence

of the use of the graphs with loops as a finite analogue of the Bethe lattice, as multifractality on the

truncated Bethe tree is less controversial. [66, 79, 80] We hope that the extrapolation applied below,

enabled by our use of cages with a clear distance metric, makes our results more applicable to the

truly infinite and loopless Bethe lattice, and this may explain the apparent discrepancy between

these results and our own. Conversely, it has also been claimed that the entire extended region
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is non-ergodic [47], in contradiction to analytic results [94, 95]. Finally, a significant contingent

agrees with the three-regime phase diagram presented in this work, at least under the correct

conditions. [49, 62, 65, 81]

We hope our relatively elementary flow approach and resulting intuitive picture of the three-phase

proposal has a clarifying effect on this confusing situation.

IV. WEGNER FLOWS

Wegner flows are the best-known continuous unitary transformation process. The Wegner flow

parameterizes the diagonalization process along an artificial time dimension τ . At H(τ = 0), the

Hamiltonian is expressed in its original position-space basis. As the flow progresses, a series of

infinitesimal unitary changes of bases are applied to the Hamiltonian matrix, each of which brings

it closer to a diagonalized form. For almost every initial Hamiltonian, the flow proceeds until the

Hamiltonian H(τ → ∞) has reached a diagonal fixed point. Continuous unitary flows have been

used to study the phenomenon of many-body localization. [29, 96, 97] To learn more about Wegner

flows and other continuous unitary transforms, see [26–29, 98].

The “equation of motion” for the Wegner flow can be expressed as

∂H
∂τ

= [η ,H], (2)

where the infinitesimal unitary rotation generator η is
[
HDiag.,H

]
, and HDiag. is the diagonal part of

the matrix H.

Continuous unitary transformations are not the most computationally efficient way to diagonalize

a matrix. However, they do provide an intuitively appealing temporal picture for the diagonalization

process. As off-diagonal elements in the Hamiltonian decay to zero, they cause the diagonal energy

levels they connect to repel, and longer range hops appear on the Bethe lattice. These too proceed

to decay, iteratively generating increasingly long-range, but weaker links. Localization on the Bethe

lattice can be thought of as a competition between the generation of these longer-range hoppings,

their decay, and the exponentially growing number of sites at a given distance from each node.

Although flows have been used to find local integrals of motion for MBL problems e.g. [38, 96,

97], that is not our application. We use flows to (almost) diagonalize a potentially dense matrix

while keeping track of how much level repulsion has occured between the eigenstates associated

with each pair of graph sites. As discussed in [29], one can monitor the level repulsion between
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two eigenvalues over the course of the flow using the Ξ metric defined elementwise, for a real

Hamiltonian, as

Ξab = 2
∫

τmax

0
η

2
ab dτ, (3)

where a and b are matrix indices. This can be thought of as a measure of the interaction between the

two eigenstates and is closely related to the square of the Thouless energy. Kehrein alerted us to the

formal equivalence of this Ξ metric and the ∞-Renyı́ entanglement entropy in a certain perturbative

limit. [99] Conveniently, flows allow us to use the site to index correspondence in the original

Hamiltonian matrix to then map eigenstates onto sites in a natural way, which is needed to define

the distance between two eigenstates. If one were to replace the flow with exact diagonalization

and the level-repulsion metric Ξ with a more traditional measure such as eigenstate overlap, they

might be able to extend the calculation in section VI to a higher-girth cage, but would also have to

specify a natural bijection between eigenstates and sites.

We utilized a high-efficiency stabilized third-order integrator to numerically implement the

Wegner flow as detailed in [29]. By “third-order”, we mean the accumulated error should scale

approximately like the inverse cube of the number of unitary steps taken for a given τmax and

error tolerance. The stabilization allows the step size to increase at the end of the flow when

the Hamiltonian is mostly diagonalized. Each step is an exact unitary change of basis, up to

floating-point rounding error. While many previous implementations of flows, such as [96–98],

drop terms deemed insignificant in order to improve efficiency, we do not. Such truncation can

perform well for localized states but tends to fail in the delocalized regime. Our flows lead to

exact diagonalization including delocalized behavior, with the only caveats being the cutoff time

τmax, a tolerance paramater ε which adaptively controls the step sizes to keep the predicted error

per rotation magnitude reasonable, and double-precision floating-point rounding. The flows were

performed out to a hypothetical time of τmax = 2000, which, according to the heuristics in [29],

should in general be sufficient to resolve at least 99% of a coupling with an energy scale of at

least 0.024. At this point, the Hamiltonian is almost entirely diagonalized. We used a tolerance

parameter of ε = 5 ·10−4 and, in total, consumed ∼25000 CPU-hours. Neither extending the flow

nor tightening the tolerance produced qualitatively different results during tests with smaller cages.
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V. CAGES

In order to avoid the pitfalls of truncating the Bethe lattice and the additional disorder and rare

small loops included in random regular graphs, as mentioned in section III, we utilize the concept

of cages from extremal graph theory as the setting for our hopping particle. We expect that cages

have the same scaling limit as random regular graphs, but they possess a number of convenient

advantages. Formally, cages are the smallest degree-regular (trivalent or “cubic”, in our case) graph

or graphs with a given girth. The girth g of a graph is the length of its shortest cycle. Thus, cages

are minimal in size while locally looking like the Bethe lattice. In other words, a cage is the optimal

way to connect the leaves of a truncated Bethe lattice without introducing any short loops. [30, 31]

In fact, cubic g = 18 cages are not currently known, so we use the smallest currently available

candidate discovered by Exoo [32], which has 2560 sites. While some cages have special symmetry

properties such as vertex-transitivity, arc-transitivity, or being a Cayley graph, this one does not.

This does not pose any problem for us, because the asymmetry is only apparent when examining

the graph globally. Locally it still looks exactly like the Bethe lattice.

When studying disordered systems, one often utilizes “disorder averaging” to minimize the

stochastic effect of a single disorder realization. Likewise, one can use finite-size scaling, which

employs extrapolation to minimize finite-size effects. However, due to the large, self-similar

structure of the Bethe lattice, we found that our computational efforts were best spent maximizing

the girth of our graph. Our cage already contains a large number of smaller trees as subgraphs, and

our analysis in section VI includes an extrapolation to the infinite Bethe lattice. Additional disorder

realizations have a negligible effect on our conclusions below.

The correlations of nearby sites are subject to ultraviolet details, and should be expected to be

non-universal. For example, they might depend significantly upon the artificial uniform shape of

the disorder distribution. Furthermore, sites at a distance d ≥ g/2 = 9 can be connected by multiple

minimal paths, which mutually form loops. Thus, when analyzing our Ξ level repulsion data in

section VII, we restricted our attention to pairs of sites at distances 3≤ d ≤ 7.

Performing the mapping from MBL to single-particle Anderson localization in section II without

any approximations leads to a high-dimensional hypercubic graph with a girth of four as the setting.

It is therefore reasonable to ask whether our goal of maximizing the graph’s girth is even desirable.

Our response is that if one wants certain answers for MBL, they should already be very cautious

of the many approximations made in section II. Regardless of how accurate they turn out to be,
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we take the problem of Anderson localization on the Bethe lattice as a starting point which is

interesting in its own right. Then, when selecting a finite analog for the Bethe lattice, we note

that cages, while probably ultimately in the same universality class as the commonly-used random

regular graphs, possess certain convenient features such as a lack of local topological disorder, thus

allowing for a well-defined distance metric for separations well below the girth, which we utilize

when extrapolating our results to the infinite Bethe lattice in section VI. We do not expect the MBL

g = 4 argument above to imply that random regular graphs are superior to cages in modelling MBL

because the random regular graph’s typical loop lengths also diverge logarithmically with graph

size citeTikhonov16a.

VI. INTUITIVE PICTURE AND MATHEMATICAL ANALYSIS

A. Intuitive Picture

Schematically, our intuitive picture of the three phases is represented in figure 1. However, one

should keep in mind that this “binary” representation of an eigenstate’s support is an approximation

at best. In fact, an individual eigenstate is almost surely supported on the entirety of the tree. In

a finite number of dimensions, exponential decay of the eigenstate with distance ensures that the

state is localized and normalizable. However, on the Bethe lattice, due to the exponentially growing

number of sites with distance, this is not always the case. The non-ergodic extended eigenstates

decay exponentially, but can not be normalized. This implies that while still “centered” about

some part of the tree, they are non-trivially supported on an infinite number of sites. In the binary

approximation, we identify some subset of the branches away from this center which are essential

to the support of the eigenstate. Similar intuitive pictures have been developed by Garcı́a-Mata et

al. [82, 84]

While numerical evidence has been presented to the contrary [47, 49, 70], mathematical results

suggest that for sufficiently small but positive disorder W <WE , there should be an ergodic extended

region of the spectrum [24, 94, 95, 100–102]. This is not surprising when one remembers that the

tree is effectively infinite-dimensional. For WE <W <Wc, the localization is branch-dependent. As

one moves away from the origin, some branches are sufficiently disordered to effectively localize

the particle, but probabilistically, a growing number of the branches are essential components of the

eigenstate’s support and prevent the wavefunction from being normalized. Again, it is important to
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reiterate that this binary inclusion or exclusion of a branch from the eigenstate’s support is only an

approximation. As we will discuss below, non-ergodic eigenstates actually decay exponentially

along all of the branches. The rate of decay varies from branch to branch. We are interested in

the number of branches which decay “sufficiently slowly”, as a function of distance. There are

Nd = 3 ·2d ∼ 2d sites at a distance d from any given node, so, roughly, if |ψd|2 decays more slowly

than 2−d , the normalization integral

〈ψ|ψ〉 ≈
∞

∑
d=0

Nd|ψd|2 (4)

diverges. In the non-ergodic extended state, the wavefunction can be thought of as extending along,

instead of all Nd ∼ 2d branches, only Cd ∼ nd of them, where 1 < n < 2. For ergodic states, n = 2.

Finally, for sufficiently high disorder, W >Wc, the state is localized, normalizable, and does not

extend along any of branches, i.e. n < 1. This branching ratio n is connected to the fractal dimension

D of the eigenstate by the relation n = 2D. [49]

In terms of the level repulsion metric from the Wegner flow, Ξ [29], we find that ergodic, random

matrix behavior occurs when

Ξd & Ξ
?
d ∼ N−2

d ∼ 4−d, (5)

where Ξd refers to only those Ξab values where a is at a distance d from b, and Ξ?
d is a critical

repulsion level at that distance. This is the square of the amount of energetic level repulsion

necessary to shift initially Poissonian eigenvalues with a level density proportional to Nd to a

Wigner–Dyson distribution. This ansatz is confirmed by the numerical results at low disorder in the

next section, where our finite system approaches asymptotic ergodicity and reproduces this scaling

behavior.

In other words, equation (5) quantifies the reasonable claim that sites at further distances interact

less, even for the clean W = 0 tree, and the level repulsion behavior of systems in this ergodic class is

given by that equation.For non-ergodic states, the decay of Ξ as one moves away from a central node

can be thought of in probabilistic terms. Each step away from the center approximately multiplies

the level repulsion between the center and its parent node by some random variable. On small

scales, the two child nodes of a single parent do interact while diagonalizing the Hamiltonian, but

on longer scales (d ' 3), the geometric central limit theorem kicks in and it becomes reasonable to

approximate the Ξd distribution as log-normal. This intuition is borne out in figure 2. Furthermore,

as d increases, the geometric means and variances of the Ξd grow linearly in accordance with the
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FIG. 2. Log-Normal Decay and Spreading of the Level Repulsion Metric with Distance: Sites at further

distances interact less in a disorder-dependent manner. As one moves from right to left, the distribution of

the level repulsions of nearest neighbors (red), next-nearest neighbors (orange), etc., and those at distance

d = 8 (violet), are shown. For clarity, the bell-shaped curves have been scaled such that their maxima are all

fixed at unity. However, the number of site-pairs at a given distance increases as Nd ∼ 2d . Sites have weaker

and more variable interactions at longer distances, and this effect is enhanced by disorder. Sites which are

too close have non-log-normal distributions, and those which are too far apart are influenced by the cage’s

many long loops, so the linear fits in figure 3 use only the geometric means and variances of those site-pairs

at distances 3≤ d ≤ 7.

geometric central limit theorem: µlnΞd ∼Md and σ2
lnΞd
∼ S2d. This linear behavior is demonstrated

in figure 3.

B. Caveats

For small d / 2, the geometric central limit theorem is clearly not applicable, and their distribu-

tions in figure 2 are not bell-shaped. Furthermore, for large d comparable to half the cage’s girth

g/2 = 9, sites are connected by multiple paths of similar lengths, leading to a breakdown in the

cage’s ability to approximate the Bethe lattice. We therefore used only distances 3≤ d ≤ 7 for the

linear fits shown in figure 3. Due to our purely numerical approach, we can not assess the complete

ergodicity or the possibility of very large crossover scales with certainty, although an effort was

made to extrapolate the results from our finite cage to the infinite Bethe lattice below.

This extrapolation will involve examining exponentially small tails of the log-normal distribu-

tions given by the geometric central limit theorem. Importantly, the central limit theorem only
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FIG. 3. Example Level Repulsion Linear Fits: For intermediate distances, the bulk of the level repulsion

data in figure 2 obeys a log-normal distribution with geometric means and variances which grow linearly

with distance. For each disorder strength W , we extract M and S2, the slopes of these lines over distance,

using a linear fit on the data points at distances 3≤ d ≤ 7. In figures 4 and 5, these values are used to classify

the behavior of the systems into the three phases shown in figure 1.

applies to these exponentially small quantiles up to a constant factor. This is unimportant for our

qualitative picture, but does provide a degree of uncertainty to the precise values of the critical

disorder values WE and Wc that we obtain. For example, the upper 2−N th quantile of the sum of

N independent centered Bernoulli distributions is N, but the central limit theorem approximation

gives
√

ln4N ≈ 1.177N.

Finally, we perform our calculations thrice. Once without regard to the eigenstate energies and

once for only Ξab values where |Ea| ≤ 1/2. Without this band resolution, we consider all of the

eigenstates together, and can not expect to see ergodicity for positive disorder, as states in edges

of the band are likely non-ergodic (although potentially still extended [23–25]). It is only with a

restriction to these states in the center of the band that we can possibly expect to find the three

phases and the correct critical disorder values. The third calculation is done without band resolution,

but using only the Ξd data from distances d = 3, 4, and 5, in order to give a sense of how the results

scale. With these warnings out of the way, we think that the following approach still provides a

clear intuitive picture of the three predicted regimes of behavior.
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C. Mathematical Analysis

In our log-normal approximation, the probability distribution P(lnΞd) ∝ e−z2
d/2, where

zd =
lnΞd−Md

S
√

d
. (6)

The number of “connected” sites at a distance d, Cd ≈ NdP
(
Ξd ≥ Ξ?

d

)
, where Ξ?

d was defined in

equation (5). Asymptotically, this is proportional to 2d erfc(z?d/
√

2), where erfc is the complemen-

tary error function, z?d =−Q
√

d, and

Q =
M+ ln4

S
. (7)

As mentioned above, as d→ ∞, Cd ∼ nd . Expanding the tail of the error function gives

Cd ∝ 2de−z?d
2/2 = e(ln4−Q2) d

2 , (8)

so we can conclude that the branching ratio

n≈ 2e−Q2/2, (9)

and the fractal dimension

D = log2 n≈ 1− Q2

ln4
. (10)

Ergodic states must be entirely connected, i.e. Cd ∼ 2d , and so for them, n = 2. This only occurs

when M =− ln4. We observe this behavior as W → 0+ and for positive disorder strengths when

we restrict our attention to the center of the band. Equation (9) predicts that non-ergodic extended

states with 1 < n < 2 occur when M <− ln4 and Q >−
√

ln4 or

S2 >
(M+ ln4)2

ln4
=

M2

ln4
+2M+ ln4. (11)

Finally, in the localized phase, this inequality reverses, giving n < 1. Extreme localization occurs

as W → ∞, Q→−∞ and n→ 0+. All of these types of behavior are observed in the numerical data

in the next section.

VII. NUMERICAL RESULTS

Examples of the Ξ data and its log-normal parameter fits were presented in figures 2 and 3

above. In figure 4, the values obtained for M and S2 are plotted as W varies. For the data without
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FIG. 4. Level Repulsion Linear Fit Results: The fitted decay and spreading rates of the level repulsion

data from figure 3 are plotted for integer disorder values 1≤W ≤ 32. After extrapolating to infinite distance,

assuming the validity of the geometric central limit theorem, one can conclude that those systems to the left

of the parabola are localized, those within it are extended, and those on its axis with M =− ln4 are ergodic.

One should not expect to find exact values for Wc with this approach due to the invalidity of the central limit

theorem for exponentially small tails. Additionally, only the band-resolved data could be expected to give

precise Wc values or full ergodicity for weak disorder.

band resolution, the ergodic M =− ln4 vertical line is only achieved as W approaches zero and

the system becomes clean. The non-ergodic extended regime, lying between the parabola from

equation (11) and the ergodic line, occurs for W / 16.5≈Wc. At the band center, M ≈− ln4 for

W / 2.1≈WE , supporting the existence of ergodic behavior with positive disorder, and non-ergodic

extended states are found for WE ≈ 2.1 /W / 16.7≈Wc. Using only data for 3≤ d ≤ 5 (without

band resolution) gives Wc ≈ 14.6. Localized behavior occurs to the left of the parabola for higher

disorder values.

As mentioned in the previous sections, we do not expect this method to be optimally efficient

for estimating these critical disorder strengths, and the failure of the central limit theorem in

exponentially small tails means that they should not even converge to the true values when applied

to increasingly large cages. The qualitative conclusions remain reasonable, and the estimates are

quantitatively in the same ballpark as have been proposed by others.

One can evaluate the the branching ratios n and fractal dimensions D as a function of W by
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applying equations (9) and (10) to the M and S2 found for each disorder strength. Thus, in figure 5,

the top line at n= 2 corresponds to ergodicity, and that at n= 1 is the transition from the non-ergodic

extended phase to localization.
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FIG. 5. Effective Branching Rates: The M and S2 data in figure 4 can be recast in terms of an effective

branching rate n according to equation (9) or the fractal dimension D according to equation (10). At a

distance d from a given site, there are Nd ∼ 2d neighbors. According to our binary approximation, we say

that the site is “connected” to Cd ∼ nd of them in the infinite distance limit. Ergodic extended behavior is

recovered when n = 2 and essentially all site pairs are connected. For 1 < n < 2, the number of connected

nodes grows exponentially with distance, but they constitute a vanishing fraction of the tree, giving the

non-ergodic extended phase. Finally, for n < 1, no site-pairs are connected at large distances, and the

behavior is localized. Note that for weak disorder, particularly at the center of the band, numerical results

gave some M slightly above − ln4. We assume these data points correspond to the ergodic phase and result

from the finite size of the cage, and so we set them to n = 2.

VIII. DISCUSSION

Despite the apparent simplicity of the disordered Bethe lattice, its intricacies have continued

to astonish the mathematicians and physicists who study it for decades. Reviewing the literature,

there are repeated instances of researchers who seem to have “closed the book” on this model, only

for new details to emerge which either indicate that its behavior is richer than anticipated or even

contradict the existing understanding. In the words of Simone Warzel, there are many “surprises in

the phase diagram of the Anderson model on the Bethe lattice [24]”, and we can only guess when

the surprises will come to a final conclusion.
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This confusion is due to a number of factors. This model’s behavior is indeed more complex

than one would naı̈vely guess based on finite-dimensional localization results. Finite-dimensional

Anderson localization is already difficult to experimentally observe, but direct physical embeddings

of the infinite-dimensional Bethe lattice are even less practical to construct, and so there is little

hope of experimental data resolving the situation. Achieving consensus has also been made more

difficult due to the variation and inconsistencies in terminology used between mathematicians

studying spectral theory, theoretical physicists, and computational physicists. As reviewed in

section III, a wide range of advanced approaches have been employed to tackle this model by all

three of these groups. The numerical situation is complicated by the necessity of selecting a finite

version of the Bethe lattice, and it is not always clear how the various choices affect the model’s

behavior in the scaling limit. [77] It is difficult to rigorously define extended states on infinite

graphs, and it is not clear which if any of the finite graphs converge to the infinite Bethe lattice

limit as they grow in size. Numerical approaches are also hindered by the exponential growth of

the number of sites of the Bethe lattice with its linear dimension, thus limiting our ability to test the

existence of a large non-ergodic extended–ergodic phase crossover length scale such as that claimed

in [59, 63, 64, 67, 79, 80, 85]. It seems possible that random regular graphs and cages exhibit such

a crossover due to their exponentially many large loops, but the truly loopless infinite Bethe lattice

does not. In that case, we hope that our extrapolation to infinitely distant sites in section VI gives

results which are more applicable to the infinite Bethe lattice.

Despite these difficulties, the importance of understanding the disordered tree is growing as

comparisons between it and the explosive field of many-body localization continue to be drawn.

Tests of this correspondence would be quite valuable. We considered trying to apply the techniques

of this paper to a real-space MBL system, but were unable to find a numerically tractable model

with a satisfactory distance metric. Success in this endeavour would be a notable contribution to

the MBL literature, as the possibility of non-ergodic states extended in Fock space has been often

overlooked.

Some additional directions that might extend the approach in this paper include larger cages,

a more traditional measure of eigenstate overlap instead of the Ξab metric from the flow, a more

careful mathematical analysis of the exponentially small tails of the log-normal distributions (such

as in [103]), a more elaborate approach for isolating the band center, a comparison between the

scaling limits of cages and random regular graphs, and an assessment of whether the arguments for

a large non-ergodic extended–ergodic phase crossover length scale on random regular graphs [59,
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63, 64, 67, 79, 80, 85] extends to our approach. One might expect more precise values for the

critical disorder strengths WE and Wc to emerge if these improvements were made.

We hope that our introduction of a new approach and setting, namely Wegner flows and cages,

does not merely accentuate the aforementioned confusion. Further graph settings that may be of

interest are those with quenched topological disorder in spaces of constant negative curvature such

as “hyperbolic geometric graphs” [104] and Delaunay triangulations of randomly placed points on

the hyperbolic plane [105]. It may be difficult to define a boundary for such graphs and therefore

study extended states, but a possible resolution to problems such as this has been proposed [106].

The topological disorder may obviate the need for on-site disorder, possibly giving two critical

delocalizing negative curvatures for a given dimensionless model of topological disorder at W = 0

and unit site density, but numerical evidence on R2 [107] indicates that the localization lengths

are likely to be prohibitively large. The AdS2+1 case seems most promising, as any amount of

topological disorder should localize all states in the weak curvature limit.

The Anderson model on the Bethe lattice may be connected to more than just MBL. The Bethe

lattice can be viewed as a discretization of hyperbolic space which has a p-adic boundary at infinity.

Perhaps there is an equivalent formulation in terms of a theory with power-law correlations on this

p = 2-adic boundary, akin to the AdS/CFT holographic paradigm in high-energy physics. [108–

110] The power law exponent depends on the strength of the localization in the hyperbolic bulk.

Interestingly, power law correlator decay shows two distinct regimes of behavior depending on

whether the implied theories exhibit IR and/or UV divergences, which may correspond to the

non-ergodic extended and localized phases in the bulk, respectively. More speculatively, one might

hope to connect this with Kehrein’s “flow equation holography” proposal. [99]
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